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ABSTRACT
An exact elasticity solution for transverse waves is presented for an infinite periodic
layered medium that is subjected to initial stress and that is incrementally elastic. Exact
results are compared with various approximate theories. It appears that the microstructure
approximate method may be sufficiently accurate to permit use in problems of acoustic
propagation and impact loading. Internal instability of the layered medium is treated as
a special case of the general dynamic problem.

INTRODUCTION

The development of analytical methods
for predicting the mechanical behavior of
composite materials has reccived consider-
able attention recently. The physical model
of a finely layered periodic medium has
been frequently employed in the descrip-
tion of composite material behavior related
to dynamic response.

Wood material can be modeled as finely
layered medium at various structural levels:
at the level of the cell wall, at the fiber-to-
tiber level, and at the level of the growth
increments. It is felt that these character-
istic structural features have a considerable
influence on such mechanical phenomena
as acoustical attenuation and the response
to impact loading,.

A general philosophy of approach to
problems of predicting the mechanical re-
sponse of heterogeneous media such as
solid wood has been presented by Perkins
(1972); however, in this work numerical
results were not available. The present
work presents an exact elasticity solution
for the problem of continuous plane wave
propagation in an incrementally deformed
layered medium. The results of the exact
solution arc presented and commpared ex-
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tensively with the results of the various
approximate theories presented in Perkins
(1972). While the information presented is
restricted to the case of continuous plane
wave propagation, the results demonstrate
the possible utility and the limitations of
the approximate procedures. These results
pave the way for the development of anal-
yses of more complex wave phenomcna
where the approximate theories can be util-
ized to describe the modal form and fre-
quency  relationships  pertinent to wave
propagation. It is expected that this meth-
odology can be profitably employed to
describe certain forms of acoustic or impact
loading response in finely layered media.
Another feature of the present work is
the consideration of internal instability of
a laminated medium. From a practical
viewpoint, it is believed that in some situa-
tions the compressive strength of a layered
material can be described as a manifesta-
tion of internal instability. Biot (1963,
1967) analyzed this problem extensively,
although his results were restricted in that
he always assumed the materials to be in-
compressible. We have presented the exact
solutions and the microstructure and couple
stress approaches to this problem and have
compared such solutions. Also presented
in this comparison are numerical results
based on a recent work by Kiusalaas and
Jaunzemis (in press). In this work, the
reinforcement is treated as a plate and the

WINTER 1973, V. 4(4)
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Fic. 1. Layered medium subjected to a state
of initial homogeneous strain.

matrix is treated according to the micro-
structure approach.

ANALYTICAL SOLUTIONS

A laycred medium of infinite extent is
assumed to be in a state of initial homo-
geneous strain with the principal directions
of initial strain in the principal planes of
the layering (Fig. 1). The layered structure
is assumed to be composed of alternating
layers of two different incrementally ortho-
tropic media. Attention is restricted to the
casc of plane strain disturbances. We con-
sider here two problems: (a) the propaga-
tion of a transverse plane wave where the
direction of wave propagation is the same
as the direction of initial stress, and (b)
elastic stability of the layered medium.

The initial stresses in the two materials
are different because their elastic moduli
are different. The initial strain, however,
is homogeneous.

At the middle of cach layer a coordinate
system is set up as shown in Fig, 1.

Fundamental relations

Following Biot’s (1965) incremental de-
formation theory, the initial stresses are
denoted by Si1, Ss2, Ssa. The displacement
components measured from the state of ini-
tial stress are denoted by uy, us, us. The
infinitesimal (first-order) incremental strain
components are

= (U, .«u. .

1
6‘/'j 2 Ty T (7

where §,=0/8x,, The first order local
rotation in the (x;, %2) plane is given by
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¢ = ZL(U2'1 (2)

Incremental stresses referred to incre-
mentally deformed areas and axes that ro-
tate locally with the medium are denoted
by s;;. Equations of motion in terms of these
stresses for plane deformation with Sy =
S3;, =0 are:

_U1:2)

3511 95 8¢ .
1 = PUy
aX1 9X2 9X2
(3)
9%z % %22 9 _ pi
oXy T ax, 1 9 x 2

where a dot denotes differentiation with
respect to time.

For an incrementally orthotropic elastic
medium the incremental stresses and strains
are assumed to be linearly related by

S = Bnéy + Bep,

S22= Bx€y + Byp €2 (4)
S12 = 2Qeg
Using (1), (2), and (4) in (3), we ob-
tain the displacement equations of motion:

AU 1Dep Up 1o+ 3ol 55 =Pl

(5)
bapUs,po+arp Uy, 1p + by1U5 11 =pU,
where
_ . _ 1
an =By by =BpprQ- 55
322:Q+%—S; b22 5[322
1 (6)
a =B L
12 21 +Q+ 2 S
biy=Q- 12-5 i S=-Sy

Boundary stresses in the directions of x;
and xg, respectively, are

fx

| = (S11+ S)1+ Sy, ) Cos(n, X1)

-+ (512— 5—11921)(:05(0,)(2)
(7)
fX =(s 2+S11¢)Cos(n Xq)

+(522 )Cos(g,xz)
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where ( n,x;) is the angle between the outer
normal to the boundary n and the coor-
dinate axis x;. Using (1), (2), (4), and
(6) in (7), we have the boundary stresses
in terms of displacements:

fe, = (-S+ayu, + (b= ay,)Us 5]

"Cos(01s X1 )+ ol 5+ U, ()COSN, Xy )

— 1
frp =l@gp + 5-S)Up, 2 +( by = 5-S)uy ]

(8
'Cos(Q»X1)+[b22 U2,2+(a12 /

~d22)uq,q|Cos(n, xp)

Elasticity solution

(a) Wave propagation: Denoting the
coordinates x; and the displacements u; for
i =12 by x,y and u,v, respectively, we seek
a solution to (5) in the form

u=Uy)expi(ax-wt)
(9)
v=V(y) expij(ax-wt)

where 2x/a represents the wavelength and
w/a = ¢ represents the phase velocity of the
propagating wave and now i =1y/- 1.

Substitution of (9) in (5) leads to a pair
of simultaneous linear ordinary differential
equations in U and V:

. 2 oV —
a22U +(pw2—a a11)U+b12/aV '—O (70)
b22V"+(Pw2— a2by WV appial’ =0

where a prime denotes differentiation
with respect to y. The general solution to
(10) can be written in the form:

U:(sz—b2282—a2b11)[ECos,8y+/'Fj2sinBy]
by»adl £, cosdy +ifg sind
+b1pad[ £ Cosdy +i/g Sindy] (11

V:a12aB[FécosBy+,'/-;SinBy]
+(pw2— ‘32282"'32‘311)[/2_; Cos 8y +iFSi nSy)

where the F; are arbitrary constants and
B2 and 8% are the two values of A% in the
characteristic equation:
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f (y'=-h")
B, B B
f =-h
y(y )
F1c. 2. Boundary stresses at the interfaces be-

tween layers.

‘322b22)‘4"' [pwz(a22+ boo) + az(a12 b12
~aybao - azoby )] R+ (pt-aay ) (pw?

2 — !

Equations of the form (11) apply for
each of the layers in the infinite layered
structure. Since the layered structure is
assumed to have a repeating pattern con-
sisting of only two different layers, it is
sufficient to consider one representative set
of two layers as in Fig. 2. We will use
superscripts A and B to distinguish between
quantities pertaining to the two materials.

We have eight constants F4, F% (j=1,
2, 3, 4) to be determined by boundary con-
ditions for each layer. These are conditions
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of continuity of displacements and tractions
at the interfaces:

uA(yA:—hA) = UB(yB:hB)
AcyAL_pAy — VBB _ 1B
vA(yt=-h") = V(YT = (13)
UA(yA: hA) = uB(yB:—hB)
VA(yA: hA): VB(}/B:—/?B)
fOyR= i) =fByB = pB)
A, A_ pAy _ 4B B B)
iy "= = fylym = (14

B
R eyh= ) =-f2yB=-h")
A A pAy L (BB 4B
fy(y—h)—fy()/—

Attention should be called to the signs
n (14). Figure 2 is self-explanatory.

The conditions of continuity (13) and
(14) provide a system of eight linear
homogeneous algebraic equations for the
determination of the eight constants F4,
FE(j=1,2,3,4). Itis possible to manipu-
late these equations so that we have four
cquations in F4-# alone and four equations
in F:F alone. If we set F4-% = 0, the dis-
placement in the direction ()f wave propa-
gation when averaged over the layer thick-
ness becomes zero for each layer. Thus the
propagating wave is an cssentially trans-
verse wave. This definition of a transverse
wave in a layered medium follows the pro-
cedure of Rytov (1956) as reported in
Brekhovskikh (1960). In this case we are
lett with four equations in F4'5:

(A oA B
91 92 9
D1 Do Dy

9 ]|F]= =0 (15;
J}@@@$ ol as

A A B B B
% %2 %1 %) |/

where [0] is the null column matrix, and
the elements of [¢] are®

# Use upper sign for material A and lower sign
for material B.
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B2 BAB
gh Ba [PAB 2 bAB(,BA B2 D)

A,B

g(;-B:[bm 288 sin(8MBH5)

A,B A, B B A, B

91 21[312 } s

oy PP DB - aﬁ'BachOs(sA’BhA’B)

AB AB_A.B| A,B 2 B, ~AB,2
937=t a7 [ P15

+(aBP- b B)aﬂ CosABAB) o

A Baz Cos(SA’BhA’B)

@~¢fﬁﬁww%%@5ﬁ

- bAB,2 +b2AéBa,1A2,B(BA,B)2J Sin(G BB,

AB_ sAB[A,B
a5 { (pABL2_ahB ghBR AP 2)

+(aq3P-a0s®) pyP 2] sin(8” BB

A nontrivial solution obtains for combina-
tions of circular frequency « and wave
number a when

det [g] =0 (17)

Equation (17), the characteristic fre-
quency equation, represents the depen-
dence of wave number, or if one wishes,
the phasc velocity, of the propagating wave
on the wave frequency. Thus (17) repre-
sents the dispersion relation for transverse
plane waves propagating through the lay-
ered medium in the direction of the plane
of the layers aligned with the direction of
the initial stress.

(b) Elastic stability: Normally the solu-
tion for sinusoidal buckling modes could
be obtained from the wave propagation
solution just described by dropping the
time-dependent terms, i.e., by setting » = 0.
For the present case, however, a peculiar
situation occurs.

We seck solutions to (5) in the form:
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<
il

Uly)cCcos ax

(18
V(y)sinax /
Substituting (18) into (5), we arrive at
two ordinary simultaneous linear differen-
tial equations in U and V:

dppU'-a2a, U+ byaV =0

. , (19)
byo V- abyv —a,ay =0
out that the characteristic

It turns
cquation

4
dopbop N+ (b, - bysay, 20
2.2
- 622011)6 X +dy, bﬂa4:0

has repeated roots A = = a, = a. (This can
be seen by using (6) and the expressions
for B;; and Q provided in Section 3 in (20)
and solving for A.)

For this case the general solution to (19)
can be written in the form:

U:bm[chsh Y+ Sinh ay +F ay Sinh ay
+/f1dyCosh ay]
V= [(‘311—‘722)/:2“("H+a22)51]C°5h ay
+a = a0 - 3y +ag,)F5| sinh ay
+(dy11 = dop) Fy ay Sinh ay+(a;

(271)
—d55) F3dY Cosh ay

From here on the procedure is exactly
the same as for the wave problem. Again
we have eight constants F4, F® (j=1,2,3,
4) to be determined by the continuity con-
ditions (13) and (14), which lead to eight
linear homogeneous algebraic equations in
the eight constants. As before, these equa-
tions can be manipulated to yield four equa-
tions in F4% and four equations in F33 .
Setting F4 = 0 leaves the four constants
F4% which describe a buckling mode re-
ferred to in the literature as the “antisym-
metric” buckling mode. The four equations
in F4-2 are:
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(RA KA B pB1[FA

i h12 r h12 /_;_ W

A A ;B B A

h21 h22 h21 h22 4

Pllel=1 0 L U = [0] 22

b3 h32 h31 h32 F,

A A B B B
i B e Bl |fa |

where the elements of [h] are?

AB _ AB . A,B
/‘711 ~b12 Sinh (ah™")

HyP = B3° ahPcosniah®B)
A,B
P = 2P 5P cosnat?)

AB _ A8 _A,B AB . A,B
/’722 Aﬂ:(aﬂ fa22)ah Sinh(ah™")
\ A,B
N8+ aSZB)Cosh(ah )

AB _ , JAB AB AB  _A,B AB
h3y _.tazz(b12 + 4&22)Cosh(ah )

AB _ , .AB, AB ,B_ _A,B, _,AB
h32 _.tazz(b12 +a§\1 a22)ah

« sinntat™B)£al PP ay®

A,B
—322 )Cosh(ahA'B)
AB _[,AB,.AB A,B AB, AB AB
M =[5 PeatB - Py - PR £:0)]
. Sinh(ahA’B)

AB _[AB, AB_ AB, _AB AB AB
o =y (57 - ) - By ey -d5n)]

.ahA’Bcosh(a/’IA'B) (73)

AB.ALB . A.B
—2b22a22 Sinh(ah™")

A nontrivial solution in 4.7 obtains when

dez[h}:o (24)

Equation (24) represents the dependence
of wave number “@” or the wavclength
L =2x/a, on the initial stress “S,” and we

shall call it the stability equation.

Microstructure solution

(a) Wave propagation: The microstruc-
turc theory including initial stress was ap-
plicd to the propagation of transverse waves
in a periodic laminated medium by Perkins

*See Footnote 3.
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(1972). The following dispersion relation
(in the present notation) was arrived at:

[(pAhA+ B/?B)
22
[ {(PA/;A+P W) c2 (aﬂh + a, hB }
A

a d
22 22
-h_ h_:l _(322_

_(bA Lo bB HB l

B 2
&, =0 (25

In deriving this relation, the effect of
initial stress in both materials of the com-
posite was taken into account. Also, linear
microdisplacement fields in both materials
were considered.

(b) Elastic stability: Setting ¢=0 in
(25) yields the stability equation:

2
(ofy i B2 ) [Leaty e B 1P (725 hL)]

B
2:0 26)

A B
—(ay5-d,)

Couple stress solution

(a) Wave propagation: Perkins (1972)
extended Biot’'s (1965) incremental defor-
mation theory to include couple stresses for
the case of plane strain and sought solu-
tions to the equations of motion in the form

Uu=0 ; v=\,exp [/‘a(x--cr)] (27)
where V, is a constant and represents the
amplitude of the transverse wave. This led
to a dispersion relation, which in the pres-
cnt notation is

pc? = b +a%kK, (28)
where K; is the couple stress coefficient re-
lating the couple stress m, acting on a face
initially parallel to the y-axis to the curva-
ture (d¢/dx) by m, =4K:(3d¢p/dx).

Equation (28) represents the dispersion
relation for a homogeneous medium. Note
that if couple stresses were not taken into
account, there would be no dispersion for
the displacement ficld given by (27). (28)
can be applied to a laminated medium if
the quantities in the equation represent
“effective values” (Biot 1963), i.e., if

R. W. PERKINS, JR., ET AL.

p = CLAPA+ o8 PB i by :(:1.'2\[)'?1+CI.B[)]B1 (29)
where
hA'B

A,B
¢ hA + pB
Biot (1967) proposed an expression for
the coefficient K; of the laminated medium
assuming that the materials are incompres-
sible. The same procedure is readily adapt-
able to compressible materials? and the
following expression obtains:

7 [(ihPaft - (PR (afy-abs)

Ky =%
16 (a§2 . a?z) (hA + hB)
hA »B (30)

By reducing the field equations of the
microstructure theory to those of the couple
stress theory and comparing these with the
field equations of the couple stress theory,
Perkins (1972) deduced the following ex-
pression for K; of the laminated medium:

A B ,B

173 (aﬁg agz )2 (A + B,
FYSY:]
hA h (317)

Both the above expressions have been
used in numerical computations.

(b) Elastic Stability: Setting ¢ =0 in
(28) gives the stability equation

b .+ aK, = 0

» ! (32)

Notec again that if couple stresses were not
considered, the stability equation would be
independent of the wavelength, for the dis-
placement field given by (27).8

Again, (32) is applicable to a laminated
medium if the coefficients stand for those
of the laminated medium.

5See, for example, Perkins (1972).

% Biot (1963) obtained a stability equation de-
pendent upon wavelength without considering
couple stresses. However, the displacement field
was different from (27). He also extended his
own analysis to include couple stresses in (1967).
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Another solution for elastic stability

Kiusalaas and Jaunzemis (in press) pre-
sented a continuum theory for internal
buckling of a laminated medium satisfying
the incequalitics

EAH s> PR and W< P (33)
(We will occasionally refer to materials
A and B as the reinforcement and matrix,
respectively.) They treated the reinforce-
ment as plates and considered linear micro-
displacement ficlds in the matrix. Further-
more, they neglected the energy due to
initial strain in the matrix as being small
compared with the prestrain energy in the
reinforcement, an assumption justifiable
by the first incquality above. Their stability
cquation for the “antisymmetric” or “shear”
buckling mode in our notation is

2
p - 1o(wh)? EB(hA+hB)+L( pA )
TP A 2nh) 3 A P

s (hA+pB)2 g2 (34)
where p is the strain before buckling and
is assumed to be small, ie., p << 1.

THE INCREMENTAL MODULI B;; AND @

[n what follows, repeated indices are no?
to be summed over unless a summation sign
so implies.

Let the natural stress-free state of a ma-
terial (A or B) be characterized by coor-
dinates X;. Now lct the material undergo
a homogencous deformation so that a
generic point has coordinates given by

i Ty X (35)

An increment in the T/s gives rise to
incremental strains

= T (36)

It is in general possible to express the
stresses S;; in terms of the “stretches”

-

I, We assume the gencral form of these
relations as follows:

Sji = Sji (T, T I3 (37)
The incremental stresses s; may be iden-

tified with the differentials of these rela-
tions:

S 195/
sji= (ar_ dr/) (38)
j=1
or, using (36) in (38):
5| 95
si; :Z [rj ST 9 (39)
j=1

The general form of the stress-strain rela-
tions may be written as

S// = /Z] B// ej/

(40)

Comparing (39) with (40), we have

95

_ o TV
B/-/-a r/ alﬂj

(41)

Now, for a material that is isotropic in
initial finite strain, we assume the relations

S/'/ =K

3
znkk}“L 2Gn;; (42)
k=1

Where u and G are Lame’s constants given
by

_ Ev __E
e e avy B 1 )

and E and v have the significance of Young’s
modulus and Poisson’s ratio, respectively;
ny are the finite strain components given by

3 k

_ o X
2nj; = 7"2 ox.
k=1 /

an
BX/‘

(43)

Using (35) in (43) we have
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(44)

We now use (44) in (42) so that the S;;
are defined in terms of the T, The resulting
expression is used in (41) to get the moduli
B;. Four of the moduli relevant to plane
problems are

g +2G _ M
By1= 5— 5 Bip= —%
I r
R _H+26
Bor= T2 ¢ Be2= r2 (45)
1

If we invert (42) so that strains n; are
given in terms of stresses S; and use (44)
for the strains, we have

(i) 4k ) (46)
We now investigate the special case when
Soo =S8, =0 and S;1# 0. In this casc,
(46) gives

L1, Sn
70 T
s (47)
! [N 1 Vo1
S(1-25) = L- )= - 2210
2 g’ 2 2 E
from which we have
PSR
r?
VS (48)
1+ 221 = _7_2
F?
Substituting (48) in (45) gives
S
By =(k+26)(1- 2211
£
S
Bio = p(1+ 2v Eﬂ)
s (49)
By = #(7—2—5”—)

S11
Boo = (K+26)(1+2v—2-)
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The modulus Q was derived by Biot
(1963) as

2 2
0—7(311_522)[“2__[“2_- (50)
1 2

for materials that are isotropic in finite
strain. When S;; is the only nonvanishing
initial stress, by virtue of (48) we reduce
(50) to

S

= _ 211 _
Q G[7 £ (7 u)] (51)
Let us set
Sno_
£ =P (52)

Then (49) and (50) take the form:

Byy=(mw+26)(1+2p)
Bip= k(1 - 2vp)

Boi= w(l + 2p)
21= H P (53)

522:(1‘1‘+2G)(7——2Vp)
Q=6[1+p(1-v))

Note from (47) that if T; and T are the
same for both materials A and B, then p
is the same for both materials, and also we
must have »* =%  Further, note that p
represents the finite compressive strain in
the x-direction. Equations (53) with proper
superscripts to distinguish between A and
B are the expressions to be used in the
calculations of Section 2.

RESULTS AND DISCUSSION

Equations (53) for the moduli have been
used in the results of Section 2 and the
various dispersion relations and stability
equations have been numerically solved.
These cquations, as they appear in Section
2, have not been reduced to dimensionless
forms so that the symmetry in A and B is
apparent. Some manipulation will show,
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however, that they can be reduced to rela-
tions between the following dimensionless
(uantities:

SA B
p= -2 LMy
EA = 16%P
A___h°
R R (=7 - o)

L=+ ra

y = %8
6= F’A/pB
VA VB

)

The results given in this section are in
terms of the above parameters. In what
follows, Equation (28), or (28). is to be
construed as Equation (28) with K, defined
by (30) or (31). A similar mcaning holds
for (32), and (32)..

(a) Wave propagation: Figure 3 shows
cquations (17), (23), (28): and (28).
plotted for certain valucs of the parameters.
The curves show that for infinite wave-
length (a=0), all the equations yield the
same value of phase velocity. For long
wavelengths, the difference between the
varions theorics is not appreciable. For
small wavelengths, however, the microstruc-
ture theory gives the best approximation to
the clasticity solution. This is because the
deformation ficld assumed in the micro-
structure solution most closely approximates
that given by the clasticity solution (see
Perkins 1972). A large number of curves
were obtained for various values of the
parameters, but they have not been pre-
sented sinee Fig. 3 is typical. Howecever, in
IFigs. 3 a~d, the cffect of changing various
parameters on the elasticity solution is
shown. The other theories give curves that
fit rclative to these as in Fig. 3, but they
have not been presented so as to avoid con-
fusion in the figures.

Sun ct al. (1968) used the microstructure
approach for the case of zero initial stress,
i.c., Ty = 1; the results presented herc for

/ — . (D
" o Fanye (25)

Fau. (?8)
Fan. (?R)Q

¥Fic. 3. Phase velocity parameter ¢ versus wave
number parameter {.

Iy =1 agree generally with their results.
Figure 3d shows the effect of increasing
initial compressive stress (decreasing Ty)
on the dispersion curve. It is seen that in-
creasing the compression decreases  the
phase velocity for a given wavelength (al-
though for the magnitudes of initial stress
considered here, the change is quite small).
This agrees with gencral remarks by Biot
(1940, 1965) recgarding wave propagation
in a continuum under initial stress.

(b) Elastic stability: Figures 4 and 5
show Equations (24), (26), (32);, (32)
and (34) plotted for various values of the
parameters.  The elasticity  solution for
at =101, y =10 and 50 yiclds a phenome-
non quite distinct from the behavior for
other values of the parameters. Attempts
to identify these two phenomena with Biot's
(1963) “internal instabilities of the sccond
and first kind,” respectively, led to no suc-
cess. Note, however, that the approximate
theories do not exhibit the behavior of the
clasticity solution for a4 =01, y =10 and
50. In the other figures, however, it is again
found that the microstructure theory gives
the best approximation to the elasticity solu-
tion. This is best appreciated in Fig. 4c.

Though Equation (34) has becen plotted
for the full range of parameters, it is fully
realized that it is valid only when the in-
cqualities (33) are satisficd. Note that
when such is the case (Fig. 4a, v = 500),
Equation (34) almost coincides with the
clasticity solution. It should also be noted
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Equ. (17)

~+

8
Fic. 3a. Phase velocity parameter ¢ versus wave number parameter ¢ for various values of
layer thickness ratio o*.

4 e
3-
¥
2 1
11
———Equ. (17)
0 1 2 3 4

5 6

Fic. 3b. Phase velocity parameter ¢ versus wave number parameter ¢ for various values of the
Young’s modulus ratio ~.



PLANE WAVE PROPAGATION AND INTERNAL INSTABILITY 319

Equ, (17)
- i + e ; j
0 1 2 3 4 5 6
z
Fic. 3c. Phase velocity parameter & versus wave number parameter ¢ for various values of the
density ratio 4.
1.0 - - . o
Yy = 10 W
1
0.8
0.6
0.4 }
= Equ. (17)
+ } { : :
0 1 2 3 4 5 6
g
Fic. 3d. Phase velocity parameter ¢ versus dimensionless wave number parameter ¢ for various

values of initial strain.
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IR
e "‘A = 0.1 Equ. (24) W
VA 0.25 - — Equ. (26) //‘//
—— Equ. (34) //*”//
0.6 ) o
f

I~
(%)
T

16, 4a. Initial stress parameter p versus wave number parameter ¢ for various Young’s modulus
ratios v. Comparison of exact solution Eq. (24) with microstructure solution Eq. (26) and Kiusalaas
and Jaunzemis solution Eq. (34). Layer thickness ratio «* = 0.1,

0.8, L S —
vo=0. Fqu. (24) P
B -
vo= v = 0.25 . — Bqu. (26) ////
———— Equ. (34)
0

T s R T

116, 4b. Initial stress parameter p versus wave number parameter ¢ for various Young’s modulus
ratios . Comparison of exact solution Eq. (24) with microstructure solution Eq. (26) and Kiusalaas
and Jaunzemis solution Eq. (34). Layer thickness ratio o = 0.2.
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oA =05 —_  Equ. (24) %/ A

1.4 + \)A = v = (.25 ————— Equ. (26)

—— - — Equ. (34) ,///”
= 10~ //

li
(9]
o

< = = =
it

—

o
e
£

o
=
N
Mo 4
B~
wn
[*))

z

Fic. 4c. Initial stress parameter p versus wave number parameter ¢ for various Young’s modulus
ratios v. Comparison of exact solution Eq. (24) with microstructure solution Eq. (26) and Kiusalaas
and Jaunzemis solution Eq. (34). Layer thickness ratio ' = 0.5.
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0.8, |
) 8! Ao
| \ [;) — Fqu. (24)
AL UB Ly
= - - FEqu. (32)\
1
~— = fqu. (32).
0.6
| Yy = 10 < / R

Frc. 5a. Initial stress parameter p versus wave number parameter ¢ for various Young’s modulus
ratios . Comparison of exact solution Eq. (24) with couple-stress solutions Eq. (32). Layer thick-
ness ratio o' = 0.1,

0.8—— -
A . 3
R ) ——— Equ. (24)
AP s gl Soo Bau. (32),
= —-= Equ. (32), 4
0. '

Fie. 5b. Initial stress paramecter p versus wave number parameter ¢ for various Young’s modulus
ratios . Comparison of exact solution Eq. (24) with couple-stress solutions Eq. (32). Layer thick-
ness ratio ot = 0.2.
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i U
A Hir
a’ = 0.5 Equ. (24) f i
A B !
= 0.25 - —— - —Equ. (32)1 1
b
/ / , h’
ll “I

—— ——Equ. (32),

Initial stress parameter p versus wave number paramcter ¢ for various Young's modulus
Layer thick-

Fic. 5c.
ratios y. Comparison of exact solution Eq. (24) with couple-stress solutions Eq. (32).

ness ratio o! = 0.5.
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that while all other solutions coincide at
a =0, Equation (34) deviatcs considerably
when (yat) is small. This is probably duc
to the fact that it is not proper to neglect
the prestrain cnergy in the matrix when
(yat} is small.
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