
ESTIMATING RESIDUAL ERROR BY 
REPEATED MEASUREMENTS 

F. K. Bechtel 
Vice President and Director of Research 

Metriguard, Inc. 
P.O. Box 399 

Pullman, WA 99 163 

(Received March 1992) 

ABSTRACT 

Repeated measurements can be used to estimate the residual error of a measurement process. 
Residual error, defined as the error remaining after all known sources of error have been accounted 
for, is what causes differences in the measurement outcome when everything about the measurement 
process is seemingly identical. Four estimators for the amount of residual error are suggested. These 
estimators are functions of the outcomes from m repeated measurements on each of n items. Assuming 
a normal distribution for the residual error, two of the estimators are unbiased estimators for the 
standard deviation of the residual error, and the third is the maximum likelihood estimator for the 
standard deviation of the residual error. The fourth is not an estimator for standard deviation, but 
rather it uses the distance between measurement order statistics as an indicator of the amount of 
residual error. The efficiencies of the first two estimators and the bias of the maximum likelihood 
estimator are evaluated. Computations use standard statistical methods and are included in appendices. 

This work, motivated by the study of machines used to measure the modulus of elasticity of 
dimension lumber, has been used to assess the performance of this machinery. An example using data 
from more than 10 years ago and some recent data show that the residual error then was about double 
that of today for well-tuned, high-speed production-line machinery. 
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INTRODUCTION 

Error is a part of every measurement. In fact, a measurement reported without an indication 
of measurement error can be considered incomplete. The terms accuracy, precision, discrepancy, 
consistency, and repeatability have all been used in the discussion of errors (Frank 1959). 

The component of measurement error under consideration here is the residual error, which 
is the error remaining after accounting for all known systematic errors. Systematic errors include 
those due to miscalibration, computational mistakes, effects ofenvironment such as temperature 
and humidity, damaged equipment, and peculiarities in taking readings. Residual error is the 
random component of error that causes differences in readings to occur with seemingly identical 
measurements of the same item. As more is learned about the measurement process and 
refinements are made, some of what was residual error can become systematic error that can 
be corrected or compensated. 

Residual error may be observed for all measurement processes that have a sufficiently small 
resolvable unit, i.e., sufficiently high precision. It is possible that there is not enough precision 
for the residual error to be evident. In that case, one can state only that the residual error is 
less than the measurement precision. 

A quantitative measure of residual error is useful in the error analysis of the measurement. 
It also allows the measurement process to be compared with other similar processes or with 
itself before and after various adjustments and improvements are made. For example, in 
machine stress rating of dimension lumber, the modulus of elasticity of each piece of lumber 
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is measured by high speed production-line machinery. Residual error comparisons of produc- 
tion-line measurements from different machines or from the same machine at different speeds 
or at different times are important because small differences in residual error can lead to 
significant differences in high grade recovery and hence profitability for the producer. As the 
machine changes, either through wear, replacement of parts or improvements, the residual 
error can be tracked and decisions made accordingly. 

The object here is to suggest some practical estimators for the residual error of measurement 
processes. Four alternatives and their properties are discussed. Each of the alternatives has its 
advantages and disadvantages involving performance and ease of computation. When com- 
parisons are made, the same estimator should be used; otherwise, different applications may 
call for different estimators. 

These estimators or similar ones likely have been used elsewhere as they are based on standard 
statistical methods. More common than the Rayleigh variates used here, most such analyses 
use their squares, i.e., their corresponding chi-square variates. Excellent references are Wilks 
1962; Miller 1964; Rao 1965; and Hogg and Craig 1965. The results presented here are intended 
to be in a form that is immediately applicable for assessing the repeatability of machines used 
in wood products testing. Application to production-line equipment for measuring modulus of 
elasticity has proved to be valuable in tracking machine performance, finding problems, and 
improving profitability of the production process (Logan 199 1). 

Because the estimators are based on repeated measurements ofthe same quantity, the methods 
described are not appropriate for measurement processes that are destructive or otherwise 
significantly alter the measured quantity. 

It will be seen that under the assumption of normality for the residual error, two of the 
suggested estimators are unbiased estimators for the standard deviation of the residual error, 
and the third is the maximum likelihood estimator for this standard deviation. Although the 
maximum likelihood estimator is biased, the bias is small for reasonable sample sizes. The 
fourth estimator is not an estimator for standard deviation of the residual error, but rather it 
uses the distance between measurement order statistics as an indicator of the amount of residual 
error. 

MEASUREMENT DEFTNITION 

We assume m repeated measurements on each of n items. If the measurement process is 
perfectly repeatable with no residual error, then a complete description is given by n values, 
one for each item. In the usual situation, we obtain the m measured values zj(i), j = 1, . . . , m 
for each item i where the item identifying index i ranges from 1 to n. 

The m measurements for each item can be placed in order from smallest to largest. The 
notation z,(i), j = 1, . . . , m is used for the ordered measurements such that z(,,(i) r z(,,(i) i 
. . . 5 z(,,,)(i). 

ESTIMATOR S( 1) 

The estimator S, for the standard deviation of the residual error is defined by: 

where r(.) is the gamma function and Z(i) is the sample mean for the m measurements of 
item i .  
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TABLE 1. Coefiient of variation R, for estimator S,. 

No. of measurements for each piece (m) 
No. of  pieces 

(n) 2 3 4 5 10 20 

An important question concerning the estimator S, is how many measurements must be 
taken to obtain S, with prescribed accuracy. We can study this after obtaining the mean and 
variance of the estimator S, .  Assuming the residual error is normally distributed, the result, 
derived in Appendix A, is: 

where a is the residual error standard deviation. The ratio Rl  given by 

is a measure of the variation of S, relative to its expected value (the coefficient of variaton of 
SI). 

The factor 1 / 6  shows how R,  decreases as n increases and the factor 

shows how R ,  varies with m (decreases as m increases). Table 1 lists R,  for several values of 
n and m. 

ESTIMATOR S, 

The estimator S, defined by: 
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TABLE 2. Coefficient o f  variation R, for estimator S,. 

No. of measurements for each piece (m) 
No. of pieces 

1") 2 3 4 5 I0 20 

is a more efficient estimator for a than is S,. For the same n and m values, the ratio 

is less than or equal to R,.  This means that a smaller number of measurements will give the 
same estimator accuracy. However, for values m and n of interest, the difference may not be 
large, and, at least for the case m = 2, the computational simplicity of S, can weigh in its favor. 

Again, assuming a normal distribution, the expected value and variance of S,, derived in 
Appendix B, are: 

where the ratio R, is: 

Table 2 lists R2 for several values of n and m. Comparison of R, with R, shows R2 is smaller 
than R, and the difference is greatest for small m; however, even for small m, the difference is 
not severe. For example, if we measure each item twice (m = 2), then measurement of 40 items 
gives about the same variance for estimator S, as does measurement of 35 items for estimator S,. 

EFFICIENCY OF UNBIASED ESTIMATORS 

There is a theoretical lower bound for the variance of any unbiased estimator. The efficiency 
of any particular estimator is defined by the ratio of the lower bound variance to the actual 
variance. For the present case where we take m measurements of each of n items, the lower 
bound variance for any unbiased estimator of the residual error standard deviation is computed 
in Appendix C as: 
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FIG. 1. Efficiency of estimator S, versus log(n) for m = 2, 3, 4, 5, 10 and 20. 

u2 
MinVar = 

2n(m - 1) 

Then, the efficiencies of estimators S, and S, are: 

It is interesting that the efficiency of S, does not change with sample size n. Figure 1 is a 
graph of Eff S, versus log(n) for each of m = 2, 3, 4, 5, 10 and 20. To better illustrate this result 
for large n and m, Fig. 2 graphs -log(l - ER S,) versus log(n). From either Fig. 1 or Fig. 2 
the efficiency of S, can be obtained because it is equal to the efficiency of S, for n = 1, i.e., for 
log(n) = 0. Figures 1 and 2 illustrate that the efficiency of S, approaches 1 as n and/or m 
increase; hence, the variance approaches the lower bound for unbiased estimators. 

The maximum likelihood estimator S, given by: 

is derived in Appendix D. The estimator S, is exactly the same as S, except for a factor K. 
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FIG. 2. -Log(l - efficiency of S,) versus log(n) for m = 2, 3, 4, 5 ,  10 and 20. 

where 

I'((n(m - 1) + 1)/2) 
K =  

( ( m  - 1 )  

Thus: 

F2((n(m - 1) + 1)/2) 
( ( m  - 1 )  n(m - 1) 

From this, we see that the maximum likelihood estimator S, is biased with a bias factor K 
which is always less than unity. The coefficient of variation of S, is identical to that of S,. The 
bias factor K approaches unity for large m and n as shown in Figs. 3 and 4 which illustrate K 
versus log(n) and -log(l - K) versus log(n) for m = 2, 3, 4, 5, 10 and 20. These figures show 
that the bias of S, becomes negligible as n and/or m increase. Even for m = 2, the bias factor 
is within 1°/o of unity for n 2 25. 
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FIG. 3. Bias factor of estimator S, versus log@) for m = 2, 3, 4, 5, 10 and 20. 

ESTIMATOR S3 

Estimator S3 is defined in terms of the measurement order statistics. 

where k and q such that 1 i k < q I m are indices defining the particular order statistics used. 
The indices k and q define three blocks of the measurement domain, the block less than 
z,,,(i), the block between z,,,(i) and z,,,(i), and the block greater than z,,,(i). 

The probability pi contained in the block between the order statistics zo(i) and z(,,(i) has the 
beta probability density function given by: 

The expected value and variance of pi are: 
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FIG. 4. -Log(l - bias factor of S,) versus log(n) for m = 2, 3, 4, 5 ,  10 and 20. 

By selecting k, q and m such that q = 2k and m = 3k - 1 ,  the expected value and variance of 
pi become: 

The average p of pi over the n items is: 

with expected value and variance: 

The coefficient of variation ratio for j5 is: 
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The ratio R, applies to the average probability p contained in the n blocks whose boundaries 
are the order statistics used to define S,. R, does not apply directly to the estimator S, itself. 
It should be noted that S ,  is not an estimator for the standard deviation a. 

For the special case, m = 2, we have: 

This case is a practical one in that it involves measuring each of n items twice. Particularly 
in situations where measuring the item may affect it in some way that cumulatively could be 
significant, it is important to keep the measurement repetition number m as small as possible. 
The smallest value for obtaining a measure of residual error is m = 2. 

We already determined in the general case that, except for a bias factor K, S, and S2 are the 
same; that is, SM = KS,. That relationship is also valid for the special case m = 2. 

For this special case, we see also that except for a constant 2 / G ,  S, and S, are equal. 

Therefore: 

AN EXAMPLE 

At a sawmill in 1981, 25 pieces of 2 x 4 lumber were tested for modulus of elasticity (E) 
with a CLT Continuous Lumber Tester, a flatwise static tester, and a bending proof loader. 
The CLT is a high-speed, production-line machine that measures E on the flat with center 
loading over a 48-inch [1,2 19-mm] span. Span ends are defined by clamp rollers that approx- 
imate fixed end conditions. The flatwise static tester and the proof loader were home-built by 
the mill; the static tester measured E on the flat with third point loading on a 48-inch [1,219- 
mm] bending span, and the proof loader measured E on the edge with third point loading on 
approximately a 75-inch [1,905-mm] span. Two measurements of E were made on each piece 
of lumber by each machine. For these measurements, m = 2 and n = 25. Although North 
American CLTs use both the average (Average E) and the smallest (Low Point E) of the E 
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DISCUSSION AND CONCLUSIONS 

Each of the estimators S,, S,, S,, and S, has its advantages. Assuming a normal error 
distribution, S, and S, are both unbiased estimators of its standard deviation. S, is more efficient 
than S,,  but for the practical special case m = 2, S, is more easily computed. However, this 
advantage is much reduced with the use of modern computing technology. 

The maximum likelihood estimator S, is an easily computed, biased estimator ofthe standard 
deviation, and the bias becomes small as n increases (bias less than 1% for m = 2, n 2 25). 

The estimator S,, which is the distance between specified measurement order statistics, is 
very easy to use. Except in the special case m = 2 where S, is related to S,, the expected value 
and variance of S ,  are not stated. However, statistical information is given about the probability 
contained in blocks between order statistics. 

Regarding the tradeoff between the number m of measurements made on each item and the 
number n of items measured, efficiency considerations weigh in favor of more m and less n. 
However, the difficulty of obtaining independent measurements and possible cumulative effects 
of repetitive measurements along with ease of computations are in favor of more n and less 
m. But, note that the efficiency of estimator S, is not affected by n, that is, it does not increase 
with n. 

The recommendation here is to use the maximum likelihood estimator S, for standard 
deviation because it is easily computed, and it is the "most likely" value for the standard 
deviation. Although S, is biased, the bias becomes insignificant for reasonable sample sizes, 
and if desired, a known adjustment can be made to make the result unbiased (thereby converting 
S, to S,). 

Example data accumulated more than 10 years ago and recently show improvements in S, 
by about a factor of two for production-line E measuring equipment. The residual error re- 
ductions, even at higher operating speeds, are attributed to improvements in the equipment, 
equipment maintenance, and operating technique. 

We assume that the measurement zj(i) can be broken into two parts as: 

where x(i) is the fixed but unknown property value for item i, and y,(i) is the residual error. 
We further assume that the values y,(i) are normally distributed and statistically independent 
with zero mean and variance a2. The estimator S, is: 

where 

The expression S, can be rewritten as: 

where the quantity 
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r = 2 ((zj(i) - z ( i ) ) / ~ ) ~  
j=1 ( m  )'" (40) 

is distributed as a Rayleigh random variable (Miller 1964) with m - 1 degrees of freedom. 
The expected value and variance of r can be determined from its probability density function 
f(r); 

= 0, otherwise 

Then: 

The expected value of S, is: 

which proves that the estimator Sl is unbiased. The variance of S, is: 
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APPENDIX B: COMPUTATION OF E[s~] AND VAR[S~] 

Start with the same assumptions as in Appendix A and rewrite S2 as: 

Each quantity 

rn 

I-, = ( S  ((q(i) - ( i)) /a)2 , i = 1, 2, . . . , n 
j = l  

(48) 

is a Rayleigh random variable with m - 1 degrees of freedom. Therefore, r defined by: 

is a Rayleigh variate with n(m - 1) degrees of freedom. From Appendix A it follows that: 

Thus: 

APPENDIX C: LOWER BOUND FOR UNBIASED ESTIMATORS 

The theoretical lower bound for the variance of an unbiased estimator S for the parameter 
a is known (Hogg and Craig 1965) to be: 

where x,, x,, . . . , x, is a random sample of size n from the distribution having density functions 
f(x; a) which is a function of the parameter a. The domain of x cannot depend on a. 
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For the present case, we define xi as: 

x i = a r i ,  i =  1 , 2  , . . . ,  n (55) 

where each ri is a Rayleigh variate having m - 1 degrees of freedom as in Appendix B. With 
the change of variable x = ar, the density function (see Appendix A) is: 

Carrying out the indicated operations, we obtain: 

Recognizing that E[x2] = a2E[r2] and E[x4] = a4E[fI], using E[r2] = m - 1 from Appendix A 
and performing similar operations to obtain E[fI] = (m + l)(m - l), the above reduces to: 

and finally: 

a2 
MinVar = 

2n(m - 1) 

APPENDIX D: MAXIMUM LIKELIHOOD ESTIMATOR SM 

Fron~  Appendix B we have that: 

is a Rayleigh variate with m - 1 degrees of freedom. Hence, its density function is: 

and the density function of ui = crri is: 

The joint density function corresponding to an independent sample of n items, each measured 
m times is: 

The maximum likelihood estimator S, is the value of a which maximizes f(ul, u2, . . . , u,) 
or equivalently its logarithm ln[f(ul, u,, . . . , u,)]. By setting to zero the derivative of ln[f(ul, 
u,, . . . , u,)] with respect to a, we obtain: 
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