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abstract

Solving the least-cost lumber grade mix problem allows dimension mills to minimize the cost of dimen-
sion part production. This problem, due to its economic importance, has attracted much attention from re-
searchers and industry in the past. Most solutions used linear programming models and assumed that a
simple linear relationship existed between lumber grade mix and yield. However, this assumption has
never been verified or rejected with scientific evidence. The objective of this study was to examine
whether a linear relationship exists between yield and two- and three-grade lumber combinations using the
USDA Forest Service’s ROMI-RIP rough mill simulator and a cutting bill created by Buehlmann. The re-
sults showed that a simple linear relationship between grade mix and yield exists only for some grade com-
binations, but not for others. These findings were confirmed by repeating the tests using actual cutting bills
from industry. It was observed that cutting bill characteristics, especially part length requirements and the
lumber grades involved, are influential in causing a simple linear or nonlinear relationship between grade
mix and yield.

Keywords: Lumber grade mix, least-cost lumber grade mix, simple linearity, mixture design.

introduction

The search for a reliable method for solving
the least-cost lumber grade mix problem has at-
tracted significant interest from industry and ac-
ademia (Englerth and Schumann 1969; Hanover
et al. 1973; Martens and Nevel 1985; Timson
and Martens 1990; Lawson et al. 1996; Steele et

al. 1990). The least-cost lumber grade mix prob-
lem refers to the opportunity to minimize raw
material and processing costs when producing
dimension parts in rough mills by employing the
optimum lumber grade or grade mix to produce
the requirements of a given cutting bill. Such
cost minimization creates competitive advan-
tages by reducing raw material and processing
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costs without incurring additional expenses for
implementing the lowest-cost grade mix solution.
However, determining the lowest-cost lumber
grade mix for a specific cutting bill is challenging
since the interactions between cutting bills and
different lumber qualities are complex (Thomas
1962; Hanover et al. 1973; BC Wood Specialties
Group 1996; Buehlmann 1998).

The National Hardwood Lumber Association’s
(NHLA) lumber grading rules (NHLA 1998) dif-
ferentiate six standard quality classes (grades) for
hardwood lumber based on lumber size, mini-
mum clear cutting sizes, basic yield, and maxi-
mum number of cuts. These six classes are, in
decreasing order of quality, FIRST and SECOND
(FAS), FAS ONE FACE (F1F), SELECTS (SEL),
1 Common, 2 Common (which is further differen-
tiated into 2A Common and 2B Common), and 3
Common (3A Common and 3B Common).
Higher grade lumber is more expensive but is eas-
ier to process and results in higher numbers of
large parts and higher lumber yield. In contrast,
lower grade lumber is less costly but yields signif-
icantly fewer and smaller parts per unit input.
Also, the decreased yield obtained from the lower
grades reduces rough mill productivity, since
more material needs to be processed in order to
produce the same amount of dimension parts.

Finding the lowest-cost grade mix requires
knowledge about expected yields from different
lumber grades and different lumber grade mixes
for specific cutting bills. Expected yield1 is an im-
portant component of a cost function to find the
minimum total cost. Numerous studies have been
conducted to solve the yield estimation problem
in the past. Thomas (1962, 1965) first generated a
set of yield prediction tables utilizing estimated
yield results derived by computer simulation.
Schumann and Englerth (1967) and Englerth and
Schumann (1969) created a series of yield charts
based on the YIELD simulation algorithm
(Wodzinski and Hahm 1966) to calculate yield for
hard maple lumber in crosscut-first mills. These
results were then incorporated into yield nomo-
grams. Later, this technique was used to build

charts for black walnut and alder (Schumann
1971, 1972). In 1980, the nomograms were ex-
tended to predict the yield for rip-first processes
(Hallock 1980). These nomograms were widely
employed to estimate yields to solve the least-cost
grade mix problem (Englerth and Schumann
1969; Hanover et al. 1973; Martens and Nevel
1985; Timson and Martens 1990; Lawson et al.
1996). Most if not all of these predictive yield
charts were created using crosscut-first rough mill
technology, although these models then were em-
ployed for crosscut-first and rip-first mills.

Starting in the 1980s, with the increase in com-
puting power and programming capabilities cou-
pled with easier-to-use interfaces, computer
simulation programs such as CORY by Brunner et
al. (1989), AGARIS (Thomas et al. 1994), ROMI-
RIP (Thomas 1996a, 1999), ROMI-CROSS
(Thomas 1998), and RIP-X (Harding 1991) were
employed to calculate yields for cutting bills
using a specified lumber grade or grade mix.
These programs allow real-time simulation of the
lumber cut-up and calculate the resulting yield.
More accurate yield data are obtained from these
programs than from the nomograms (Hoff 2000).

The basic idea for solving the least-cost lum-
ber grade mix problem was to determine the op-
timal grade combination that minimizes the total
lumber cost to fulfill a specific cutting order. In
some instances, processing costs were included
in these calculations (Harding 1991; Suter and
Calloway 1994). To solve the optimization prob-
lem, estimated yields from either nomograms
(Martens and Nevel 1985; Timson and Martens
1990, Lawson et al. 1996) or simulation pro-
grams (Harding 1991) were used. Linear pro-
gramming was widely adopted to search for the
most cost-efficient grade or grade combination
(Hanover et al. 1973; Martens and Nevel 1985;
Timson and Martens 1990; Harding 1991; Fort-
ney 1994; Lawson et al. 1996).

Linear programming is a technique to maxi-
mize or minimize (i.e., optimize) the objective
variable by providing optimal combinations for
constraint variables from a series of simple lin-
ear functions (Winston 1994). Simple linear
functions are functions where no higher order
terms greater than one are significant in describ-
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1 Yield is defined as: Output part area/input lumber area
� 100 percent



ing the dependent variable. The primary require-
ment for applying linear programming is that
both objective function and constraint functions
be simple linear. The wood products industry
was one of the early users of linear programming
technology. Linear programming was first intro-
duced into the wood products industry in the late
1950s. Early applications were formulated to
solve planning and distribution problems for the
plywood industry (Bethel and Harrell 1957;
Koenigsberg 1960; Raming 1968). Later, linear
programming technology also was employed for
sawmill planning and inventory problems
(McKillop and Nielson 1968), as well as ma-
chine loading and production problems for furni-
ture companies (Penick 1968; Fasick and
Lawrence 1971). It was Hanover et al. (1973)
who first employed linear programming to solve
the least-cost grade mix problem for hardwood
dimension manufacturers.

Based on Hanover et al.’s (1973) idea, several
models were built in the following years
(Martens and Nevel 1985; Timson and Martens
1990; Harding 1991; Fortney 1994; Suter and
Calloway 1994; Lawson et al. 1996) and some of
them were applied in software (Martens and
Nevel 1985; Timson and Martens 1990; Lawson
et al. 1996; Harding and Steele 1997). OPTI-
GRAMI was one of the early programs that em-
ployed linear programming to solve the
least-cost grade mix program (Martens and
Nevel 1985). In OPTIGRAMI, yield predictions
are based on the hard maple nomograms devel-
oped in the late 1960s by Englerth and Shumann
(1969). These charts, although derived from hard
maple, were used for yield estimation for most
hardwood species graded under standard NHLA
rules. To make the program more user-friendly,
OPTIGRAMI for the PC was developed in 1990
(Timson and Martens 1990). However, the con-
tinuing use of Englerth and Shumann’s (1969)
yield nomograms in OPTIGRAMI 1.0 reduced
the accuracy of the least-cost calculations be-
cause these yield charts were based on the longer
and wider lumber processed over 30 years ago.
In 1996, OPTIGRAMI (Lawson et al. 1996) was
modified to employ the updated yield charts for
yellow-poplar and black walnut (Martens

1986a,b). For other hardwood species, Englerth
and Schumann’s yield nomograms (1969) are
still in use.

In 1991, Harding (1991) used Brunner et al.’s
(1989) rough mill simulator, CORY, for estimat-
ing yield in his least-cost grade mix optimization
program called RIP-X. Fortney (1994) created a
more advanced least-cost lumber grade mix tool,
RIP-RIGHT, which incorporated the interactions
between part sizes and part quantities into the
constraint functions when computing the re-
quirements for each grade. In the same year,
Suter and Calloway (1994) created ROMGOP, a
program that incorporates cost and other objec-
tives such as budget and schedules into the cal-
culations. Since this approach required solving a
problem that contains a collection of goals, they
used goal programming, a modified linear pro-
gramming method.

All of these models are based on linear pro-
gramming technology, where lumber grades and
related yields were functioned as constraints as-
suming a simple linear relationship between
yield and grade mix. However, this assumption
has never been verified or rejected scientifically.
Thus, the objective of this study was to investi-
gate the validity of the assumed simple linear re-
lationship between yield and lumber grade mix
in a rip-first operation.

methods

The study employed lumber cut-up simulation
software, lumber data from the USDA Forest Ser-
vice, and cutting bills from academia and industry
to investigate the relationship between yield and
lumber grade mix in a rip-first rough mill.

Lumber cut-up simulation

The USDA Forest Service’s ROMI-RIP 2.0
(RR2) simulation software (Thomas 1999) was
employed to collect simulated yield information
from the cut-up of lumber in a rip-first rough
mill. To avoid confounding of the main effects
sought in this study, no strips for glued panels
were produced. The settings employed are listed
below:
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● All-blades–movable arbor type
● Salvage cut to primary lengths and widths
● Total yield used consists of primary and sal-

vage yield (e.g., no excess salvage yield)
● Complex dynamic exponential part prioritiza-

tion
● No random-width nor random-length parts
● Continuous update of part counts
● 1/4-in. end and side trim

Lumber data

All the lumber data used in this research were
from the 1998 Data Bank for Kiln-Dried Red
Oak Lumber (Gatchell et al. 1998). The lumber
grades included in the data bank are FAS, F1F,
SEL, 1 Common, 2A Common, and 3A Com-
mon. However, the grading requirements for F1F
and SEL are very similar except for lumber size
and wane. In fact, in practice, F1F is often in-
cluded in FAS and then called FAS or FAS/1F.
However, to avoid confounding effects, F1F 
was not included in this study as a stand-alone
grade. The five grades used in this study were
FAS, SEL, 1 Common, 2A Common, and 3A
Common lumber. Additionally, a SELECTS&
BETTER (SEL&BETR) grade, which consisted
of 34.8% FAS, 27.2% F1F, and 38.6% SE-
LECTS, was tested in this study (Wiedenbeck et
al. 2003). For each grade combination, three
lumber samples each with 1000 board feet were
randomly selected and composed from the Red
Oak Data Bank using the MAKEFILE tool
which is part of RR2 (Thomas 1999). If 1000
board feet was not enough lumber to satisfy the
part quantity requirements of a cutting bill, the
same original sample of digital boards was re-
processed until all cutting-bill requirements
were met. This can easily be done in RR2 by
copying the digital board data without biasing
the yield results as confirmed by tests performed
prior to this study (Buehlmann 1998).

Cutting bill

A cutting bill created by Buehlmann (1998)
was used for this research. This cutting bill
(Table 1) represents the “average” cutting bill

used by the wood products industry and re-
searchers with respect to part sizes and quantities
as defined by Buehlmann (1998). However, for
this study, the quantity requirements were ad-
justed so that at least 150 boards were processed
to satisfy the part quantities required by the cut-
ting bill. When at least 150 boards are processed,
yield is no longer influenced by the amount of
lumber processed (Buehlmann 1998).

For verification purposes, a published set of
cutting bills by Thomas (1996b) and Wengert
and Lamb (1994) was employed to compare the
findings obtained from the Buehlmann cutting
bill. However, one cutting bill, the most difficult
one according to Thomas (1996b), was not used
because all of its required part widths were be-
tween 4 in. and 6 in. wide. Such wide parts, if
not produced from glued-up stock, are difficult
to obtain from low-grade lumber such as 3A
Common. Thus, a total of 10 cutting bills, 9 from
Thomas (cutting bills A, B, C, D, F, G, H, I, J),
and 1 from Wengert and Lamb (cutting bill E),
were used to verify the original findings. Table 2
summarizes these cutting bills and indicates
their respective estimated level of difficulty in
terms of obtaining the parts required. To allow
comparisons, the Buehlmann cutting bill was
also included in Table 2.

Experimental design

Only two- and three-grade combinations were
tested for this study, because higher-grade com-
binations (e.g., four- and five-grade combina-
tions) are unlikely to be used in industrial
settings. Also, tests were always made between
combinations of high quality grades (FAS, SE-
LECTS, SEL&BETR) and lower quality grades
(1 Common, 2A Common, 3A Common).  For
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Table 1. Number of parts of each size required by the
Buehlmann cutting bill.

Part width Part length (in.)
(in.) 10 17.5 27.5 47.5 72.5

1.50 136 297 433 243 103
2.50 152 298 480 262 98
3.50 46 102 146 88 57
4.25 49 99 158 85 40



all experiments conducted, each grade was con-
sidered a factor, and its weight had to be between
zero and one. In addition, the sum of all grade
proportions had to equal one. A mixture design, a
special response surface design (Kuehl 2000),
was applied to satisfy these requirements and
allow for statistical analysis of the results. Three
replicates were made of all tests performed.

Two-grade combinations

The two-grade combination experiment was
designed to test if there is a simple linear rela-
tionship between yield and a mix of two differ-
ent lumber grades. The grade mixes used were
combinations of two grades in 25% increments.
This study set-up is shown in Fig. 1. For each
grade combination, XA always represents the
better of the two grades according to the NHLA
grading rules (NHLA 1998), and XB represents
the lower grade. For example, when testing the
FAS-1 Common lumber grade mix, FAS is de-
noted by XA and 1 Common is denoted by XB.

Preliminary testing showed that long and/or
wide parts, such as dimension parts 72.5 in. long
and 4 in. wide, could not be obtained in suffi-
cient numbers from 3A Common lumber. There-
fore, no tests were conducted using 100% 3A
Common lumber. Thus, all grade combinations
containing 3A Common lumber only have four

test points (100%–0%, 75%–25%, 50%–50%,
and 25%–75% for XA and XB grades, respec-
tively), instead of five (i.e., 0%–100% is miss-
ing).

Three-grade combinations

A similar approach as described above was
used for the three-grade combinations tested. A
Simplex-Lattice {3,2} design (Kuehl 2000) was
applied for all grade combinations that did not
contain 3A Common lumber. For combinations
containing 3A Common lumber, an 80% upper
bound constraint was imposed for the same rea-
sons discussed previously for the two-grade
combinations. Preliminary tests showed that cut-
ting bills using grade combinations containing
up to 80% 3A Common lumber could produce
all the part sizes requested in sufficient numbers.
To obtain accurate analysis results for the three-
grade combination tests, two different designs
were employed, one for all grade combinations
not containing 3A Common lumber and one for
tests employing 3A Common lumber. Figure 2
shows the design points for grade combinations
without 3A Common lumber, whereas Fig. 3
shows the design points for the grade combina-
tions with 3A Common lumber. As in the two-
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Table 2. Eleven cutting bills used in the study including
10 that were used to compare findings from Buehlmann’s
cutting bill.

Cutting bill Rank a # of parts # of width # of length

A 1 5 3 4
B 2 10 4 9
C 3 25 7 16
D 4 5 3 5
E 5 4 4 4
F 6 12 4 6

Buehlmann 7 20 4 5
G 8 20 7 12
H 9 8 2 8
I 10 16 4 11
J 11 9 5 4

aThe cutting bills were ranked from easiest to hardest as defined in
Thomas’s study (1996). The ranking for Wengert and Lamb’s (1994, cutting
bill E), and the Buehlmann (1998) cutting bills were done using the same crite-
ria as employed in Thomas’s 1996 study.

Fig. 1. Experimental points used for combination tests
employing two lumber grades.



grade combination, XA represents the highest
lumber grade in the combination, XB is the next
lower grade, and XC the lowest grade involved in
any given test.

Statistical analysis

The general second-order polynomial model
for a response surface is

(1)

where my is the yield of a given cutting bill, xi are
the proportions of each lumber grade, n is 2 for
two-grade combinations and 3 for three-grade
combinations, b0 is the intercept, bi are the coeffi-
cients of linear terms, bii are the coefficients of
quadratic terms, and bij are the coefficients of the

interaction terms. Because the constraint 

= 1 applied in the mixture design, Eq. (1) can be
reduced to

(2)

by transforming 

,

(Kuehl 2000).
If simple linearity holds between yield and

grade combinations, then the higher order coeffi-
cients b*

ij are non-significant. Thus, the hypothe-
sis of this study was:

(3)

All the conclusions made were based on a
0.05 level of significance.

Verification of findings

To verify the findings made using the
Buehlmann cutting bill, the 10 industry cutting
bills (Thomas 1996b; Wengert and Lamb 1994)
described previously were subjected to the same,
yet less detailed, statistical analyses as the
Buehlmann cutting bill (Buehlmann 1998) de-
scribed above. Since the product terms in Eq. (2)
for three-grade combinations include the relation-
ship of the two-grade combination, the verifica-
tions were done only for three-grade combination.
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Fig. 2. Design points for Simplex–Lattice {3,2} design.

Fig. 3. Mixture design points with 80 percent upper
bound restraints on 3ACom lumber.



To verify the applicability of the findings made
using the advanced rough-mill lumber cut-up
techniques employed (e.g., all-blades movable,
complex dynamic exponential part prioritization,
among others), a test using a scenario considered
similar to actual rough mills in use today also was
performed. The set-up and cutting bill from an
earlier study by Thomas and Buehlmann (2002),
where RR2 (Thomas 1999) was validated as a
true simulator of an actual rough mill were used
for this test. Only the FAS-3A Common lumber
grade mix was tested at 100%–0%, 75%–25%,
50%–50%, 25%–75%, and 0%–100% for FAS
and 3A Common grade, respectively. Three repli-
cates of each test were performed.

results and discussion

The discussion focuses first on the more thor-
oughly tested cutting bill by Buehlmann (1998).
The observations from these tests are then veri-
fied using the industry cutting bills from Thomas
(1996b) and Wengert and Lamb (1994).

Two-grade combinations

For 6 out of the 12 grade mixes tested using
the Buehlmann cutting bill (1998), the null hy-
pothesis was rejected, e.g., yield did not linearly

and proportionally increase/decrease with a
change in the lumber grade mix composition.
Lack-of-fit tests were conducted for each grade
combination, and the corresponding P-values are
shown in Table 3. Table 3 also shows the yield
levels for the different two grade combinations
tested using Buehlmann’s cutting bill. As indi-
cated in the column “P-value for lack of fit test,”
six grade combinations were found not to have a
simple linear relationship between grade mix
and yield at the 0.05 level of significance. As
was explained previously, the higher lumber
grade employed in each test was always assigned
the notation XA, whereas the lower grade was as-
signed the notation XB.

As shown in Table 3, the FAS-2ACommon, FAS-
3A Common, SEL-2A Common, SEL-3A Com-
mon, SEL&BETR-2A Common, SEL&BETR-3A
Common grade combinations require higher
order polynomial terms to describe the
yield–grade mix relationship, thus invalidating
the linearity assumption made by other re-
searchers (Hanover et al. 1973; Martens and
Nevel 1985; Timson and Martens 1990; Harding
1991; Fortney 1994; Lawson et al. 1996). It is in-
teresting to note that all the grade mixes found to
cause nonlinear yield behavior do involve one
higher quality (e.g., FAS, SEL, or SEL&BETR)
and one lower quality (e.g., 2A Common or 3A
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Table 3. Yield and statistical results from testing the simple linearity assumption of two-grade lumber combinations.

Average yield of each grade combination (%)

XA XA XA XA XA

P-value (100%) (75%) (50%) (25%) (0%)
for lack of XB XB XB XB XB

Combinations fit test (0%) (25%) (50%) (75%) (100%)

FAS-1 Commonns 0.4900 77.02 74.07 70.57 66.73 64.03
FAS-2A Common 0.0012 77.02 71.96 65.51 57.49 47.5
FAS-3A Common 0.0002 77.02 68.11 58.13 44.75 a
SEL-1 Commonns 0.0729 65.90 66.07 65.99 65.65 64.03
SEL-2A Common 0.0263 65.90 62.90 58.98 56.65 47.50
SEL-3A Common 0.0057 65.90 58.49 51.04 41.33 a
SEL&BETR-1 Commonns 0.3695 72.22 70.08 67.97 66.92 64.03
SEL&BETR-2A Common 0.0393 72.22 66.89 62.05 55.29 47.50
SEL&BETR-3A Common 0.0029 72.22 63.71 54.47 42.67 a
1Common-2A Commonns 0.2868 64.03 60.26 57.35 52.68 47.50
1Common-3A Commonns 0.0510 64.03 58.00 48.15 40.00 a
2ACommon-3A Commonns 0.2945 47.50 36.78 30.93 16.14 a

ns—non-significant at 0.05 level.
a—grade combination was not tested.



Common) grade. Grade mixes consisting of sim-
ilar grades (FAS-1 Common, SEL&BETR-1
Common, SEL-1 Common, 1 Common-2A
Common, 1 Common-3A Common, and 2A
Common–3A Common) do exhibit linear behav-
ior and thus can be described by a simple linear
function. Linearity between yield and the 1
Common-3A Common lumber combination was
barely proven with a P-value for the lack of fit
test only slightly above 0.05 (P-value 0.051).

The phenomenon that lumber grade mixes
consisting of similar grades behaving linearly
whereas non-alike mixes do not may be due to
the increasing differences in lumber quality
among grades. When the percentage-composition
of alike grades (e.g., FAS-1 Common) is
changed, yield increases or decreases proportion-
ally over the entire span of the solution space.
However, when the percentage composition of
not-alike grades (e.g., FAS-3 A Common) is
changed, quality gaps between not-alike grades
lead to over proportional yield changes resulting
in nonlinear behavior of the yield curve. For ex-
ample, in a FAS-3A Common grade mix, when
less FAS is used, larger parts previously obtained
from the high-quality FAS boards now are much
harder to obtain in the 3A Common grade, and
yield suffers disproportionally. This leads to a
nonlinear relationship between grade mixes and
yield for grade combinations made up of dissimi-
lar lumber grades.

Three-grade combinations

Observations for the three-grade lumber com-
binations using the Buehlmann cutting bill

(Buehlmann 1998) showed that only the
SEL&BETR-1 Common-2A Common combina-
tion behaves linearly over its entire grade yield
response surface. Even for this case, the 1
Common-2A Common interaction is weak (P-
value 0.059). Table 4 shows the level of signifi-
cance for the estimated model parameters for the
three-grade combination cases investigated. The
terms XA, XB, XC always designate a particular
lumber grade, as shown in the three top rows of
Table 4.

The results in Table 4 show that a simple lin-
ear model does not accurately characterize the
lumber grade mix–yield relationship. Only 16
out of a total of 30 interaction terms were found
to be non-significant at the 0.05 level. Each
three-grade combination tested had at least one
significant interaction term except the
SEL&BETR-1 Common-2A Common combina-
tion. Thus, 9 of the 10 three-grade combinations
tested behaved nonlinearly. In 5 out of 10 cases,
the model required two interaction terms to be
included. Dissimilar grades, as was observed for
the two-grades model, lead to more nonlinear
behavior of the yield-grade mix relationship.
The interaction term for the lowest and highest
grade (e.g., XA*XC) of any given grade mix
combination was found to be significant in all
cases except the SEL&BETR-2A Common
grades at the SEL&BETR-1 Common-2A Com-
mon grade mix.

These tests show that the linearity assumption
for the grade mix–yield relationship assumed
and used in several least-cost lumber cost grade
mix models (Hanover et al. 1973; Martens and
Nevel 1985; Timson and Martens 1990; Harding
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Table 4. Significance of model parameters when using the Buehlmann cutting bill.

SEL& SEL& SEL&
XA FAS- FAS- FAS- BETR- BETR- BETR- SEL- SEL- SEL- 1Com-
XB 1Com- 1Com- 2ACom- 1Com- 1Com- 2ACom- 1Com- 1Com- 2ACom- 2ACom-
XC 2ACom 3ACom 3ACom 2ACom 3ACom 3ACom 2ACom 3ACom 3ACom 3ACom

XA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
XB 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
XC 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

XA*XB ns ns ns ns ns ns 0.0035 ns ns ns
XA*XC 0.0001 0.0038 0.0001 ns 0.0107 0.0001 0.0001 0.0175 0.0001 0.0001
XB*XC 0.0016 0.0029 ns ns 0.0026 ns ns 0.0026 ns ns

ns—non-significant terms in the model at the 0.05 level of significance



1991; Fortney 1994; Lawson et al. 1996) does
not reflect the true relationship between grade
mix and yield for the Buehlmann cutting bill
given the settings employed in this study. To ver-
ify these findings on a broader scale, 10 cutting
bills from industry (Thomas 1996; Wengert and
Lamb 1994) were tested using the three-grade
mix set-up.

Verification of findings

All 10 cutting bills used to verify the findings
made with the Buehlmann cutting bill were
found to require higher order polynomial term(s)
to describe the yield–grade mix response surface
for three lumber grade combinations. Thus, the
observations made using the Buehlmann cutting
bill were confirmed. Table 5 shows the 10 cut-
ting bills used for verification purposes and the
Buehlmann cutting bill for comparison purposes
(cutting bills are listed on the left and lumber
grade mixes on top). Each cutting bill–grade mix
combination that required at least one higher
order term in the model to describe the response
surface is marked with a dash in the matrix. The
cutting bills are ranked in decreasing order based
on the frequency a higher order model was
needed to describe the relationship between
yield and grade mix.

Table 5 demonstrates that cutting bill require-
ments, in addition to lumber grades, do have an
impact on the relationship between lumber grade

mix and yield. There is a tendency for cutting
bills that are viewed as more difficult to be
processed and satisfied to require more complex
models (e.g., more higher order terms) to de-
scribe the yield–grade mix response surface.
Thomas (1996b) ranked his cutting bills in order
of difficulty from 1 to 10, with 1 denoting the
“easiest” cutting bill. The rank of individual cut-
ting bills is shown in Table 2 in the second col-
umn. The Wengert and Lamb (1994) and
Buehlmann (1998) cutting bills were ranked
later in the same way as Thomas’s original bills.
This column shows that cutting bills that are
viewed as more difficult by experts also tend to
require more complex models to describe the
yield–grade mix response surface. For example,
cutting bills I and J, the most difficult cutting
bills in the study, ranked 9th and 11th (e.g., third
last and last) in terms of complexity of the mod-
els required that describe their response. How-
ever, this relationship is not as simple as stated,
since there are cutting bills that, although ranked
more difficult than others, require less complex
models for the description of the grade
mix–yield relationship. For example, cutting bill
F is classified as being of medium difficulty by
Thomas (1996b) (6th out of 10), but requires a
more complex model than do more difficult cut-
ting bills such as G (8th), H (9th), or I (10th).

The findings of this study also clearly illus-
trate the interconnected relationship between
difficulty of cutting bills (e.g., how difficult it is
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Table 5. Cutting bill – three grade lumber combinations with and without linear relationships.

SEL& SEL&
FAS- BETR- BETR- 1Com- FAS- SEL- SEL- SEL- BETR- FAS-

Cutting bill 2ACom- 2ACom- 1Com- 2ACom- 1Com- 1Com- 2ACom- 1Com- 1Com- 1Com-
3ACom 3ACom 3ACom 3ACom 3ACom 3ACom 3ACom 2ACom 2ACom 2ACom

A —
D —
C — — — — — —
B — — — — — —
H — — — — — — —
G — — — — — — —
E — — — — — — — —

“Buehlmann” — — — — — — — — — —
I — — — — — — — — — —
F — — — — — — — — — —
J — — — — — — — — — —

Note: Dashes denote cutting bills where a higher order polynomial model is needed at the 0.05 level of significance



to obtain required parts given a specific lumber
grade) and lumber grade. The linear relationship
between lumber grade mix and yield is less
likely to be violated or partially violated when
either an easy cutting bill or a high lumber grade
or both are tested. Difficulty of cutting bill and
quality of lumber grade are in fact correlated. A
difficult cutting bill may require less nonlinear
terms when higher quality lumber is used as cut-
ting material while lower grade material can be
used for an easy cutting bill and may still not re-
quire a large amount of nonlinear terms. How-
ever, the correlation between difficulty of cutting
bill and lumber grade is not 1.0 and may differ
based on small changes in cutting bill or lumber
grade composition.

Also, proving that the grade mix–yield rela-
tionship is nonlinear does not necessarily say to
what extent a linear model produces nonoptimal
results. Nonetheless, the findings presented here
serve as a red flag to be critical of the results pro-
duced by the traditional linear programming
based least-cost lumber grade mix models. Fur-
ther research will have to show by how much
costs can decrease when a more appropriate (e.g.
a statistical model is used).

To better assess reasons for this inconsistent be-
havior, Table 6 shows the basic characteristics of
the 11 cutting bills used in this study. The cutting
bills are listed in the same order as in Table 5. As
pointed out above, the tests conducted show a
strong, although not perfect, relationship between

the difficulty of a cutting bill according to Thomas
(1996b) and the complexity of the model required
to describe the grade mix–yield response surface.
Part length distribution turns out to be a crucial
factor affecting the linearity of the grade
mix–yield relationship. The model for the re-
sponse surface tends to require more complex
models when there is a more pronounced require-
ment for longer parts (Table 6). Also, uneven
length distribution of the cutting bill requirements
tends to require more interaction terms in the
model. For example, cutting bill J, which was
ranked as the most difficult cutting bill by
Thomas (1996b), requires 75% of its parts to be
shorter than 41 in. and 25% to be longer than 70
in. However, no parts are required with lengths
between 41 and 70 in. This cutting bill requires a
second order polynomial model to describe the re-
lationship between yield and lumber grade combi-
nations for all grade mixes tested. Similarly,
cutting bills F, I, and Buehlmann require higher
order polynomial models to describe all grade
mix combinations tested. These four cutting bills
each require at least 25% of their parts to be
longer than 41 inches and a minimum of 50% to
be wider than 3 inches.

As the quantities of long-length parts (�41
in.) and/or wide parts (�3 in.) decreases, the
complexity of the model to describe the yield re-
sponse surface for the different grade mix com-
binations decreases. Simple linearity does hold
for a very easy cutting bill (A was ranked as the
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Table 6. Basic characteristics of the 11 cutting bills used in this study.

Percentage of Percentage of Percentage of Percentage of Percentage of
narrow-width wide-width short-length long-length longer-length

Total number (W�3.0 in.) (W�3.0 in.) Total number parts parts parts
Cutting bill of widths parts parts of lengths (L�41 in.) (41�L�70 in.) (L�70 in.)

A 3 100 0 4 100 0 0
D 3 100 0 5 100 0 0
C 7 43 57 16 100 0 0
B 4 100 0 9 78 22 0
H 2 50 50 8 63 25 12
G 7 43 57 12 58 25 17
E 4 75 25 4 50 50 0

“Buehlmann” 4 50 50 5 60 20 20
I 4 50 50 11 64 27 9
F 4 50 50 6 67 33 0
J 5 40 60 4 75 0 25



“easiest” cutting bill by Thomas 1996). Cutting
bill A requires only narrow and short parts with
just five different part sizes to be cut. However,
cutting bill B, which was ranked second easiest
by Thomas and has very similar requirements to
cutting bill A, requires higher order terms for
four out of seven lumber grade mix combina-
tions. It appears there is no single, easy to mea-
sure indicator as to which cutting bill
characteristics are responsible for simple linear
versus non-simple linear behavior with respect
to the grade mix–yield relationship. As with
other phenomena observed when it comes to
lumber cut-up, the issue is highly complex and
depends on many interrelated characteristics of
the cutting bill and the lumber.

As was observed previously for the tests involv-
ing the Buehlmann cutting bill, the yield–grade
mix relationship becomes more complex when
the different lumber qualities combined are more
varied. For example, 10 of the 11 cutting bills re-
quire a non-simple linear model to describe the
yield–lumber grade mix relationship when involv-
ing the FAS-2A Common-3A Common grade
mix. The same applies for the SEL&BETR-2A
Common-3A Common grade mixes. Both these
grade mixes consist of dissimilar lumber qualities.
Cutting bills satisfied with similar lumber qualities
mixed together, as in the case of SEL-1 Common-
2A Common, SEL&BETR-1 Common-2A Com-
mon, or FAS-1 Common-2A Common, however,
require fewer higher order models to describe the
yield-grade mix relationship (5 out of 11).

It also appears that the simple linearity is af-
fected by the overall quality of a given lumber
grade combination. As Table 5 shows, 9 out of 11
cutting bills require a nonlinear model to describe
the relationship between yield and lumber grade
mix when the lowest lumber quality combination
(1 Common-2A Common-3A Common) is used.
Conversely, only five cutting bills require a non-
linear model to describe the yield-lumber grade
mix relationship when higher quality lumber
grade mixes, such as FAS-1 Common-2A Com-
mon, SEL&BETR-1 Common-2A Common, and
SEL-1 Common-2A Common are involved. Thus,
the complexity of the relationship between lum-
ber grade mix and yield also is dependent on indi-

vidual lumber grade quality and the overall qual-
ity of the lumber involved. Since these tests used a
simulation scenario that represents rough mill
technology and practices widely used today
(Thomas and Buehlmann 2002), the linearity as-
sumption between yield and lumber grade mix for
industry cutting bills does not always hold, either.
The lack-of-fit test of simple linearity for the 10
industry bills was found to be highly significant
(P�0.0001). Thus, the rough mill technology
used does not prevent non-simple linear results
for the yield–lumber grade mix relationship. The
findings of this study therefore do apply to cur-
rent rip-first rough mill set-ups used in mills. Fur-
ther research will have to reveal if the findings
from this study also apply to crosscut-first rough
mills.

Based on today’s understanding of the
yield–lumber grade mix relationship, it is impos-
sible to predict if a particular cutting bill–grade
mix combination will result in a simple linear or
a non-simple linear relationship between grade
mix and yield. More than half of the cutting bills
tested using two lumber grade combinations and
all cutting bills tested using three lumber grade
combinations were found not to have a simple
linear relationship between lumber grade mix
and yield. This high percentage of non-simple
linear behavior combined with the inability to
predict which cutting bill–grade mix combina-
tion will result in simple linear or non-simple
linear relationships raises questions about the
validity of the linearity assumption made by ear-
lier developers of least-cost lumber grade mix
search algorithms (Hanover et al. 1973; Martens
and Nevel 1985; Timson and Martens 1990;
Harding 1991; Fortney 1994; Lawson et al.
1996). Therefore, efforts should be undertaken
to create a new least-cost lumber grade mix
model that does not rely on the assumed linear
behavior of the relationship between lumber
grade mix and yield.

summary and conclusions

Solving the least-cost lumber grade mix prob-
lem is, due to its large economical implications,
a pressing problem. In the past, efforts were
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mainly undertaken using linear programming
models, which were all based on the assumption
that the relationship between lumber grade mix
and yield is a simple linear relationship. This
crucial assumption has never been verified or re-
jected scientifically, so far.

Findings from this study indicate that the sim-
ple linearity assumption does not apply for many
cutting bills. Tests with a cutting bill created by
Buehlmann (which is based on industry-relevant
requirements) showed that the simple linear
yield–grade mix relationships exist only in cer-
tain cases, but not in general. For example, lin-
earity exists for some two-grade lumber mix
combinations that contain two similar grades,
and for only one three-grade lumber mix combi-
nation, SEL&BETR-1 Common-2ACommon.
These findings were substantiated when testing
10 additional cutting bills used by industry and
research. In addition, it was observed that cutting
bill characteristics, especially the length require-
ments, have effects on the simple linear or non-
linear relationship between yield and grade mix.
The number of different lumber grades com-
bined is another factor affecting the shape of the
response surface of the yield and grade–mix in-
teraction. Generally, it can be observed that the
more dissimilar grade qualities are used for one
grade mix, the more likely a nonlinear response
will occur.

Predicting the relationship between yield and
grade mix appears to be highly complex. How-
ever, the high percentage of non-simple linear
relationships observed here raises questions
about the validity of the linearity assumption
made by previous developers of least-cost lum-
ber grade mix. Further efforts are needed to con-
struct a new least-cost lumber grade mix model
that will not rely on the assumption of a simple
linear relationship between lumber grade mix
and yield.
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