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ABSTRACT 

A cutting order is a list of dimension parts along with demanded quantities. The cutting-order 
problem is to minimise the total cost of tilling a cutting order from a given lumber supply. Similar 
cutting-order problems arise in many industrial situations outside of forest products. This paper adapts 
an earlier. linear programming approach that was developed for uniform, defect-free stock materials. 
Tlie adaptation presented here allows the method to handle nonuniform stock material (e.g., lumber) 
that contains defects that are not known in advance of cutting. The main differences are the use of a 
rand0111 \ample to construct the linear program and the use of prices rather than cutting patterns to 
specify a solution. The primary result of' this research is that the expected cost of tilling an order 
under the proposed method is approximately equal to the minimum possible expected cost for suffi- 
ciently large order and sample size.;. A secondary result is a lower bound on the minimum possible 
expected cost. Computer simulations suggest that the proposed method is capable of attaining nearly 
mininial expected costs in moderately large orders. 

Kr\*\vortl.v: Cutting order, linear program, secondary manufacturing, knapsack problem, optimizer 

INTRODUCTION 

A rough mill converts rough-cut boards into 
smaller pieces, such as furniture parts or trim 
moldiiigs. Because of high lurnber costs, con- 
versio I efficiency is of major importance to 
the in'lustry and is the subject of this paper. 
Al tho~~gh we will focus on the production of 
wood blanks for the furniture industry, the 
metho l s  presented here are equally applicable 
to oth~:r industries. 

'; Me nber of SWST. 

Blanks are produced in different dimensions 
and in different quantities as specified in a cut- 
ting order (Table 1 ) .  In general, cutting orders 
may allow one dimension (length or width) to 
be random, but we will consider only cutting 
orders for which both are fixed. Blanks are 
typically categorized as clear one-face (C1 F ) ,  
clear two-face (C2F), or sound two-.face 
(S2F). The process of filling an order by cut- 
ting boards that contain knots and other de- 
fects into blanks is called cutting to order, and 
the cutting-order problem is to minimize the 
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TABI.L 1 . Forr i~ut  of' u cuttillg order. 

2.00" X IS" Red Oak (C2F) 60 
1 .SO" X 18" Red Oak (C21;) 85 
2.25" X 25" Red Oak (C21;) 40 

cost of producing the blanks. An alternative is 
cutting to inventoty, in which a monetary val- 
ue is assigned to each blank and one seeks to 
maximize the total value of the blanks pro- 
duced from a given quantity of rough lumber. 
Cutting to inventory will not be considered 
here, though we will use artificially generated 
blank values to control the cutting process. 

The details of the sawing process need not 
be described for the purposes of this research. 
It suffices to assume the existence of an opti- 
mizer that, given a specific board and specified 
blank values, generates sawing instructions 
that maximize (or approximately maximize) 
the total value of blanks produced from the 
board. In an automated sawmill, the optimiz- 
er's inputs come from a computer vision sys- 
tem or scanner, which detects the board's di- 
mensions as well as the locations and shapes 
of knots and other defects. Figure l(a) shows 
a sample output from a scanner. The scanned 
image has been reduced to a discrete grid of 
0.25-in. (6.35-mm) squares, where the dark ar- 
eas represent defects. Figure l(b) shows the 
optimizer's output, a maximum-value cutting 
pattern; the light areas represent usable blanks, 

the dark areas represent defects, and the gray 
areas represent waste. 

This research builds on a linear program- 
ming (LP) approach to the cutting-order prob- 
lem, due to Gilmore and Gomory (1961, 
1963) (G&G). Their work applies to uniform 
stock materials such as paper rolls or glass 
sheets, where a relatively small number of dif- 
ferent stock sizes are available for cutting and 
all stock objects of a given size are identical 
to one other. Since the stock objects are uni- 
form, a given cutting pattern always produces 
the same end products. But heterogeneous ma- 
terials such as rough-cut boards require indi- 
vidual cutting patterns because the shapes and 
locations of defects vary. Moreover, board de- 
fects are not usually known in advance, so cut- 
ting decisions regarding a board cannot de- 
pend upon the specific characteristics of sub- 
sequent boards. To accommodate random var- 
iation in the boards, we modify the G&G 
procedure in two ways. First, we use a random 
sample of boards rather than a single object 
(e.g., a glass plate of a given stock size) to 
generate columns for the linear program. Sec- 
ond, the solution is not implemented in terms 
of fixed cutting patterns that are to be applied 
to a specified number of stock objects, but 
rather in terms of dynamically changing the 
blank values (or prices) that are supplied to 
the optimizer. The prices are obtained from 
dual variables calculated in the course of solv- 
ing the linear program. The order quantities 
specified in the linear program are updated in 

Total value: 6.232 = (.255 9) + (.212 . 6) + (.533 .5)  

Frc,. I. Sample of optlnilzer input and output: (a) scanned board; (b)  a maximum-value cutting pattern. 
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the cturse of filling the order, so the linear 
progrzm is solved not just once but periodi- 
cally (ideally after each board is cut). 

We call this approach the LP/sumpling 
method, and it is intended for use with large 
cuttinj; orders. The method ignores fixed costs, 
such as setup costs, but can accommodate var- 
iable cutting costs (e.g., each cut adds a small 
cost) if an optimizer is available that can find 
the milximum-value cutting pattern net of cut- 
ting c~)sts. 

LITERATURE REVIE?W 

The literature on cutting problems is quite 
large, and the review presented here is limited. 
For lrore details, see Hamilton (2001). The 
USDPIs Forest Products Laboratory (FPL) at 
Madison, Wisconsin, was a pioneer in devel- 
oping programs for studying lumber yields in 
the production of blanks. Their purpose was 
not to automate wood processing but to gen- 
erate ,iield data that could iniprove planning 
at a t {pica] operation. They include YIELD 
(Wodi inski and Hahm 1966); MULRIP (Hal- 
lock 1980; Gatchell et al. 1983); CROMAX 
(Giesc and Danielson 1983); and RIPYLD and 
OPTYLD (Giese and McDorlald 1982). The 
USDP. Forest Service's Northeastern Research 
Statioi~ has carried on this work by developing 
a crosscut-first simulator ROMI-CROSS 
(Thorias 1997) and a rip-first simulator 
ROMI -RIP (Thomas 1999). 

Kli~~khachorn et al. (1989) reported on a 
compllter program created as part of the ALPS 
(Autolnated Lumber Processing System) pro- 
ject. I was designed to control the cutting of 
blank: with a high-powered laser that does not 
requir~: through cuts. The algorithm employs 
various heuristics to formulate cutting patterns 
that n- aximize total yield. 

Another set of programs for cutting blanks 
from >oards is CORY (Computer Optimiza- 
tion cf Recoverable Yield) (Brunner et al. 
1989). CORY uses a heuristic decision model 
based on analyzing clear areas, where the ob- 
jective is to identify a set of clear areas having 
the laigest total value. A set of pre-specified 

rules is used to decide among competing clear 
areas and to resolve conflicts arising when cuts 
used to extract one clear area extend into an- 
other. CORY bases its decisions on combina- 
tions of up to three clear areas. Different ver- 
sions of CORY accommodate two-, three-, or 
four-stage processes and fixed or variable 
blank sizes (Anderson et al. 1992). 

The LP approach to the 
cutting-order problem 

Gilmore and Gomory (1 961, 1963) showed 
how to formulate cutting-order problems as 
linear programs. In the application they ad- 
dressed, a manufacturer has paper rolls of a 
single stock length from which an order for 
specified quantities of shorter rolls is to be 
filled. Shorter rolls are produced by cutting 
longer stock rolls, and the objective is to min- 
imize the total cost of stock rolls used to fill 
the order. Unlimited quantities of stock rolls 
are available at a cost of c per roll. Suppose 
that the cutting order specifies m different 
lengths of shorter rolls in quantities bi, i = 1, 
2, . . . , m. Cutting a stock roll produces a com- 
bination of rolls of the desired lengths and 
trim waste. Let aii be the number of rolls of 
the ith ordered length produced by using the 
jth cutting pattern, and assume there are n pos- 
sible cutting patterns. Letting c = (c, . . . , c)', 
b = (b,,  . . . ,  b , , ) ' , ~ ,  = (a,,, . . . ,  a,)',andA 
= [a , ,  . . . , a,,] ,  the problem can be formulated 
as a linear program: 

minimize: c'x 

subject to: Ax 2 b x r 0 (1) 

where x = (x,, . . . , x,) ' and x, is the number 
of stock rolls cut using the jth cutting pattern. 
A minor modification to the formulation al- 
lows multiple stock lengths to be considered. 
The LP formulation usually leads to fractional 
elements in the optimal x, which must be 
rounded up to obtain an approximate solution 
to the exact integer programming formulation. 
The LP approach therefore works best with 
larger orders, where the effects of rounding 
are smaller. 
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One difficulty with this formulation is that 
there is usually a very large number of pos- 
sible cutting patterns, and consequently a very 
large number of columns in A. To surmount 
it, G&G showed how the revised simplex 
method (Murty 1976) can be used to generate 
columns only when they are needed by solv- 
ing an auxiliary problem at each iteration. Af- 
ter transforming the linear program to standard 
form, a feasible basis B is a square matrix of 
linearly independent columns from A such that 
x = B-'b 2 0. The revised simplex method 
attempts to improve a current basic feasible 
solution by replacing one of the columns in B 
with a column of A, a,, that is not already in 
B. To be eligible for entry into the current ba- 
sis, a column's relative cost coef$cient must 
be negative, i.e., c, - n 'a ,  < 0, where n' = 

c k B '  and c, is the vector of basic cost coef- 
,ficients (Murty 1976). In the usual pivot step, 
the column with the most negative relative 
cost coefficient is selected to enter the basis, 
and if no column has a negative coefficient, 
the algorithm terminates. In G&G's problem, 
the cost c, = c is constant, so the task of find- 
ing the most negative relative cost coefficient 
reduces to finding a column a, from A that 
maximizes n'a,. The column-entry criterion 
can thus be evaluated by maximizing the total 
value of pieces (i.e., shorter rolls) cut from the 
stock length, where the piece values are given 
by the vector n. If this maximum value is 
greater than c, then the associated column en- 
ters the basis B. Otherwise, the solution cannot 
be improved, and the algorithm terminates. 
This value-maximization problem, embedded 
in the overall cost-minimization problem, is 
called the auxiliary knczpscrck pmhlem. Using 
this technique, only a small subset of columns 
ever requires explicit consideration. 

LP in wood proces.sing 

Gilmore and Gomory's LP approach is well 
suited to applications that involve uniform 
stock materials, such as the cutting of parti- 
cleboard (Carnieri et al. 1994). However, dif- 
ficulties arise in applying it to applications 

such as furniture-blank production, where ran- 
dom defects must be removed from the stock 
material to produce the finished product. One 
might consider each board to be a unique 
stock type that is available only in a quantity 
of one, but this undermines the linear pro- 
gramming approach, which is intended for use 
with just a few stock types that are available 
in moderately large quantities. To use LP in 
this context, it is therefore necessary to aggre- 
gate boards in some way. In doing so, current 
methods no longer control the sawing of in- 
dividual boards, but instead minimize raw ma- 
terial costs by using estimated yields and lum- 
ber prices to specify board grade mixes. 

Carino and Foronda implemented a pro- 
gram, SELECT, that aggregated boards of a 
given grade by their dimensions (Carino and 
Foronda 1990; Foronda and Carino 1991). 
Their formulation assumed that all boards of 
a given grade and dimension have the same 
productive potential. The gradelsize categories 
were then treated as separate stock sizes, each 
one requiring the solution of an auxiliary 
knapsack problem. Each knapsack problem 
was defined by grading rules that specified the 
clear-area requirements for a board of a given 
size and grade. Also, their formulation implic- 
itly assumed that within a given grade of ran- 
dom-dimension boards, certain sizes may be 
selected for use while other sizes may be di- 
verted to inventory. 

An alternative approach to dealing with 
board heterogeneity is to use experimentally 
derived general yield tables to estimate how 
much lumber is required to produce particular 
quantities of blanks. This is the approach tak- 
en in the computer programs OPTIGRAMI 
(Martens and Nevel 1985) and ROMGOP (Su- 
ter and Calloway 1994). OPTIGRAMI mini- 
mizes the cost to produce a cutting order by 
determining the quantity of each grade of 
available lumber to use, along with the quan- 
tities of blanks to be produced from each 
grade. ROMGOP formulates a goal program 
whose goals include minimizing underproduc- 
tion, overproduction, and budget-, time-, and 
lumber-usage overruns. Instead of yield tables, 
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RIP-A (Harding and Steele 1997) uses com- 
puter simulations of specified rough-mill sys- 
tems ; ~ n d  cutting orders to estimate the yields 
used .or calculating the optimal proportions 
for eazh available lumber grade. 

Proc~l~Ls.s-coiztrol .systems in wood processing 

An automated rough mill cannot saw aggre- 
gated boards; it must cut each board using an 
indivi lualized sawing pattern. Saw line place- 
ment is determined by an optimizer using 
blank prices to calculate maximum-value cut- 
ting Fatterns. When cutting to inventory, the 
blank prices have real-world meaning. When 
cuttin,; to order they do not; they merely pro- 
vide a mechanism for controlling which 
blank:, are preferred. 

We call the system that is responsible for 
deterrlining price settings a controller. In or- 
der to cut a random sequence of boards into 
specif ed quantities of blanks using as few 
board,; as possible, the controller takes contin- 
uousl!f supplied information about the quan- 
tities being produced and adjusts prices ac- 
cordir gly. The usual objective is to produce 
blank!, in relatively constant proportions over 
the er tire production run. If a blank is under- 
represented or overrepresented in the output, 
the controller can increase or decrease its price 
to adj -1st its production rate. 

Dn- itrovic et al. (1992) described one pos- 
sible (:ontroller algorithm. It uses information 
obtaired from the counts of blanks accumu- 
lated lver  a limited time horizon to adjust fu- 
ture prices according to an inverse hyperbolic 
cosine function whose parameters are based 
on K: lman filtering techniques. Another con- 
trollel-based approach uses fuzzy logic to cal- 
culate optimizer prices (Anderson et al. 1997). 
One c ifficulty with these two methods is that 
they :,re not easy to implement, and they re- 
quire a certain amount of calibration to per- 
form well. A much simpler strategy was put 
forth 3y Thomas (1996), based on a complex 
cZynanlic exponent (CDE). 

The, CDE formulas are based entirely on the 
quant ties remaining to be produced, except 

that values for the first 35 pieces of each size 
are boosted somewhat so as to avoid under- 
production of sizes ordered in small quantities. 
Unlike the two previous methods, CDE ig- 
nores the relative rates at which blanks are be- 
ing produced. 

THE LPISAMPLING METHOD 

The solution method we propose for solving 
cutting-order problems in wood products ap- 
plications is the LPIsampling method, which 
extends the G&G approach to the sawing of 
individual boards. The LPIsampling method 
consists of a controller that provides the op- 
timizer with blank prices that are used to find 
each board's sawing solution. It does this by 
using a random sample from previously cut 
boards to supply information regarding yield 
characteristics for the lumber supply and to 
take into account the nonuniform nature of the 
stock material. We assume for the purposes of 
this discussion that the only costs are for raw 
material and that only a single lumber supply 
is available, consisting of a single grade or an 
unsorted mixture of multiple grades. We also 
assume that boards are presented in a given 
sequence and must be used in the order sup- 
plied. Some extensions, such as allowing mul- 
tiple lumber supplies, are discussed in Ham- 
ilton (2001). 

In its broadest sense, the proposed method 
is essentially the same as other methods that 
use prices to control production. Given a cut- 
ting order and a sequence of boards, the pro- 
cess of filling the order consists of these steps: 

1 .  Calculate a price (or value) for each 
blank size. 

2. Cut the next board in the sequence at 
those prices (i.e., cut the board so as to 
maximize the total value of blanks pro- 
duced). 

3. Reduce the remaining order quantities by 
subtracting the quantities just produced. 

4. If the order is not yet filled, go to ( 1 ) .  
Otherwise, stop. 

What distinguishes one method from another 
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is the manner in which the prices are calcu- 
lated in step (1).  

The linear program in the LPIsampling 
method is the same as the one described in the 
section The LP approach to the cutting-order 
problem, except that columns of A are gener- 
ated from a sample of boards rather than a 
single piece of stock material. In the proposed 
method, a separate knapsack problem is solved 
for each board in the sample, and the results 
are added together to create the new column. 
The cost associated with each new column is 
the sum of the board costs in the sample. The 
linear program is solved in exactly the same 
way, although the LP solution is used differ- 
ently. In G&G's formulation, an optimal so- 
lution yields a linear combination of columns, 
where each column represents a cutting pat- 
tern that can be applied repeatedly to the uni- 
form stock material. In our problem, each col- 
umn represents cutting patterns for boards in 
a sample, and these are usually different than 
the boards to be cut. Since the cutting patterns 
are thus of no immediate use, we instead use 
the prices that generated them. 

The key to implementing the LPIsampling 
method is to properly select prices for the op- 
timizer from the generated columns. An opti- 
mal solution consists of a linear combination 
of columns that equals or exceeds the specified 
order quantities. In the LPIsampling method 
we choose any column in the linear combi- 
nation that has maximal weighting (there may 
be several) and use the prices that originally 
generated that column. We call these maximal- 
rlernent pric,e,s. In practice, maximal-element 
prices usually differ little from optimal dual 
prices for the fully solved LP, but they have a 
tie-breaking property that is mathematically 
useful. See Hamilton (2001 ) for examples of 
the application of this methodology. 

If one blank size is guaranteed to be pro- 
duced in sufficient quantities as a byproduct 
of producing other blanks, the LP may cal- 
culate its price as zero, even when more of the 
size is still needed. For example, if a cutting 
order consists of a large number of large 
blanks and a small number of very small 

blanks, the small blanks can easily be cut from 
board areas that are too small to accommodate 
large blanks. To eliminate this technical diffi- 
culty, the price of any zero-price blank can be 
changed to a very small positive number, E. A 
sufficiently small price will ensure that a blank 
will be included in an optimal cutting pattern 
only if it fits into space that would otherwise 
be unused. 

Another potential difficulty arises when the 
LP for a given sample has no feasible solution; 
this happens when there is some blank size in 
the order that cannot be produced by any 
board in the sample. In this situation, either 
the order is unsuited to the lumber supply or 
the sample poorly represents it. In the former 
case, one should use a better grade of lumber; 
in the latter case, adding more boards to the 
sample should alleviate the problem. 

A good sample of previously cut boards is 
vital for the LPIsampling method to produce 
good results. The most obvious way to utilize 
historical data is to collect data from every 
board that is processed from the lumber supply 
in question. From a database of these boards, 
a simple random sample (Cochran 1977) can 
be drawn, with or without replacement, to rep- 
resent the lumber supply. 

The LPIsampling method is intended main- 
ly for use with large cutting orders, where 
boards are scanned just before being cut. 
Large orders use a long sequence of boards, 
which means that the composition of the se- 
quence reflects the lumber supply as a whole. 
Thus, information in a random sample from 
the lumber supply can be reasonably applied 
to the boards in the sequence. This is not true 
if the order is very small; the sample may rep- 
resent the lumber supply but not the sequence 
to be cut. If it is possible to scan all boards 
before any are cut, then there are modifica- 
tions to the standard method that may be use- 
ful even with small orders (Hamilton 2001). 

Geometric interpretation 

For a given knapsack problem, a solution 
can be calculated at any price vector. Thus, 
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FK;. 2 .  Mapping price vcctors to optimal cutting patterns. a,. az, and a3 = 1 - T ,  - ~2 are dimensionless 
quantities. 

there is a mapping from price vectors to op- knapsack solutions depend only upon relative 
tirnal ;elutions (column vectors of blank quan- prices, the map is shown as a two-dimensional 
tities) I f '  the number of blank sizes is limited figure. The axes n, and T, are shown explic- 
to two or three, this relationship can be dia- itly, while T, is calculated as T ,  = 1 - T ,  - 

gramrned, as shown in Fig. 2. Since optimal T,. Each region is labeled by the column that 
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; \ \  

I \ Board B 
I \ 

\ 
I \ 

I \ 

I \ 
\ 

I \ 
\ 

1.0 0.0 
FIG. 3. Additive property of individual maps. 

is generated by price vectors in that region, 
and the corresponding cutting pattern is iden- 
tified by a connecting arrow. Note that each 
region is a closed convex set; this is a general 
property of such maps. 

The knapsack solution for a set of boards is 
simply the sum of the knapsack solutions for 
the individual boards. In a similar vein, maps 
for individual boards can be overlaid to obtain 
a map of the aggregate. Figure 3 shows an 

example of how the maps for two boards can 
be combined into a single map. The bound- 
aries of each map appear unchanged in the 
combined map, and columns are added to- 
gether in the obvious way. This process can 
be extended to any number of boards. Figure 
4 maps a sample of twenty boards; the en- 
larged area has radius 0.005. 

suppose that we want to cut equal quantities 
of the three blanks, and that the only infor- 
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FIG. 4 .  Aggrcgatc map for a $ample of twenty boards. 

mation we have is a very large copy of this 
map, with all regions labeled. We could start 
by finding a region in which the three blank 
quantities are nearly equal. The region labeled 
( 124, 1 16, 122) in the enlarged area of Fig. 4 
best fits our needs. The center of this region, 
identified by the dot, is (T,, T ~ ,  7 ~ ~ )  = (0.2555, 
0.2 1 17, 0.5329). Cutting all 58 1 boards in the 
data set at this price vector produces total 
blank counts of (2803, 2509, 2694). These are 
fairly close to equal proportions, which was 
the goal, and even closer to the proportions in 
( 124, 1 16, 122). Figure 5 diagrams this pro- 
cess. 

Thl? preceding example showed how a ran- 
dom sample can be used to estimate produc- 
tion quantities at a given price vector. This 
constitutes one half of the LPIsampling meth- 

od. The other half, namely the LP, provides an 
efficient way for locating particular price vec- 
tors on the map. In effect, the process of build- 
ing a map is the process of finding all of the 
columns of the Ll? This process is much too 
slow. In contrast, the column-generating meth- 
od explicitly finds only a small subset of col- 
umns. For example, in solving the problem 
considered above, fewer than 2% of the LP's 
953 columns were generated. 

THEORY 

The LPIsampling method is supported by 
two theoretical results. The first gives a lower 
bound on the cost of filling a cutting order; 
the second states that the LPIsampling method 
comes close, in some circumstances, to 
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R.andom Sample of 20 Boards Sequence of 581 Boards to be Cut 

Desired "Estimated" Actual Total Counts of 
Proportions Proportions Proportions Dimension Parts 

.33 .34 .35 2,803 (2.00" x 15") 

.33 .32 .31 2,509 (1.50" x 18") 

.33 .34 .34 2,694 (2.25" x 25") 

- 
1 

I - . . 
I 1 

FIG. 5.  Strategy to cut equal proportions of blanks. 
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Find Region in Map Where 
Dimension-Part Counts are Roughly Equal 

Closest counts: (124, 116, 122) 
Proportions: (.34, .32, .34) 

I 
t 
I - 
I 
I L 

I - - - 
I . . I - _. - - < k - 
I I I - - -- 
C -. d 
I 

I 
I = I 
I i 

L 

Point in Region: TI = .2555, ~2 = .2117 
I 

7 
I \ 

Prices Dimension Parts I Cut Boards I 

I 

-/rl = .2555 2.00" x 15" - I Maximize Total Value 

 IT^ = 2117 1.50" x 18" - I of Dimension Parts 

-/r3 = .5329 2.25" x 25" - Extracted from each Board 
I 
I 
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achieving that lower bound. 'These results are 
expressed via three functions: f ,  the minimum 
cost clf filling an order; g, a lower bound on 
the cclst of filling an order; and h, the cost of 
filling an order using the LPIsampling method. 
Proof:; of the results presented in this section 
may t ~ e  found in Hamilton (2001). 

In order to define f ,  g, and h, it is necessary 
to represent in some way the boards that are 
used to produce blanks. In our formulation, we 
describe each individual board in terms of 
what ~t can produce. Suppose that the cutting 
order specifies quantities for A4 different blank 
sizes. A yield vector is defined as an M X 1 

plies that all the C,'s are equal. Hence, we will 
drop the index on C in the following. 

In the cutting-order problem, boards from a 
given lumber supply are supplied in the form 
of an infinite sequence. Any sequence of 
boards from the lumber supply can be repre- 
sented by a sequence of board types from the 
class. We thus represent a sequence of board 
types from a board class with N board types 
by a sequence {y,) = {y,,  y,, . . . ), where each 
y,  is an N X  I vector consisting entirely of O's, 
except for a single element, which is set to 1. 

The exact ,formulation: f ({y, }, b)  
vectol of nonnegative integers and represents 
quantities of blanks obtained from cutting up Suppose that {y,] represents a sequence of 

a given board in a particular way. The pro- boards from a lumber supply. Let b 2 0 be an 

ductive capacity of a given board is repre- M X 1 vector of order quantities, where b, is 

sented by the set of M ordered pairs (a,  c), the quantity for the ith blank, and at least one 

where a is a yield vector, c. is its associated b, > 0. It is convenient to assume no integer 

cost, and M is the number of ways that the restrictions on b, even though in reality blanks 

board can be cut into blanks. This set is called are produced only in nonnegative-integer 

a hourrl type, and it represents a group of quantities. The exact formulation of the cut- 

board:; that have the same cost and produce ting-order problem for a single board class is 

identical blank-size counts when using iden- written as follows: 

tical blank values, but not necessarily with 
identical sawing solutions. 

A board class is defined as a finite collec- 
tion of board types, and is used to model a 
lumber supply. A board class of %board types 
can be expressed as the set A of all matrix 
pairs (A, C ) ,  where A is an h'l X !A( matrix, C 
is a I x %row vector, the nth column of A is 
a yielcl vector from the nth board type, and the 
nth el 'ment  of C  is its associated cost. The 
number of elements in A is N = II?=, w, (i.e., 
the number of combinations consisting of one 
yield vector from each of the board types). 
For convenience, we usually express A as a 
set of N indexed elements: 

A = c . . .  c .  ( 2 )  

where 

and f,({y,}, b) = if there is no feasible so- 
lution. f ,  represents the cost of the best so- 
lution(~) that can be obtained from the first L 
boards in the sequence. We also define 

Each 11, can be viewed as a cutting specifics- i ( { y t ) ,  b) 
tion fc'r each board in the board class. We are 
assulnlng that the only costs are for raw ma- f L :  f ~ ( { y t } >  f({y?}, b, < co) 

L= 1.2 .... 
terial, i.e., that costs do not depend upon the 
cutting, pattern. Thus, every yield vector for a ( 5 )  

given Imard type has the same cost, which im- which is the length of the shortest initial sub- 
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sequence of ( y , }  from which an optimal so- 
lution can be obtained, and 

which represents the number of boards of each 
type used in an optimal solution of length 
m y ,  1, b) .  

The exact formulation implicitly assumes 
that all board information is available before 
processing commences, but usually a board is 
not scanned until just before it is to be cut. 
Thus, the exact formulation may be an overly 
high standard for comparison. 

The lower-bound function, g(r, b) ,  uses a 
single vector r  as its argument, instead of a 
\equence, { y ,  }, of individual board types. r  is 
an X I nonnegative real vector and repre- 
sents the relative proportions of board types 
within a sample from the board class. g(r, b )  
is defined as 

The matrix Aj can be interpreted as a cutting 
policy, which specifies that whenever the nth 
board type is encountered on the production 
line, it should be cut so as to produce the yield 
vector in the nth column of A,). An optimal 
value for x can then be viewed as specifying 
how often each policy A, should be put into 
effect. 

Similarities between g(r, b )  and the exact 
formulation become evident when r  = i ( { y , ) ,  
b) .  In that case, the respective objective func- 
tions look very similar: 

h ' ( i ( { y ,  1, b) ,  b )  = C C ~ , C Y ,  
Y - I  , - I  

where L = L ( { ~ ,  1, b) .  The difference is in the 
variables. The x that appears in the definition 

of g  is a single, nonnegative vector with no 
integer restrictions, whereas the x,'s that ap- 
pear in the definition of j' are integer-valued 
unit vectors. It can be shown that 

so that g ( i ( { y , } ,  b) ,  b )  is a lower bound for 
. f ( { ~ l l >  b ) .  

The above result deals with a fixed board 
sequence, { y ,  }. If we consider instead a se- 
quence { Y,}  of random vectors and assume 
that Y , ,  Y,, . . . are independent and identically 
distributed, with E[Y,]  = 8, a similar lower 
bound holds: 

Moreover, this lower bound is nearly attain- 
able for large orders: 

Iim E [ f ( { Y t J ,  b)l = 1, 
(b)+= g(0 ,  b )  

(1 1) 

where (b) = max { b , ,  b,, . . . , b,,). Since g(8, 
b )  can be calculated (as the optimal value of 
an LP), it is a useful surrogate for the usually 
unknowable value of E [ f  ( {  Y, }, b ) ] .  Using g(8, 
b) ,  we can assess the performance of any cut- 
ting-order algorithm, not just the LPIsampling 
method. 

The LP/sampling method: h ( { y ,  } , r, b )  

A mathematical definition of h ( { y , ) ,  r, b) ,  
the cost of filling a cutting order using the LPI 
sampling method, is complex because cases 
involving one or more blank sizes that are giv- 
en zero prices before their counts are fulfilled 
must be included. Due to space limitations, we 
omit a precise mathematical definition of 
h ( { y , ) ,  r, b )  here, referring the reader who is 
interested in the details of the formulation to 
Hamilton (2001). Instead, we informally de- 
fine h ( { y , ) ,  r, b )  as the maximum possible cost 
to fill a cutting order under the LPIsampling 
method. The need to specify the "maximum 
possible cost" arises because h  must have a 
unique value for every board sequence and 
sample, yet the LPIsampling method can pro- 
duce different results, depending on how ties 
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are broken in the event of multiple optimal 
solutic~ns in the LP's or knapsack problems. 

The theoretical justification for the LPIsam- 
pling method is given in the following result: 

lim E [ h ( ( Y ,  1, R,,, b)l 
tb, -if g(8, b) 

= lim ELf ( {  Y,  1, b)l 
(/I)+. g(8, hh) 

= lim E[h ({Yl), R,,,b)l = 1, (12) 
1 )  + Elf({Yl), b)l 

where R,, is the proportion of boards of each 
type in a sample of size n and lirn,,,, R,, = 8 
with probability 1. The last condition simply 
says that the sample used in the LP/sampling 
method should adequately represent the board 
class as a whole. This condition would be sat- 
isfied by a simple random sample of sufficient 
size. 

The left-hand limit above says that the ex- 
pected cost under the LPIsampling method di- 
vided by the lower bound tends towards 1 .  
The middle limit follows easily when the low- 
er bound holds, for in that case we have g(8, 
b)  5 E [ f  ( {  Y, I ,  b)l 5 E[h(I Y, I, R,,, b)l. In fact, 
the liniits hold under more general conditions 
in which g(8, b) is not necessarily a lower 
bound. 

The right-hand limit is the main result of 
this paper. It says that for large order quantities 
and large sample sizes, the expected cost ob- 
tained under the LPIsampling method deviates 
by onl:y a small percentage from the true min- 
imum. In this context, we say that costs under 
the LI'Isampling method are approximately 
optimal. As is usual for asymptotic results, 
howev~:r, it doesn't say how large the order 
quantities and sample sizes must be to obtain 
a reasonable approximation. Furthermore, 
since there is no practical way to determine 
the value of f ' ( { y , } ,  b) for all hut the simplest 
cases, direct comparisons between h and f are 
usually impossible. 

Fort~~nately, the lower-bound result provides 
a way to make an indirect con~parison. When 

the parameters of the lumber supply are 
known, as they are in the controlled environ- 
ment of a computer simulation, the value of 
g(8, b) can be calculated (by applying the 
method described in the Section The LP Sam- 
pling Method to the entire board data set, not 
just a sample). The value E[h({Y,], R,, b)] can 
then be estimated by averaging the observed 
costs for the LPIsampling method for a num- 
ber of random sequences and samples. To the 
extent E[h({ Y,  ) , R,, b)] is close to g ( 8 ,  b), the 
lower bound, it follows that E[h({Y,}, R,, b)] 
is close to E[ f ({  Y, } , b)], the "gold standard." 
Since g(8, b) is a proportionally tight bound 
in larger orders, it is a practical evaluation 
tool, as will become evident in the simulation 
results of the next section. 

SIMULATION RESULTS 

We can use simulation to examine how well 
the LPIsampling method performs, employing 
the lower bound, g(8, b), as our standard of 
comparison, since to be near the lower bound 
is to be near the expected minimum cost of 
filling a given cutting order. The results that 
follow also compare the LPIsampling method 
with the previously described CDE algorithm, 
since that algorithm is easy to implement. 

The computer simulations presented here 
utilize lumber data that originated with the 
U.S. Department of Agriculture's Forest Prod- 
ucts Laboratory in Madison, Wisconsin 
(McDonald et al. 1981, 1983). The data rep- 
resent two thicknesses of No. 1 Shop grade 
ponderosa pine. Each board is defined by its 
length and width and a list of defects, all at a 
resolution of 0.25 in. (6.35 mm). The original 
data differentiate defects according to type 
(sound knot, unsound knot, etc.) and identify 
the face on which they appear. In the simula- 
tions, however, all defects are treated as being 
equally bad, and it is assumed that blanks must 
be C2F. All boards are assumed to have equal 
cost per unit area. A summary of the data is 
given in Table 2. 

The simulations used a two-stage, rip-first 
cutting process in which there were no limits 
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Data set I 4  614 

Nominal thickness in inches (mm) 1.25 (32) 1.50 (38) 
Total board area in ft2 (m') 6,940.8 (644.82) 2,035.8 ( 1  89.13) 
Avg. area per board in ft' (m2) 18.1 (1.68) 19.0 (1.77) 
Number of boards 384 107 
Avg. clear area per board (%,) 88.9 90.4 

on the number of cuts per stage. The knapsack 
problems were solved using a dynamic pro- 
gramming algorithm that is loosely based on 
Hahn's algorithm (Hahn 1968). Because this 

TARI.I: 3. CUI-~IIO anti Forot~dci '.Y c.utting order. 

W~dth 111 I.engrh ~n 
11) 1nchc5 ( m m )  ~nches  i m )  Quantity 

algorithm makes no allowance for kerf, it is 
somewhat unrealistic. 

The cutting order used in the simulations 
was obtained by Carino and Foronda (1990) 
from an Alabama cabinet manufacturer. It is 
shown in Table 3. Although the order was in- 
tended to be cut from a hardwood species, we 
applied it to the ponderosa pine data. The or- 
der was cut from a random sequence of boards 
drawn. with re~lacement. from the data for 51 

(44.5) I:' (0.330) 931 4 (32-mm-thick) lumber. The random samples 
3 1.75 (44.5) 16 (0.406) 582 

(44.5) ((). 470) 260 of boards required by the LPIsampling method 
5 1.75 (44.5) 19  (0.483) 136 were selected from the 614 (38-mm-thick) 
6 1.75 (44.5) 21.5 (0.546) 109 lumber. 
7 1.75 (44.5) 22 (0.559) 428 For this order, the lower bound, calculated 
8 1.75 

(44.5) 24 (0.610) 622 from the 514 data and valuing boards arbitrari- 
9 1.75 (44.5) 25 (0.635) 64 

1 0  1.75 (44.5) 28 (0.71 926 ly at $ l per square foot, was $5,649. This cor- 
I I 1.75 (44.5) 30 (0.762) 170 responds to an area yield of about 80%. Since 
12 1.75 (44.5) 34 (0.864) 1 18 yield and cost are inversely related, 80% is an 
l 3  (44.5) 37 (0.940) 128 approximate upper bound on the expected 
14 1.75 (44.5) 43 (1.092) 12 
I S  I .75 (44.5) 46 (1.168) 133 yield. 
1 6  1.75 (44.5) 79.5 (2.019) 36 Results for several different sample sizes 
17 1.75 (44.5) 91.5 (2.324) I5 are displayed as box plots (Ramsey and Schaf- 
18 1.8125 (46.0) 16.5 (0.419) 198 er 1997) in Fig. 6.  Each point in a given box 
I9 1.8125 (46.0) 18.5 (0.470) 455 
20 2.1875 (55.6) 10 (0.254) 576 plot represents the cost of filling the order 
21  2.1875 (55.6) 13 (0.330) 234 from a random sequence of boards, using a 
22 2.1875 (55.6) 16 (0.406) 290 random sample of boards to calculate prices 
23 2 1875 (55.6) 22 (0.559) 1,133 for the optimizer. Because the lower bound 
24 (55.6) 26.75 (0~679) 360 function is a bound on an expected or average 
25 2.1875 (55.6) 28 (0.71 1) 1,255 
26 2.25 (57,2) 30 (0,762) 120 value, it is possible for individual points to fall 
27 3.5 (88.9) 6 (0.152) 1,171 below it, as was the case for n = 8. The box's 
28 3.5 (88.9) 16 (0.406) 445 centerline represents the mean, and the top and 
29 3.5 
30 3.5 

(88.0) 22 (0.559) 273 bottom represent the upper- and lower-quartile 
(88.9) 28 (0.71 1 )  1,124 

31 ,375 (, 36,5) (0,330) 73 boundaries, respectively. The simulations for 
32 5 375 (136.5) 14.5 (0.368) 145 each sample size were repeated 24 times, with 
33 5.375 ( 136.5) 16 (0.406) 166 a new sample and a new board seauence being - 
34 5.375 (136.5) (0.483) 24c) drawn each time. In the figure, the vertical 
35 5.375 (136.5) 22 (0.559) 22 axis indicates the percentage by which the ob- 
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n=8 n=16 n=32 

Sample Size - CDE 

served cost exceeds the lower bound. The 
trend !,bows average costs declining as sample 
size increases, leveling off somewhere around 
1 % or so above the lower bound. It is easy to 
confuse the lower bound with the true mini- 
mum. But the true minimum is almost certain- 
ly higher than the lower bound, which would 
imply that the observed costs ;Ire slightly clos- 
er to the true minimum than the graphs sug- 
gest. 

Figure 6 also shows results for CDE. Com- 
pared to the LPIsampling method, CDE yields 
a consistently higher cost, though the average 
difference in all cases is less than 2%. 

A statistical analysis of the data shown in 
Fig. 6 was done by conducting pairwise t-tests 
on the: means. The mean cost of filling the 
order using CDE was significantly different 
than any of the LPIsampling means, with all 
11-values < 0.001. Similarly the mean of the 
LPIsa~npling method for n =I 4 was signifi- 
cantly different than for any other value of n, 
with 1;'-values ranging from < 0.001 (n = 64) 
to 0.035 (n = 8). The only other statistically 
significant difference in means was between 
the Ll'lsampling method for n = 8 and n = 

64, with a p-value of 0.017. 
It niust be emphasized that the scope of in- 

ference of the preceding statistical analysis is 
very narrow. It is limited to a single cutting 
order and two small lumber data sets. The LP/ 

FIG. 6. Cost vs. sample size for Carino and Foronda's cutting order 

sampling method outperforms CDE for these 
data, but may not do so for other cutting or- 
ders or lumber having different characteristics. 
Further research is underway that investigates 
the effects of cutting order and lumber char- 
acteristics on the performance of the LPIsam- 
pling method. 

Because of space limitations, only a few 
simulation results are presented here. Further 
results, including an examination of the effects 
of order size (area and number of blanks), 
sawing configuration (two-stage, three-stage, 
rip-first, etc.), species, random price devia- 
tions, nonindependent board sequences, and 
the use of heuristics to solve the knapsack 
problems, can be found in Hamilton (2001). 

CONCLUSIONS 

This paper has established a lower bound 
on the expected cost of filling a cutting order 
from an independent sequence of boards. No 
matter what method is used to fill the cutting 
order, the expected cost can never be less than 
the lower bound, and thus the lower bound 
provides an absolute standard against which 
any method can be evaluated. The paper has 
also described a method for filling a cutting 
order (the LPIsampling method) that in com- 
puter simulations produces costs that are con- 
sistently close to the lower bound when the 
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cutting order is large. The two results rein- 
force each other. On one hand, the lower 
bound is used to demonstrate that the LPIsarn- 
pling method can do a good job of minimizing 
costs. On the other hand, the LPIsampling 
method shows that the lower bound is often 
nearly attainable and is therefore a useful 
benchmark. 

Both computing the lower bound and car- 
rying out the LPIsampling method require 
substantial amounts of computation. In prac- 
tice, it is probably not feasible to calculate 
new prices before cutting each board. Perhaps 
the best approach is to make initial price cal- 
culations prior to cutting, then to update them 
as often as possible. Boards are then cut at 
whatever prices are in effect until they are up- 
dated again. Thus, it is not a matter of whether 
or not the LPIsampling method is possible to 
implement, but a matter of how frequently 
prices can be updated and the impact on costs 
of not updating them for each new board. For- 
tunately, the computational difficulties are not 
as bad as they first seem. In principle, prices 
should not change much in a large order until 
near the end of processing. Also, there is some 
evidence (Hamilton 200 1 ) that prices can wan- 
der a bit from the "correct" values without 
greatly affecting costs. Thus, there is reason to 
believe that the LPIsampling method can be 
successfully adapted to actual use. 

Further research should include more real- 
istic simulations, where boards must be pro- 
cessed every few seconds without waiting for 
new prices to be calculated. Another avenue 
needing more research is the handling of heu- 
ristics in the auxiliary knapsack problems. 
When knapsack problems are solved only ap- 
proximately, the LP can terminate prematurely 
without generating a good set of prices. This 
problem corrects itself somewhat during the 
process of filling the order, but it is still pref- 
erable to have better solutions early in the pro- 
cess. 
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