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ABSTRACT 

A formal elastic solution of the stresses and displacements occurring in a laminated beam, with an 
arbitrarily located elliptic or circular knot, subjected to static bending is presented. The solutions are 
obtained by using the theory of complex variables in plane elasticity. Numerical examples of the 
stress concentration are illustrated with graphs in which comparisons are made between the cases of 
sound knot, decayed knot, knothole, and wooden plug. The effects of size, shape, location, orien- 
tation, and material property of the knot on the stress concentrations are discussed. 

K C ~ M , O T ~ S :  Knot effects, orientation of knots, laminated beams, St. Venant's Principle. 

INTRODUCTION 

In recent years, laminated wood beams have been used in building construc- 
tions because they give many advantages over the other construction materials. 
However, there has been limited research on the strength-reducing effect of in- 
homogeneities and discontinuities associated with laminated wood beams. One 
of the most critical strength reducing defects in structural timbers is the knot and 
its associated grain deviation (Koch 1972). The effects of knots on the bending 
strength and stiffness of solid or laminated timbers depend upon the number, 
size, and position with respect to the neutral axis of the member, of the knots 
close to the critical section (Freas 1962; Siimes 1944; USDA 1974; Wangaard 
1950). Although knowledge of stress distributions in a plate containing an elliptic, 
circular, and square hole under pure tension has been well documented (Lekh- 
nitskii 1969; Savin 196 1 ; Smith 1944; Tang 1968), information concerning the 
quantitative analyses of the effect of knots and knotholes on the stress concen- 
trations in solid or laminated wood structural members is still very limited. How- 
ever, using the finite element method, recent theoretical studies on the influence 
of knots on the tension behavior of wood revealed valuable information that could 
be useful in predicting tensile strength of wood members containing knots (Bar- 
tolomeo 1980; Goodman et al. 1980). In the case of beams subjected to static 
bending, the stress distribution in the vicinity of a knot or a knothole is very 
complicated (Price 1967). This is also evident from USDA's Wood Handbook 
(1974), which states "In beams having changes in cross-sectional dimension be- 
cause of holes, bending stresses can be calculated at the hole by dividing the 
bending moment there by section modulus of the material remaining. Values of 
this bending stress are not useful in design because the change in cross section 
also causes shear stresses and stresses perpendicular to the beam neutral axis; 
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the combination of these stresses with the bending stress can cause failure at low 
load. It is not known how to compute these stresses . . . ." Admittedly, the 
variety of knots or knotholes and their grain deviations make the engineering 
analysis of stress concentration in a laminated beam under static bending very 
complex. However, for optimum design and effective utilization of laminated 
beams as a competitive structural material, it is important and necessary to un- 
derstand the phenomena of stress concentration. 

Using the technique of photoelasticity, the stress distribution in the vicinity of 
a knot and knothole located at the middle span of a solid wood beam was studied 
experimentally by Price (1967). He indicated that the strength-reducing factor is 
directly related to stress concentration due to the presence of knots or knotholes. 
Because of the complexity and diversity of grain deviation around the knot, no 
conclusive information was reported. 

Although the flowgrain analogy technique has been applied in an attempt to 
model the grain deviation in the stress analysis of tension wood members con- 
taining a knot and showed promising results (Phillips et al. 1981), the wide vari- 
ation of grain deviation around knots has limited such application to the idealized 
cases of symmetrically and smoothly deviated grains around knots of elliptic shape. 
However, Price (1967) suggested that better understanding of the effect of asso- 
ciated grain angle on the strength-reducing factors can be obtained mathematically 
by calculating the stress field around circular and elliptic knots in boards with 
various grain angles. With the excellent information on elastic properties of knot- 
wood reported recently by Pugel (1980), such a mathematical model for stress 
concentration seems feasible. 

Therefore, this investigation was aimed at developing an analytical model to 
predict the elastic stresses around knots, knotholes, and wooden plugs in simply 
supported laminated beams under a concentrated load. The results of the study 
are given herein for knots, knotholes, and wooden plugs of elliptic and circular 
shape. For simplicity of mathematical analyses, the grain deviations around the 
knot are neglected because their variations are so diverse and no definite pattern 
can be identified. However, to demonstrate indirectly the effect of grain deviation 
on the stress concentrations around the knot, different angles between the minor 
axis of an elliptic knot and the direction of wood grain were considered in the 
analysis. The effect of size, shape, location, and material properties of knots on 
the stress distributions are especially considered. Thus, the model presented does 
provide an indirect prediction of the effect of knots on the strength behavior of 
a laminated beam. However, because the investigation represents a pilot study 
on the effects of knots in laminated beams, the results are not reduced for design 
use. Additional work is needed in this regard. Hopefully, the analysis presented 
will provide a fundamental understanding of the influences of knots on the stress 
concentrations in structural beams and lead to the development of better and 
more accurate mathematical models. 

METHODS OF ANALYSIS 

Consider a simply supported laminated beam, composed of two different or- 
thotropic layers of arbitrary thickness, containing an elliptic knot in the tension 
zone of uniform shear span (Fig. la). To simplify the analysis, it is assumed that 
the knot is sufficiently remote from the reactions so the localized effects of these 
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FIG. I .  Composite beam with an arbitrarily located knot. 

forces do not extend near the knot. Furthermore, because the knot causes only 
localized redistributions of stress, the resulting perturbed stresses must atten- 
uate, according to St. Venant's Principle, as distance from the knot increases. 
Based on the simple beam theory, by appropriately selecting the values of forces 
acting on the simply supported beam, the section containing a knot (length L) 
can be considered as a cantilever beam with a concentrated force (P) acting at 
the free end as shown in Fig. Ib. Therefore, the analysis of stress concentrations 
around a knot in this cantilever beam can be interpreted as the case of a simply 
supported beam. A similar approach was used in the analysis of buckling of webs 
with openings in I-beams (Uenoya and Redwood 1978). 

Let h, L, and b, be the thickness, length, and depth of this cantilever beam, 
respectively. Assume that the beam is located in the XOY plane with X, Y axis 
along the upper rim and the free end, respectively, and the knot center is located 
at the point (c,d). Then, the components of stress of each layer in the absence 
of a knot can be expressed (Lekhnitskii 1969). 

6PE") 
ux(lJ  = 

hS (S, - 2SlY)X, 

where ux(j', axy(j), and a , ' j )  (j = 1 ,  2) are the stress components of the jth layer 
in a beam without knot in the XOY system; E(J' is the Young's modulus in the 
X-direction of the jth layer; bj is the distance from the beam's upper rim 
to the lower edges of the jth layer; and S,  S ,  and S, are defined as 

S = bI4(E'")' + 2bl(b2 - bl)(2bz2 - b,b, + b12)E"' + (b, - bl)4(E'2')2, 
S1 = blE"' + (bz - b1)E"', SP = bI2E(l) + (bZZ - b12)E1('). ( 2 )  

Since the center of the knot is at an arbitrary point (c, d), it is convenient 
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to use a new coordinate system xoy with the origin 0 at (c, d) in the XOY 
system. Due to the change of coordinates, the beam will behave anisotropically 
in the new xoy system. Then, the stresses relative to the xoy system can be 
expressed as 

where a,'j'", a,'jl", and a,,'j'" are stress components of the jth layer in a beam 
without knot; and Aj(jl, Bk(jl, and CZj) (k = I ,  . . . , 5) are the arbitrary real 
constants related to the functions involving the end load (P), beam thickness 
(h), the elastic constants (E'j)), the knot location (c, d), the angle (a)  between 
the ox axis and OX axis, and the S ,  S ,  and S,, as given in Eq. 2. Such functions 
are not given herein because of their extreme length. Analogous to Likhnitskii's 
method (1969), the stresses (u,(j', o , ( j ) ,  c,,.(j)) and the displacements (u'j), v'j)) 
in a laminated beam with knots can be written as: 

Here Re is the notation for the real part of the complex expression in the 
brackets; +,'j" and +,(j)' are derivatives of analytic complex potentials 4,") 
and +,(j' due to the presence of knot; 2,'s are complex variables defined as 
z, = x + pky (k = 1 ,  2): u(j)' and v")" are the displacements in the beam without 
knots; w"'", u,,"' and v,,'j' are rigid body displacements of the beam; and 

a,, ( i l  

pk(i) = all(j)(pk(j))2 + a (;I - a,,(j)pe(j). qk( j )  = al,(j)Fe(j) + 
1 '2 ,,k(j) - a,,;(j) (6) 

where p,("'s are the complex parameters of beam property related to the 
roots of the algebraic equation: 

where a , , ' " ,  a,,'j', a,,'", a,;,;"', a,,;"', and a,,;'" are the elastic compliances of the 
jth layer. 

By carefully examining the stress components for a beam in the absence 
of knots as expressed in Eq. 3, the general stress function for a beam when 
a knot is present, can be expressed as: 

where D,""s (m = 0, 1 ,  2 ,  . . . , 1 1 )  are unknown constants to be determined 
from the boundary conditions. It should be noted here that D,(j)'s are varied 
with the location, shape, size, and material properties of the knot. 
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Let Ffi' be the stress function for the jth layer in a beam with a knot; then, the 
boundary conditions for + , ( j l  and +,(jl in Eqs. 4-5 can be written as 

where u'j" and v'j)' are the displacements of the knot; and f,(j) and f,(j) are 
defined as: 

where G,(jl's and H,(jl's (n = 1 ,  2, . . . , 9) are designated as the real constants 
which are related to the known constants A,(j), B,(jl, C,"' given in Eq. 3. 

In order to calculate the stresses at the edge of an elliptic knot, it is con- 
venient to express the analytic complex function +k'j)(z,J in an elliptic coordinate. 
By applying the mapping technique for complex variables Z,, we have 
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where 

( j )  + G (.I1 - FA(j)(D 

(k, A = I, 2 and k #A) (11) 

and x = a cos 6, y = b sin 8, and 3, b are the semi-axes of the elliptic knot. 
It was found in Eqs. 9-1 1 that there are thirty-four unknown constants. They 

are D,(j) (m = 0, I , . . . . I I), M ,(jl, Ma2(j), u,,'j), v,,'j), and (o'j)' - ~ ( j ) " ) ,  the rota- 
tion of the knot with respect to the beam. To determine these unknown constants, 
one must substitute the elastic constants of each layer and knot into Eqs. 9-1 1. 
Doing so, a set of sixteen lengthy and complicated equations can be obtained. 
Because of the involvement of complex variables, the substitution of - i  for i 
in these equations will yield sixteen more equations. These thirty-two equa- 
tions are not given herein because of their extreme length. In order to solve 
this problem, two more equations are needed. They can be obtained from the 
stress-strain relation in the knot with respect to the jth layer of the beam. 
That is 

where a' , , ,  a',,, a',,, a',,, a',, and a',;, are elastic compliances of the knot. 
Let a,(J' be the stress normal to the knot; a,"' the stress tangential to the 

knot, and o,,") the shearing stress, then, from Eq. 4,  we have 

a,(j) = 3(a2sin26 + b2cos20)-'Re[(a sin 6 - ~ , ( j ) b  cos 6)",(j1'j"(z,) 

+ (a sin 0 - ~ , ( j ) b  cos 0)2+,(j)'(z,)] + o,(i:", 

a,(') = -2(a2sin26 + b2cos26)-'Re[@ cos 0 + p,(J)a sin 6)'+,~j)'(z,) 

+ (b cos 6 + ~ , ( j ) a  sin O)~,(j)'(z,)] + m6(j)'', 

a,>j' = 2(a2sin9 + bb"cos26)-'Re[(a sin 0 - ~ , ( j ) b  cos 0) 

. (b cos H + p , ' i ' a  sin H)~ i> , '~ " (z , )  

+ (a sin H - p,"'b cos H)(b cos H + p,"'a sin H){b,'i1'(z,)] + o,"'" (12) 

where a,'J'", c*'~)", u,~(~)" are stresses in the elliptical coordinates obtained from 
the transformation of stress components in Eq. 3. Then from Eq. 13, the 
stresses around the knot are ready to be determined. 

NUMERICAL CALCULATIONS 

Because the experimental findings indicate that the knot reduces the strength 
of a wood beam considerably if it is located in the tension zone, therefore, in this 
investigation, the numerical analyses were focused on the cases of knots located 
in layer I. To illustrate the effect of size. shape, and position of knot on the stress 
distribution around the knot, laminated beams with the following parameters are 
considered in the numerical calculation: 
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Dimension of beam: 2 in. (thickness, h) x 10 in. (depth, b,) x 192 in. 
(length, L) 

Depth of layer: layer (])/layer (2) = 5 in.15 in. 
Position of knot: at high shear-moment ratio (9.60lL) section 

(c, d) = (20 in., 2 in.) and (20 in., 3 in.) 
at low shear-moment ratio ( 1. l 16311) section 
(c, d) = (172 in., 2 in.) and (172 in., 3 in.) 

Orientation of knot: 0", vertical elliptic knot, 
45", inclined elliptic knot, 
90°, horizontal elliptic knot 

Size of knot: ratio of semi-axis in the knot, a/b = 

0.5 in.11 in. (large elliptic knot), 
0.25 in.10.5 in. (small elliptic knot), 
1 in./] in. (large circular knot), 
0.5 in.10.5 in. (small circular knot) 

Material of layer: layer I-Douglas-fir and layer 2-Southern pine 
Material of knot: 1. sound knot 

2. decayed knot 
3. knothole 
4. replaced by a wooden plug 

Using the above data with the elastic compliances given in Table 1, the stress 
distributions along the edge of knot were calculated from Eq. 12. The results for 
cases of knots located at high bending moment section (shear-moment ratio: 
I .  I 161L) are graphically illustrated in Figs. 2-10. In all figures, the values of stressl 
load, generally considered to be the index of stress concentration, are plotted vs. 
the polar angles at different contour points around the knot. It should be noted 
here that the magnitude of normal stress (a3 along grain direction at the beam 
upper rim 20 in. and 172 in. away from the free end, in the absence of knot, are 
0.559 Plin., and 4.804 P l i r ~ . ~ ,  respectively. This information can be used as a 
reference for the comparison of stress concentrations with the cases when the 
knot is present at that section. 

RESULTS A N D  DISCUSSION 

Effects of material properties of knot 

Typical computer plots of the variation of the stress concentration factor (stress1 
load) along the edge of vertical knots, showing the effect of knot properties, are 

TABLE I .  Elustic complirrnces of beam and knot with reference to  XOY system (unit: IO+psi) 

Material a , ,  a,, a,, ash aih az6 
- - 

*Douglas-fir (8) 0.5495 10.9890 -0.2468 7.0423 0 0 
%Southern plne (4) 0.6579 15.3139 -0 3063 10.7875 0 0 
Sound knot (8) 22.3717 17.7305 - 10.4444 30.3030 0 0 
Decayed knot 10 times higher than those of sound knot 
Knothole m x m 02 x 7; 

Wooden plug (Douglas-fir) 10.9890 0.5495 -0.2468 7.0423 0 0 
* For the case a = 0". i .e. grain direction is parallel to the beam axis. 
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FIG. 2. Distribution of normal stress around a vertical knot (a = 0"). 
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FIG. 3 .  Distribution of tangential stress around a vertical knot (a = 0"). 
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FIG. 4 .  Distribution of shear stress around a vertical knot (a = 0"). 

FIG. 5 .  Distribution of normal stress around a sound knot. 
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FIG. 6. Distribution of tangential stress around a sound knot. 
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FIG. 7. Distribution of shear stress around a sound knot. 
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FIG. 8. Distribution of normal stress around a sound knot. 
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FIG. 9. Distribution of tangential stress around a sound knot. 
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FIG. 10. Distribution of shear stress around a sound knot. 

given in Figs. 2-4. Regardless of knot size and material properties, the general 
patterns of stress distribution are somewhat alike within each orientation group. 
The decay or missing of knot materials will significantly increase the stress con- 
centration. However, the replacement of a knot with a wooden plug, if it is tightly 
bonded to the knothole, will reduce the stress concentration approximately 27% 
in a circular knot and 35% in an elliptic knot regardless of its size. 

In the case of vertical elliptic knots, regardless of its size and material prop- 
erties, the positive maximum shear stress will occur around the vicinity of the 
vertical knot apex near the beam's rim. The negative maximums of tangential and 
normal stress will be developed at the same area. This suggests that failure of a 
simply supported laminated beam containing a vertical elliptic knot in the tension 
zone, and subjected to a concentrated load, could be initiated around the vicinity 
of its vertical apex near the beam's rim. Furthermore, the combined effects of 
these stresses could trigger the beam failure at a very low load. These findings 
enhance the statement made by USDA's Forest Products Laboratory (1974) re- 
garding beam failure at low load being caused by the combination of shear stresses 
and stress perpendicular to the beam neutral axis with the bending stresses. In 
the case of horizontal elliptic knots, the beam failure may initiate in the neigh- 
borhood between the horizontal and vertical apex at the higher moment side, and 
it varies with the knot size and material properties. 

Effects of knot shape 

Influences of knot shape on the stress concentrations are somewhat mixed. 
Regardless of knot size and material type, both positive and negative maximum 
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of normal stresses developed in a circular knot are much higher than those of a 
vertical elliptic knot (Fig. 8). However, the situation is reversed when compared 
with a horizontal elliptic knot. The positive maximum of tangential stress in a 
circular knot is much lower than in those of elliptic shape regardless of size and 
orientation (Fig. 9). No significant difference was found between their negative 
maximums except those horizontal ones, which are considerably lower. Both 
positive and negative maximum of shear stress developed in a circular knot are 
significantly higher than in those of elliptic shape regardless of its size, orientation, 
and material (Fig. 10). Obviously, such variations are probably attributed to the 
combined effects of knot curvature and dimension. This is understandable be- 
cause in this study the dimension of circular knots is twofold larger than the elliptic 
ones. However, the occurrences of stress concentrations in a circular knot, re- 
gardless of its material and size, are very much similar to those of vertical elliptic 
knots. Therefore, it can be anticipated that their failure mode will be somewhat 
alike. 

Effects of the orientation of' knots 

The maximum normal stress occurring in a horizontal elliptic knot, regardless 
of its size, is considerably higher than that in a vertical knot. When the elliptic 
knot is inclined 45" away from grain direction, regardless of its size and material 
property, all stress concentrations are pronouncedly reduced. In contrast, sub- 
stantial increases in positive and negative normal stresses and positive tangential 
stress around the knot are found when the knot is 0" and 90" oriented. However, 
reduction in both positive and negative shear stresses and negative tangential 
stress due to the 45" orientation is visible but not significant. On the basis of these 
findings, one may expect that, if the wood grain is deviated gradually and smooth- 
ly around a knot, the normal stresses will be relatively increased and the tangen- 
tial stresses will be relatively decreased while the change in shear stresses will 
be very small. 

Effects qf knot size 

It was found that, regardless of knot shape, decrease in knot dimension does 
not alter the pattern of stress concentrations. However, as shown in Figs. 8-10, 
a 50% decrease in knot dimension will significantly reduce all the stress concen- 
trations. The shear stresses, considered to be critical to the initiation of beam 
failure when knots are present, are substantially reduced. These results may 
provide useful information to wood structural engineers in the design and safety 
of wood structures when the shear is critical. 

Eflects o$ knot location 

The stress concentrations in a knot, regardless of its shape and size, located 
at the high shear-moment ratio section on tension zone (low moment area) will 
be approximately 88% less than those located at low shear-moment ratio section 
(high moment area). Substantial decrease in the stress concentrations was found 
in the case when the knot is located in the compression zone of a beam. Such 
results agree with the experimental findings reported by other wood scientists 
indicating that knots located in the compression zone are less critical to the 
bending strength of beams (Wangaard 1950). In the case of vertical elliptic knots, 



7 0 WOOD AND FIBER SCIENCE, JANUARY 1984, V. 16(1) 

every I in. closer the knot center to the beam's upper rim will increase the stress 
concentration approximately 43%. However, such increase is not so pronounced 
in the case of horizontal knots. 

CONCLUSIONS 

A mathematical model for predicting stress concentrations around knots of 
elliptic and circular shape in a simply supported laminated beam has been pre- 
sented. Although the results reported involve only the case of two-layered lam- 
inated beams, the analysis can be modified to predict the stress concentrations 
in multi-layered laminated beams with many knots. Furthermore, the approach 
can be applied to the case of uniformly distributed load. 

The decayed knots and knotholes will cause serious problems in stress con- 
centration. However, if the knot is replaced by a wooden plug, stress concentra- 
tion will be significantly reduced. It was found that surface curvature and knot 
dimension greatly influence the stress concentration. The horizontal elliptic knot 
has much higher stress concentration than those vertically oriented. When the 
knot is located at the high shear-moment ratio section (low bending moment area) 
in a tension zone, regardless of its size and orientation, stress concentration prob- 
lems are very minor. In contrast, if the knot is located at the low shear-moment 
ratio section (high bending moment area), stress concentrations will be consid- 
erably higher and significant reduction in beam bending strength is expected. 
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