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ABSTRACT 

Before noninvasive scanning, e.g., computed tomography (CT), becomes feasible in industrial saw- 
mill operations, we need a procedure that can automatically interpret scan information in order to 
provide the saw operator with information necessary to make proper sawing decisions. To this end, 
we have worked to develop an approach for automatic analysis of CT images of hardwood logs. Our 
current approach classifies each pixel individually using a feed-forward artifical neural network (ANN) 
and feature vectors that include a small, local neighborhood of pixels and the distance of the target 
pixel to the center of the log. Initially, this ANN was able to classify clear wood, bark, decay, knots, 
and voids in CT images of two species of oak with 95% pixel-wise accuracy. Recently we have 
investigated other ANN classifiers, comparing 2-D versus 3-D neighborhoods and species-dependent 
(single species) versus species-independent (multiple species) classifiers using oak (Quercus rubra L. 
and Q. nigra L.), yellow-poplar (Liriodendron tulipifera L.), and black cherry (Prumus serotina Ehrh.) 
CT images. When considered individually, the resulting species-dependent classifiers yield similar 
levels of accuracy (96-98%). 3-D neighborhoods work better for multiple-species classifiers, and 2- 
D is better for the single-species case. Classifiers combining yellow-poplar and cherry data misclassify 
many pixels belonging to splits as clear wood, resulting in lower classification rates. If yellow-poplar 
was not paired with cherry, however, we found no statistical difference in accuracy between the single- 
and multiple-species classifiers. 

Keywords: Industrial inspection, segmentation, computed tomography, image analysis, log processing. 
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tations and using different sawing methods 
greatly impact lumber value (Richards et al. 
1980; Steele et al. 1994; Tsolakides 1969; 
Wagner et al. 1990, 1989). This type of saw- 
ing, however, is "information limited" in the 
sense that the sawyer has knowledge only of 
external indicators of internal features (e.g., 
defects) (Occeiia et al. 1997). This greatly lim- 
its the sawyer's ability to achieve potential log 
value recovery. Developing nondestructive 
sensing and analysis methods that can accu- 
rately detect and characterize interior defects 
is critical to future efficiency improvements 
for sawmills (Occeiia 199 1). 

A tacit assumption for eventual application 
of internal scanning to log sawing is that 
knowledge of internal defects will lead to 
greater sawyer productivity. Schmoldt (1996) 
identifies several operational scenarios: pro- 
vide a 3-D image of the log as sawing occurs 
("glass log7') so that the sawyer can choose a 
best opening face using more complete (inter- 
nal) log information, couple computer render- 
ing of the log and its orientation on the car- 
riage to accurately control log positioning by 
manipulating the computer rendition, have the 
computer suggest a best opening face to the 
sawyer and automatically position the log for 
that cut, or have the computer suggest the next 
face to cut during grade sawing by tying log 
face rendering to computerized lumber grad- 
ing software. Log breakdown assisted by 3-D 
rendering is "fully informed," where the saw- 
yer has knowledge about internal feature size, 
type, and location. CT scanning has been in- 
vestigated as providing that internal feature in- 
formation (Aune 1995; Benson-Cooper et al. 
1982; Birkeland and Holoyen 1987; Burgess 
1985; Cown and Clement 1983; Davis and 
Wells 1992; Gronlund 1992; Grundberg and 
Gronlund 1992; Harless et al. 1991 ; Hodges 
et al. 1990; Hopkins et al. 1982; Lindgren 
1991; Onoe et al. 1984; Roder 1989; Schmoldt 
1996; Taylor et al. 1984). However, because 
CT scanner design and development have fo- 
cused on medical applications, an industrial 
CT scanner specifically designed for hard- 

wood log processing does not exist (Schmoldt 
1996). While we are actively pursuing indus- 
trial scanner development, we are also devel- 
oping the necessary image interpretation soft- 
ware to automatically recognize internal log 
features and present this information to the 
sawyer in a useful manner. 

Early work on automatically labeling inter- 
nal log defects established the feasibility of 
utilizing CT images for this purpose. These 
researchers employed a variety of methods to 
segment different regions of a CT image and 
then to interpret, or label, those segmented re- 
gions. Often, image segmentation methods are 
based on threshold values derived from image 
histograms (Som et al. 1992; Taylor et al. 
1984; Zhu et al. 1991~).  Texture-based tech- 
niques have been applied only to defect label- 
ing (Funt and Bryant 1987; Zhu et al. 1991b), 
and not to segmentation. Knowledge-based 
classification (Zhu et al. 1991a, 1996), shape 
examination (Funt and Bryant 1987; Som et 
al. 1992), and morphological operations (Som 
et al. 1992) have also been used to label de- 
fects. 

While these efforts have demonstrated fea- 
sibility, they have some serious limitations. 
First, reports of defect labeling accuracy are 
often either anecdotal, based on success in a 
training set, or based on a single test set. No 
statistically valid estimates of labeling accu- 
racy can be found in the literature. Second, 
there has been no effort to assess or to achieve 
real-time operability of the developed algo- 
rithms. Third, while texture information is in- 
trinsic to human differentiation of regions in 
CT images (i.e., image segmentation), it has 
not been fully exploited in automated recog- 
nition algorithms. 

Recent work by us (Li et al. 1996; Schmoldt 
et al. 1997) has demonstrated highly accurate 
labeling of log defects in CT imagery. In con- 
trast to the previous global approaches that 
separate the tasks of segmentation and region 
labeling, this approach operates using local 
pixel neighborhoods primarily, and effectively 
combines segmentation and labeling into a 
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single classification step. A feed-forward ar- 
tificial neural network (ANN) has been trained 
to accept CT values from a small 3-dimen- 
sional (3-D) neighborhood about the target 
pixel (using 3 adjacent CT images), and then 
to assign to each pixel a particular class label. 
In order to accommodate different types of 
hardwoods, a histogram-based preprocessing 
step normalizes CT density values prior to 
ANN classification. Morphological postpro- 
cessing is used to refine the shapes of detected 
image regions. This approach avoids the lim- 
itations of previous approaches, that is, accu- 
racy can be evaluated quantitatively, defect la- 
beling can be accomplished in real time, and 
texture information is utilized in the segmen- 
tation-classification step. 

Accuracy achieved by this classification ap- 
proach is very high (95%) at the pixel level 
(Schmoldt et al. 1997). This previous work, 
however, used two species of oak only (Quer- 
cus rubra L. and Q. nigra L.), and processed 
3-D neighborhoods almost exclusively. The 
current study extends that work to additional 
species (yellow-poplar Liriodendron tulipifera 
L. and black cherry Prumus serotina Ehrh.) 
and examines the interaction of neighborhood 
dimensionally (2-D vs. 3-D) and single- vs. 
multiple-species classifiers, with respect to 
their impact on classifier accuracy. The issue 
that we sought to resolve here is whether we 
could develop a species-independent classifier 
of high accuracy that works well for several 
hardwood species simultaneously. 

NEURAL NET CLASSIFIERS 

We have developed species-dependent clas- 
sifiers and species-independent classifiers for 
different local neighborhoods in CT images. 
Both 2-D and 3-D neighborhoods have been 
considered. All of these classifiers contain the 
same modules, which are: (1) a preprocessing 
module, (2) an ANN-based classifier, and (3) 
a postprocessing module-more details on 
these components can be found elsewhere (Li 
1996; Li et al. 1997; Schmoldt et al. 1997). 
The preprocessing module separates wood 

from background and internal voids and nor- 
malizes the CT density values. The ANN clas- 
sifier labels each pixel of the image as either 
clear wood or a particular type of defect. The 
postprocessing step removes some of the spu- 
rious misclassifications. The major difference 
between the various classifiers is that they are 
trained with different species' data and differ- 
ent types of input features, and therefore have 
different sets of ANN weights. 

The ANN classifier is the seminal part of 
this log feature labeling system. Back-propa- 
gation neural networks were chosen because 
their documented effectiveness for pattern- 
matching problems, and their relative ease of 
use. Using an ANN, each nonbackground pix- 
el is labeled. This section describes the pro- 
cedure for generating a classifier, which in- 
cludes extracting the input features for classi- 
fication from the CT images and constructing 
the neural networks for 2-dimensional and 3- 
dimensional analysis. 

Feature extraction.-Selecting useful fea- 
tures for an ANN is extremely important be- 
cause they determine how well the classifier 
learns and consequently how it will perform 
in the future. In this work, the primary feature 
values that serve as input to the ANN are the 
histogram-normalized values of the pixels 
from a CT image. These pixels belong to the 
neighborhood of the pixel under consideration 
(the target pixel). For 2-D analysis, a pixel's 
neighborhood contains the pixels within a 5 X 

5 window (Fig. la); for 3-D analysis, its 
neighborhood contains the pixels within a 3 X 

3 X 3 window, i.e. including 3 X 3 windows 
from adjacent CT images (Fig. lb). Addition- 
ally, because some defects, such as splits, are 
near to the center, and some of them, such as 
bark and sapwood, are close to the outside 
edge of the log, the distance from the center 
of the log to the target pixel is also used as a 
feature value. This distance measure contains 
contextual (or global) information that can im- 
prove classification. 
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FIG. 1 .  ANNs containing a 2-D window (a )  and a 3-D window (b)  illustrate the nctwork topology and relationship 
of input imagcs to output classifications. The top left pixel in (a) is the input of the first node in the 2-D ANN, while 
the top left pixcl in the previous slice (b) is mapped to the input for the first input node of thc 3-D ANN. Thc radial 
distancc r is the last input to the ANN in both cases. 

To summarize, in order to label a particular 
pixel in a CT image, the feature vector that 
serves as input to the ANN for the 2-dimen- 
sional case contains the 25 normalized density 
values from the 5 X 5 neighborhood that is 
centered at the target pixel, plus the radial dis- 
tance of the target pixel from the center of the 
log. For the 3-dimensional case, the feature 
vector contains the 27 normalized density val- 
ues from the 3 X 3 X 3 neighborhood that is 
centered at the target pixel, plus the distance 

of the target pixel from the center of the log. 
Therefore, the total number of features for 
each target pixel in 2-D analysis is 26, and in 
3-D analysis, the total number is 28. 

Topology.-The topology of a neural net- 
work has an effect on the speed of conver- 
gence during training, and on the accuracy of 
the classification. Based on prior results (Li et 
al. 1996), we used a single hidden layer with 
12 nodes. The numbers of output nodes for the 
ANNs differ, however. In different families of 
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T A U L ~  1. Distribution of' trainingltesring samples taken from diflerent logs and different species. Decay was not 
pre.tent in the yellow-poplar samples, and supwood was not distinguished in the other species. The labels "cherty-/ 70" 
urzd "cherry-512" represent the same image datu at different spatial resolutions. 

Feature type 

\pec~c\ Clear wood Kriots Bark S p l ~ t s  Decay Sapwood 

cherry-170 47% 16% 15% 1 1 %  11% 
cherry5 1 2 43% 16% 17% 12% 12% 
red oak 38% 13% 16% 17% 16% 
yellow-poplar 46% 15% 15% 5 % 19% 

species-dependent and species-independent 
classifiers, there are different defects to be la- 
beled. For example, the red oak classifiers de- 
tect five classes: clear wood, knots, bark, 
splits, and decay; while the yellow-popladred 
oak combined classifiers identify six classes: 
heartwoodlclear wood, knots, bark, splits, de- 
cay, and yellow-poplar sapwood. For all sin- 
gle-species classifiers, there are only five clas- 
ses, and either five or six classes for the mul- 
tiple-species classifiers. We have chosen im- 
portant and common defects that occur in 
Eastern U.S. hardwoods-those being knots, 
decay, splits, bark, and other voids. Holes and 
large ring shakelsplits are voids that the initial 
background preprocessing step will segregate 
from the wood and preclassify automatically. 
Stain is not a density-related defect (at least to 
any great extent), so CT values will be unaf- 
fected by their presence. Bark can occur in- 
ternally (overgrown knots) or externally (scan- 
ning may occur prior to debarlung). In our 2- 
D classifiers, the topology is therefore 26-12- 
5 or 26-12-6, which means that the structure 
of the neural network has 26 input nodes, 12 
hidden nodes, and 5 or 6 output nodes. In 3- 
dimensional classifiers, the topology is 28-12- 
5 or 28-12-6, which has a similar interpreta- 
tion. 

Training and testing 

An entire trainingltesting set for one hard- 
wood species consists of approximately 1,000 
samples. Ten-fold cross validation was used to 
evaluate the accuracy of each classifier. This 
means that the full training set is divided ran- 
domly into 10 mutually exclusive test parti- 

tions of approximately equal size. For each of 
the 10 stages of training, one partition is des- 
ignated as the test set, and the remaining sam- 
ples in the other partitions are used to train the 
neural network. In successive stages, different 
partitions are used for testing and the remain- 
ing samples are used for training. The average 
classification accuracy over all 10 stages of 
training is reported as the cross-validated clas- 
sification accuracy. 

In this work, all the ANNs were trained us- 
ing the delta rule, which is a learning rule that 
specifies how connection weights are updated 
during the learning process. Momentum and 
learning rate parameters affect the operation of 
the learning rule. In particular, they affect the 
speed of convergence of the ANN weights. 
With a slow learning rate, the neural network 
converges very slowly. A momentum term is 
added to the delta rule to solve this problem. 
This momentum term accelerates learning by 
increasing weight changes when they are re- 
peatedly in the same direction. Based on Li's 
results (Li et al. 1996), a small learning rate 
0.1 and a medium momentum term 0.6 were 
selected as the learning parameters for all 
ANN training of hardwood log CT images. 
Random values were used as the initial 
weights for each network training session. 

EXPERIMENTAL DESIGN 

As noted above, 1,000 samples were taken 
from each of the species: red oak (including 
Q. rubra and Q. nigra), yellow-poplar, and 
black cherry. The percentages of these sam- 
ples for each feature type across the different 
species appear in Table 1. Using these sam- 
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ples, we trained and tested several classifiers: 
the single-species classifiers are red oak (RO), 
yellow-poplar (YP), 170 X 170 cherry (CH), 
and 5 12 X 5 12 cherry (CH-5 12); the two-spe- 
cies classifiers are cherrylred oak (CH-RO), 
cherrylyellow-poplar (CH-YP), red oaklyel- 
low-poplar (RO-YP); and the final cases have 
all 3 species combined (COMB). 

Both red oak and yellow-poplar images 
have pixel resolution 2.5 X 2.5 x 2.5 mmz. 
However, the cherry log images were gener- 
ated by a different scanner at a different res- 
olution, approximately 0.95 X 0.95 X 0.95 
mm'. Because image texture is noticeably dif- 
ferent at these two resolutions, we did not 
combine data across resolutions for multiple- 
species classifier development. Instead, 3 X 3 
X 3 neighborhoods in the 512 X 512 cherry 
images (cherry5 12) were averaged to produce 
new images (cherry-170) with approximately 
2.84 X 2.84 X 2.84 mm3 resolution. We con- 
cluded that these resampled images would 
provide comparable texture to our earlier 2.5 
X 2.5 X 2.5 mm' images. Having multiple res- 
olutions within the same species also allowed 
us to compare classifier accuracy for two dif- 
ferent image resolutions. 

Initial attempts to process yellow-poplar im- 
ages used a 28-12-4 topology for the 3-D 
ANN, which means that this preliminary clas- 
sifier had four outputs: clear wood, knots, 
bark, and splits (decay is not present in our 
yellow-poplar images). For yellow-poplar logs 
in which both heartwood and sapwood are 
present, the classifier performed quite poorly 
(Fig. 2b). This occurred because CT image 
values (density) for heartwood and sapwood 
are very different in yellow-poplar. This is vi- 
sually apparent in Fig. 2a. Therefore, it was 
necessary to distinguish yellow-poplar sap- 
wood from the generalized clear wood class 
(adding an additional classifier output for this 
class) in order to develop accurate classifiers 
that used yellow-poplar image data (Li et al. 
1997). Figure 2c illustrates that when sapwood 
is included as a distinct label from clear wood, 
sapwood mislabelings disappear. Subsequent 
application of labeled information can then 

merge yellow-poplar heartwood and sapwood 
into a single clear wood class. Extremely low- 
density regions (also, long and thin) in the 
heartwood near the center of the log (the typ- 
ical location for splits) are misclassified as 
splits, however. To eliminate these errors, ad- 
ditional training samples can be added to the 
data set from these error-prone regions, and a 
new classifier can be trained (Fig. 2d). 

Using ten-fold cross-validation, we devel- 
oped individual classifiers for each species- 
red oak, yellow-poplar, and cherry-using 
both 2-D and 3-D feature vectors (six classi- 
fiers). Images used were the nominal (2.5- 
r n ~ n ) ~  resolution. We also developed multiple- 
species classifiers: pairing two species at a 
time and combining all three species together. 
These were also trained using 2-D and 3-D 
feature vectors for a total of eight multiple- 
species classifiers. Finally, the finer resolution 
cherry images (0.95 mm)+ere used to train 
both a 2-D and 3-D classifier. 

RESULTS AND DISCUSSION 

Classification accuracies for the different 
classifiers appear in Fig. 3. These line plots 
seem to indicate that the 2-D approach has 
higher accuracy than 3-D for single-species 
classifiers; the reverse appears to be true for 
multiple-species classifiers. This result can be 
verified visually in Fig. 4, where two oak im- 
ages are labeled using both 2-D and 3-D clas- 
sifiers in which the former appears to perform 
better. However, it is impossible to determine 
from these performance estimates (Fig. 3) 
whether these apparent differences in accuracy 
reflect real differences. Because ten-fold cross- 
validation was used, each trained classifier ac- 
tually has 10 estimates of classification accu- 
racy, resulting from the accuracy rates from 
each partition of the trainingltesting sets (Fig. 
5) .  Therefore, these estimates can be used as 
samples in statistical Analysis of Variance 
(ANOVA). 

In our first statistical test, we separate the 
full set of classification rates into two groups: 
dimensionality, which includes two-dimen- 
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FIG. 2. A CT image (256 X 256) from a yellow-poplar log with knots, bark, sapwood, and heartwood labeled 
illustrates the density value difference betwccn heartwood and sapwood (a). When this image (a) is labeled using a 3- 
D classifier with only four outputs (no separate sapwood class), sapwood regions are mislabeled as bark (b). A second 
3-D classifier (including a sapwood class) applied to the same imagc (a) results in visually more accurate labeling (c), 
with the exception of annual rings rnislabcled as splits. This latter classifier, trained with additional samples from the 
error-pronc section of yellow-poplar logs, now correctly ignores annual rings and treats them as belonging to clear 
wood (d). 

sional and three-dimensional classifiers, and 
cardinality, which includes single (species-de- 
pendent) and multiple (species-independent) 
classifiers. ANOVA treatments, in this case, 
are single and multiple cardinality, and are 
blocked on the dimensionality of the classifi- 
ers (2-D or 3-D) because we wish to test the 
hypothesis that there is no difference in ac- 
curacy for species-dependent and species-in- 
dependent classifiers. The F-ratio results for 
the dimensionality and cardinality are 0.055 ( P  

= 0.815) and 27.4 (P < 0.001), respectively. 
It is clear that the F ratio for cardinality indi- 
cates (at this point) that significant differences 
exist between the mean classification rates for 
the single- and multiple-species classifiers. 

The interaction of dimensionality and car- 
dinality is also significant ( P  = 0.018), indi- 
cating a combined effect. This can be seen in 
the average classification rates of Fig. 3, where 
2-D rates are generally higher for single-spe- 
cies classifiers and 3-D rates are generally 
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Classifier Species 

FIG. 3. 2-D and 3-D classifier accuracies are plotted 
for each of the ANN classifiers-red oak (RO), cherry 
(CH), yellow-poplar (YP), 512 X 5 12 cherry (CH-512), 
cherr ylred oak (CH-RO), cherrylyellow-poplar (CH-YP), 
red oaklyellow-poplar (RO-YP), and all 3 species com- 
bined (COMB). 

higher for multiple-species classifiers. To de- 
termine which means are significantly differ- 
ent for cardinality and dimensionality, post- 
hoc pairwise t-tests were performed. The 
probability values associated with those tests 
are shown in Table 2. The important thing to 
notice about this table is that while 2-D mul- 
tiple-species classifiers have significantly dif- 
ferent classification rates from 2-D single-spe- 
cies classifiers (cardinality differences), 3-D 
multiple-species classifiers are not significant- 
ly different from 3-D single-species classifiers 
(i.e., no cardinality differences). This results 
from the overall middle-ground rates of the 3- 
D classifiers. As visual examples of this, the 
CT image in Fig. 2a is labeled by a 3-D 
RO-YP classifier (Fig. 6a) and a 3-D COMB 
classifier (Fig. 6b). Both appear to match the 
3-D single-species classifier image of Fig. 2d 
quite closely. 

To understand greater details about the dif- 
ferences between dimensionality and cardinal- 

ity, we performed ANOVAs for single- and 
multiple-species classifiers separately. For the 
single-species classifiers, ANOVA treatments 
are species (CH, RO, and YP), and dimen- 
sionality (2-D and 3-D) is used for blocking. 
F-ratio values for species and dimensionality 
are 11.4 (P < 0.005) and 9.53 (P = 0.003), 
respectively. Probability values associated 
with post-hoc t-tests demonstrate that the clas- 
sification rates for the cherry-specific classifier 
is significantly different from both those of the 
red oak- and the yellow-poplar-specific clas- 
sifiers. However, there is no significant differ- 
ence between the red oak and yellow-poplar 
single-species classifiers. 

For the multiple-species classifiers, ANO- 
VA treatments are species (CI-LRO, CH-YP, 
COMB, RO-YP), and dimensionality (2-D and 
3-D) is used for blocking. F-ratio values for 
species and dimensionality are 39.3 (P < 
0.005) and 4.97 (P = 0.032), respectively. 
Probability values associated with post-hoc t- 
tests indicate that the CEGRO classifier has 
significantly greater accuracy than the other 
three multiple-species classifiers. In addition, 
the RO-YP classifier has greater accuracy than 
the two lowest-accuracy classifiers, COMB 
and CKYP. Both of those latter two classifiers 
contain both cherry and yellow-poplar sam- 
ples, which apparently create classification 
problems. T-tests indicate that COMB and 
C K Y P  are not significantly different from one 
another. 

Based on the obvious classification prob- 
lems stemming from combining cherry and 
yellow-poplar samples, we performed our 
original ANOVA again. This time, treatments 
were cardinality again, but only CH-RO and 
RO-YP were included in the multiple-species 
classifiers (no cherrylyellow-poplar combina- 

FIG. 4. Two examples of CT images of red oak logs processed by 2-D and 3-D classifiers: (a) an original CT 
image; (b) a second CT image; (c) the result of imagc (a) labeled by the 2-D oak classifier; (d) the result of image (b) 
labelcd by the same 2-D classificr; (e) the result of image (a) labeled by the 3-D oak classifier; (t] the result of image 
(b) labelcd by the same 3-D classifier. (Images (e) and (f) were generated by Li (1996) and used a different postpro- 
cessing method.) 



schrnoldt rt 01.-LABELING OF HARDWOOD LOG FEATURES FROM CT IMAGES 295 



296 WOOD AND FIBER SCIENCE, JULY 2000. V .  32(3) 

CH-RO 1 

- 
COMB 

-. 
RO-YP - 

RO-YP I 

- - 
CH-YP 

CH-RO 

CH-512 
- 

YP t 

Classification Accuracy 

I .  5 A box plot of the classification rates provides more information that the graph of average values. The box 
cnds arc 25th and 75th percentile ranges, respectively. The whiskers represent the 10th and 90th percentiles, respec- 
tively. The line within the box is the median, and the cross is thc mean. 

tions). Also, the fine resolution (0.95-mm) 
cherry classifier (CH512) was excluded from 
the single-species classifiers. As before, we 
blocked the ANOVA on dimensionality (2-D 
and 3-D). The resulting F-ratio value for car- 
dinality is 0.050, which indicates that there is 

TABLE 2. A matrix of pair-wise t-test probability values 
,for diferent classijcation rates for various combinations 
of dimensionality and cardinality. "2-D" and "3-0" refer 
to the spatial extent q f  the pixel neighborhoods used in 
cltrssification. "Single" and "multiple" refer to the num- 
ber qf'species c,onsidered by the classijer. 

2-D multiplc 1.000 
2-D single 0.000 1.000 
3-D multlple 0.347 0.001 1.000 
3-D single 0.002 0.301 0.187 1.000 

no real difference between single- and multi- 
ple-species classification rates when cherry/ 
yellow-poplar combinations are excluded. 

Finally, we performed an ANOVA to com- 
pare the effect of CT resolution on classifier 
performance. We eliminated the effect of di- 
mensionality by blocking on it, as before, and 
found that the finer resolution cherry classifier 
has no significantly different classification rate 
than the coarser resolution cherry classifier in 
our study. 

As illustrated above and Fig. 2d, it is pos- 
sible to improve labeling accuracy by increas- 
ing the number of samples from those regions 
that currently produce errors. These improve- 
ments can result, however, in increased errors 
elsewhere. For example, the confusion matrix 
for the 3-D all-species classifier (Table 3) 
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TABLE 3. A confusion matrix for the 3D all-species clas- 
sijier indicates where labeling errors occur (the of-di- 
agotzal elements). 

Actual claas 

Clcar 
Cla5sified as: wood Knot Bark Spl~t Decay Sapwood 

Clear wood 1,266 16 36 85 23 1 
Knot 3 3 8 9  0 0 2 2 
Bark 45 7 425 0 0 3 
Split I 1  0 0 226 10 0 
Decay 8 0 2 7 236 0 
Sapwood 0 32 15 0 0 226 
Total 1,333 444 478 318 271 232 

yellow-poplar and cherry splits are available 
(Table 1). This bias does not appear to affect 
the confusion matrices for the two, yellow- 
poplar classifiers, but is the primary source of 
error whenever yellow-poplar is paired with 

A - 
oak or cherry in a classifier. The second most 
notable source of classification error is label- 
ing clear wood pixels as bark. Due to the high- 
er classification accuracies of the single-spe- 
cies classifiers, there are few significant trends 
apparent in their confusion matrices. 

CONCLUSIONS 

FIG. 6. The CT image of Fig. 2a is labeled by a 3-D 
multiple-species classifier (RO-YP) in (a) and the all-spe- 
cies classifier (COMB) in (h) .  

shows that many pixels that are actually con- 
tained in splits are now labeled as clear wood. 
This occurs because the added training sam- 
ples are biased against splits and toward clear 
wood labeling, and few training samples for 

Six single-species classifiers (ignoring the 
higher-resolution case for cherry) were trained 
using both 2-D and 3-D image data. The ac- 
curacy of all six classifiers is above 95%. Six, 
two-species classifiers have also been trained 
using both 2-D and 3-D image data. Two of 
them are red oak and yellow-poplar combined 
classifiers, two of them are red oak and cherry 
combined classifiers, and two are cherry and 
yellow-poplar combined classifiers. Their ac- 
curacy is 90%-97%. Finally, combined three- 
species classifiers (red oak, yellow-poplar, and 
cherry) were generated for 2-D and 3-D anal- 
ysis. These two classifiers identified six kinds 
of defects: clear wood, knot, bark, split, decay, 
and yellow-poplar sapwood. Their accuracy is 
about 91 %-92%. 

Even at the lowest accuracies, all defects are 
identified in all images. However, because our 
classifiers operate on a pixel-by-pixel basis, 
the extent of those defects is not always de- 
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scribed entirely. In addition, small areas of 
pixels with false labelings remain following 
postprocessing. Our current morphological op- 
erations do not eliminate them entirely. Fur- 
thermore, the resulting classified image is a 
raster of individual pixels rather than a set of 
connected regions. Two primary avenues for 
improvement of this approach are to expand 
the postprocessing step to include region 
growing and to apply intelligent postprocess- 
ing of those regions to eliminate false label- 
ings. 

In comparing 2-D and 3-D features, the per- 
formance of 2-D single-species classifiers is 
better than that of 3-D classifiers. The perfor- 
mance of 3-D multiple-species classifiers is 
better than that of 2-D classifiers. We conjec- 
ture that in single-species classification mul- 
tiple image planes contain redundant data that 
may be unimportant, or even counterproduc- 
tive, for accurate classification. For multiple- 
species classification, however, the extra in- 
formation contained in previous and subse- 
quent CT slices seems to aid feature labeling. 
Consequently, as we increase the species mix 
that a classifier must accommodate, it appears 
that 3-D features are important for attaining 
high accuracy. 

Higher-resolution images do not seem to 
have a significant difference on classifier per- 
formance. We were able to achieve similar ac- 
curacies in cherry using -1 mm spatial reso- 
lution and -3 mm resolution. That is, if we 
can distinguish features visually (at whatever 
image resolution we happen to choose), then 
our classification approach can also distin- 
guish those features automatically. Therefore, 
the match between visual and automated clas- 
sification is the same regardless of resolution; 
the match between either of those classifica- 
tions and physical reality is related, of course, 
to image quality (resolution). This implies that 
our ANN classification approach is general 
enough to be applied broadly to CT images of 
varying resolutions. All that is required is res- 
olution-specific training so that the classifier 
can incorporate local texture information. 

In comparing single-species classifiers and 

multiple-species classifiers, the performance 
of the former is better than that of the latter 
when cherrylyellow-poplar combinations are 
used. On the other hand, when those combi- 
nations are excluded, there is no significant 
difference between classification accuracy for 
single- and multiple-species classifiers. Yel- 
low-poplar has traditionally been difficult to 
deal with because it possesses many intrinsic 
differences (wood structure, density) from 
most other fine-grained hardwoods, e.g., cher- 
ry. Yellow-poplar was included in the study 
because it is an extreme case, and we desired 
to delineate a worst-case scenario. Conse- 
quently, the difficulty we experienced in com- 
bining it with cherry here is neither surprising, 
nor particularly worrisome. 

The primary reason for lower accuracies 
when combining yellow-poplar and cherry is 
that there are few split examples for either spe- 
cies in our data set. Combining that with the 
clear wood bias (vis-2-vis splits) in yellow- 
poplar samples noted previously, it is not sur- 
prising that the multiple-species classifiers 
were unable to separate the split class effec- 
tively. By obtaining more split samples from 
both species, we should be able to improve the 
performance of their combined classifiers. 

All of these accuracies (90%-98%) should 
be acceptable for industrial use. Furthermore, 
it should be noted that all reported accuracies 
are prior to postprocessing. We have visually 
determined (via classified images) that post- 
processing does improve accuracy, but we do 
not have a quantitative estimate for that im- 
provement. Consequently, we expect that the 
range of accuracies after postprocessing is ac- 
tually higher than reported above, which fur- 
ther enhances its applicability to industrial use. 
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