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ABSTRACT 
An cuact cslasticity solution for transverse waves is presented for an infinite prriodic 

l;~~cr(.cl  meclii~m that is subjectc:~l to initial stress and that is increrncrltally elastic. Exact 
rrslllt.; are co~l~parcd \\~itli various approximate theories. It appears that the microstr~lctl~rc~ 
:~ppn)ximate method may be si~fficiently accurate to permit llsc in pro1)lcms of acoustic 
propagation and impact loading. Internal instability of the laycrcd mcdiunl is trentcd as 
a special case of the general d ~ n a m i c  problem. 

INTRODUCT~ON tensively with the results of the various 

TI,(; cleveloplnent of analytic:ll ,nethods approximate theories presented in Perkins 

for predicting the mechanical bchavior of ( 1972). Whilc the information prcscnted is 

composite nlaterials has reccivecl consider- rcstrictc!d to thc case of continuous plane 

attention recently. The physical model ""Ve propagation, the results denlonstratc 

of a finely layered periodic medium has the possible utility and the limitatioils of 
b(,r.Il frc,qucntly el,lployeil ill descrip- the approximate procedures. These rf>sults 
tion of c:ol~lpositc rnatcrinl bchaT,jor related Pa"' the for develo~mcnt of 
to dynamic response. yscs of more complex wave phenorncna 

Wood material can be modeletl as finely where the approxinlate theories can be util- 

layered rncdium at  various structural levels: izcd to cXescribe the iiiodal form and fre- 
;lt tllc level of the cell at the fibcr-to- qUcn"Y pertinent t' wave 
fil)c,r level, and at the level of the growth propag:ltion I t  is expected that tllis rneth- 

incrcmcnts. I t  is felt that these character- odology can be profitably employed to 

istic structural features have a considerable describc certain forms of acoustic or impact 

illfluencc: on such nlcchailical phcno~llcna loading response in finely layered modia. 

;is acoustical attenuation and the: respollse Another feature of the present is 

to impact loading. the cor~sideration of internal instability of 

A general philosophy of ilpproach to a laminated medium. From a practical 

problems of predicting the mecl~anical re- vicwpoint, it is believed that in so111c: situa- 

spollse of hcterogcneous media such as tions the con~~xessivc strength of n laycrcd 

has beell presented Perkins material can be described as a manifesta- 

( 1972 ) ; however, in this work numerical tion of' internal instability. Biot ( 1963, 

rcsults were not available. The prescnt 1967) analyzcd this problcm extensively, 

work lxescnts an exact elasticity solutio~l although his results were restricted in that 
he always assumed the materials to be in- for thr prol~lem of colltinl~ous plane wave 

propagation in an incremc~ntally deformed compressible. We have prcsentcd the exact 
solutions and the illicrostructure and couple layered nicdium. Thc rcsults of the exact 
stress approaches to this problem and have solution arc presented and comparcd ex- 
cornpared such solutions. Also presented 
in this cornparison are numerical results ' No\\, at Johns IIopkins Univ~rsity. 

"o\v at Oceanographic and Instrumentation bascd on a recent work by Kiusalaas and 
SLlip Acquisition Officc, SavaI SIlip System Corn- Jaunze~nis (in prcss). In this work, the 
~n,und, Arlington, 17irginia. reinforocment is treated as a plate and the 
\\ 0011 AND FIBER 309 WINTER 1973, V. 4(4) 
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FIG. 1. Layered medium subjected to a state 
of initial homogeneous strain. 

matrix is treated according to the micro- 
structure approach. 

ANALYTICAL SOLUTIONS 

A laycrcd medium of infinite extent is 
assumed to be in a state of initial homo- 
geneous strain with the principal directions 
of initial strain in the principal planes of 
the layering ( Fig. 1 ) .  The layered structure 
is assumed to be composed of alternating 
layers of two different incrementally ortho- 
tropic media. Attention is restricted to the 
case of plane strain disturbances. We con- 
sidcr here two problems: ( a )  the propaga- 
tion of a transverse plane wave where the 
direction of wave propagation is the same 
as the direction of initial stress, and (b)  
elastic stability of the layercd medium. 

The initial stresses in thc two materials 
are different because their elastic moduli 
are different. The initial strain, however, 
is homogeneous. 

At the middle of cach layer a coordinate 
system is set up as shown in Fig. 1. 

Fundamental relations 

Following Biot's (1965) incremental de- 
formation theory, the initial stresses are 
denoted by SI1, S22, S33. The displacement 
components measured from the state of ini- 
tial stress are denoted by ul, u2, U Q .  The 
infinitesimal ( first-ordcr) incremental strain 
components are 

where i , i  = J/axi. The first order local 
rotation in the (xl, x2) plane is given by 

Incremental stresses referred to incre- 
mentally deformed areas and axes that ro- 
tate locally with the medium are denoted 
by sij. Equations of motion in terms of these 
stresses for plane deformation with S Z 2  = 
S3; = 0 are: 

where a dot denotes differentiation with 
respcct to time. 

For an incrementally orthotropic elastic 
medium the incremental stresses and strains 
are assumed to be linearly related by 

s12 = 2c2e12 

Using ( I ) ,  (2) ,  and ( 4 )  in ( 3 ) ,  we ob- 
tain the displacement equations of motion: 

where 

Boundary stresses in the directions of XI 
and xz, respectively, are 
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where (?,xi) is the angle between the outer 
normal to the boundary n and the coor- 
dinate axis x,. Using ( l z  ( 2 ) ,  ( 4 ) ,  and 
( 6 )  in ( 7 ) ,  we have the bound:lry stresses 
in terms of displacements: 

fxl = [-s+al,u1,l+(bl2- d22 )U2 ,2 ]  I 

Elasticity s o l ~ ~ t i o n  

( a )  W a v e  propagation: Denoting the 
coordinates xi and the displacements ui for 
i = 1,2 by r,y and u,v, respectively, we seek 
a  solution to ( 5 )  in the form 

u = U ( y )  exp ; ( a x -  w t  ) 
( 9 )  

where 2 ~ / a  represents the wavelength and 
" ) / a  = c represents the phase velocity of the 
propagating wave and now i = \/x 

Substitution of ( 9 )  in ( 5 )  leacls to a pair 
of sim~iltancous linear ordinary differential 
equations in U and V: 

where a prime denotes differentiation 
with respect to y. The general solution to 
(10) can be written in the form: 

where the Fi are arbitrary constants and 
p2 and P a r e  the two values of X2 in the 
characteristic equation: 

FIG. 2. Boundary stresses a t  the interfaces be- 
tween layers. 

Equations of the form ( 1 1 )  (ipply for 
each of the layers in the infinite layered 
structure. Since the layered structure is 
assumed to have a repeating patter11 con- 
sisting of only two different layers, it is 
sufficient to consider one represer~tative set 
of two layers as in Fig. 2. We will use 
superscripts A and B to distinguish between 
quantities pertaining to the two materials. 

We have eight constants F;, F: ( j  = 1, 
2, 3, 4 )  to be determined by boundary con- 
ditions for each layer. These are conditions 
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of continuity of displacements a l~d  tractions 
at thc interfaccs: 

Attention should be callcd to the signs 
in (14) .  Figure 2 1s self-euplanatory. 

The conditions of continuity (13) and 
(14) ~ rov ide  a systen~ of eight linear 
llotilogcneous algebraic cquations for the 
dctcrmination of the eight constants F t ,  
1;';' ( 1  = 1, 2, 3, 4) .  It  is possible to manipu- 
1'1tc. these equations so that \ve have four 
c~cl~i~~tions in F :  7 alone and four equations 
in F; f 'done. It \v(, set 1;: = 0 the dis- 
placement in the clirection of wave propa- 
g , ~ t ~ o n  when averaged over the layer thick- 
ne\s 1)ccomes zero for each layer. Thus thc 
piopag.~ting w~ivc is an c\senti'illy trans- 
verse \v<ive. This definition of a transverse 
\va\ e in a laycred medium follow5 the pro- 
ccduie of Rytov (1956) as reported in 
Brckhovskikh (1960). In this c'ise we are 
lctt with four equations in F$:: 

w11(~c> [O] is the null column matrix, and 
the denlents of [ g ]  are" 

A A B B F A  
Q21 ?22g21 922 

:' Ucc I I ~ I ~ I ~ ~ I .  sign for inatel.ia1 A and lo\\,er sign 
for ~natclrial 13. 

4 

A nontrivial solution obtains for combina- 
tions of circular frequency and wave 
number n when 

=[o] ( 7 5 j  
A A B B  

g31 g32 g31 '32 

Equation ( 17),  the characteristic. fre- 
quency equation, represents the clc3pen- 
dence of wave number, or if one wishes, 
the phasc velocity, ot the propagating \\ avc* 
on the wave frequency. Thus (17) repre- 
sents the dispersion relation for transverse 
plane waves propagating through th(8 lay- 
el-cd rnedium in thc direction of the plane 
of the layers aligned with the dirccstion of 
tlre i~~i t ia l  stress. 

( b ) Elastic stability: Norn~ally the solu- 
tion for sinusoidal buckling modes could 
be obtained from the wave propagation 
solutioil just described by dropping the 
timc-depcndent terms, i.c., by setting (,, = 0. 
For the present case, however, a peculiar 
\ituation occurs. 

\T7e seek \elutions to (5)  in the fo1-111: 
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" = U ( y )  C O 5  d X  

= V ( y )  s i n  d x  

Substituting (18) into ( S ) ,  we arrivc at 
two ordinary simultaneous linear clifferen- 
tial equations in Ti and V: 

It turns out that the characteristic 
clcluation 

has repeated roots x = 2 a, * a. (This can 
bc seen by using (6 )  and the expressions 
for Btj  and Q provided in Section 3 in (20) 
and solving for A. ) 

For this case the general solution to (19) 
can be written in the form: 

u = b l 2 1 F ; C 0 s h  d Y + 5  S n h d y f F d y  3 S i n h  d y  

+ ( d l l  - d 2 2 ) F 4  d y  S i n h  d y +  ( a l l  
(21 

From here on the procedure is exactly 
tllc sarne as for the wave problem. Again 
n7e have eight constants F:, F: ( j  = 1, 2, 3, 
4 )  to be deternlincd by the continuity con- 
ditions ( 13) and (14),  which lead to eight 
linear homogeneous algcbraic equations in 
the eight constants. As before, these equa- 
tions c,1n be manipulated to yield four equa- 
tions in FAiM, and four equations in F$,R. 
Setting FAi,: = 0 leaves the four constants 
I;.,",:', which describe a buckIinq mode re- 
ferred to in the literature as t h ~  "antisym- 
metric" buckling mode. The four equations 
in F:j.f are: 

where the elements of [h] are4 

A nontrivial solution in F;:; obtains when 

d e t  [ h ]  = 0 (24 1 

Eqwltion (24) represents the dependence 
of wave number "a" or the wavclcngth 
L = 2 ~ / a ,  on the initial stress "S," and we 
shall call it the stability equ a t' ion. 

Microstructure solution 

( a ) Wave propagation: The microstruc- 
ture theory iilcludii~g initial strcss was ap- 
plied to the propagation of transverse waves 
in a pcbriodic laminated mcdium by Perkins 

See Footnote 3. 
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( 1972). Thc following dispersior~ relation 
(in the present notation) was arrived at: 

In deriving this relation, the effect of 
initial stress in both materials of the com- 
posite was taken into account. Also, linear 
rnicrodisplacemcnt fields in both materials 
were considered. 

( b )  Elastic stability: Setting c = 0 in 
(25) yields the stability equation: 

Couple stress solution 

( a )  Wave propugation: Perkins ( 1972) 
cxtended Biot's (1965) incremental defor- 
mation theory to include couple slresscs for 
the, case of plane strain and sought solu- 
tions to the equations of motion in the form 

where V,, is a constant and reprc,sents the 
anlplitudc of the transvcrscl wavc.. This led 
to a dispersion relation, which in the pres- 
cmt notation is 

where K1 is the couple stress coefficient re- 
lating thc couple stress m, acting on a face 
initially parallel to the y-axis to the curva- 
ture (&$/ax) by m, = 4Kl ( a+/ar).  

Equation (28) reprcsents the dispersion 
relation for a homogeneous medium. Note 
that if couple stresses were not taken into 
account, there would be no dispersion for 
the displaccment ficld given by (27).  (28) 
can bc applied to a laminated medium if 
tllc quantities in the equation represent 
''cbf-fcctivc. values" ( Biot 1963 ), i.e., if 

Biot (1%7) proposed an expression for 
the coefficient K1 of the laminated medium 
assuming that the materials are incompres- 
sible. The same procedure is readily adapt- 
able to compressible  material^,^ and the 
following expression obtains: 

By reducing the field equations of the 
microstructure theory to those of the couple 
stress theory and comparing these with the 
ficld equations of the couple stress theory, 
Perkins (1972) deduced the following ex- 
pression for K1 of the laminated medium: 

Both the abovc expressions have been 
used in numerical computations. 

( b )  Elastic Stability: Settinp; c = 0 in 
( 28) gives the stability equation 

Notc again that if couple stresses were not 
considered, the stability equation would he 
independent of the wavelength, for the dis- 
placement field given by (27) .G 

Again, (32) is applicable to a laminated 
medium if the coefficients stand for those 
of the laminated medium. 

"ee, for example, Perkins ( 1972). 
Biot (1963) obtained a stability equation de- 

pendent upon wavelength without considering 
couple stresse~. However, the displacement field 
was different from (27).  He also extended his 
own analysis to include coupIe stresses in (1967). 



PLATYE WAVE PROPAGATION AND 1NTE:RNAL INSTABILITY 315 

Another solution for elastic stability ri. We assume the general form of thcse 

Kiusalaas arid Jaunzcmis ( in press ) pre- relations as follows: 

sc,i~tcd a continuum theory for internal 
buckling of a laminated medium satisfying S, I I . = S .  1 ,  . ( r 1 1 r 2  9 r 3 )  ( 3 7 )  
thv iilcq~~alities 

The ii~crcmental stresses sii may be iden- 

~ ~ h * > >  ~ ~ h ' a n d  hA<< hE3 tified with the differentials of these rela- 
( ) tions : 

( Wc will occasiollally refer to materials 
A and B as the: reinforcement and matrix, 
rc~spectivcly.) Thcy treated the reinforcc- ( 3 8 )  

I ~ I ( , I I ~  as platcs and considcred lincbar micro- 
displacement ficlds in the inatrix. Further- or, (36)  ill ( 3 8 )  
Illorcx, they ilcglccted the energy due to 
initial strain ill t21c iiiatrix as being small 3 a s ; ;  
compared with the prcstrsill i:nergy in the s ; ;  =: 1 [ r, P .  . 

J / I (39 )  
rc>ii~forcement, all assumption justifiable j z i  
1)y the first i ~ l cqua l i t~  abovc.. Their stability 
cciuatioil for the "ailtisyn~inctric" or "shcar" The gcneral form of the stress-strain rela- 
1)uckling mode in our llotatioil is tions lnay be written as 

f h ~ + h ~ ) ~ a ~  ( 3 4 )  Comparing (39)  with (40), we havc 

wlicre p is the strain 11c.fore buckling and a s . .  
B . .  = I'. 2 

is ;1ss111ned to be sn~all, i t . .  p <<I 1. I J  /  a  I‘. I 

THE: INCHEIIENTAL A I O D ~ ~ L I  R, ,  AND Q Now, for a inaterial that is isotropic in 

wllat fullOws, repeated arc no+ initial finitc stmin, we assume the rel;,tions 

to IIL' S U I I ~ I ~ I L ' ~  ovvr U I ~ ~ S S  a ~ummation sign r 7  

\o implies. 
Let the natural stress-free state of a ma- S l l  - P nkk  + 2 G n I 1  ( 4 2 )  

terial ( A  or B )  11c characterizctl by coor- 
l k l l  1 

clinatec X,. Now lct the m,lterial undergo Where a and G are Lame's constants given 
a homogeneous deformation so that a 
g c ~ ~ c r i c  point has coordinates g i ~ ~ c n  by by 

Ail increnlcnt in the r,'s givc:s rise to and E and v have the significance of Young's 

il~crcmc~ital strains modulus and Poisson's ratio, respectively; 
r t , ,  arc thc finitc strain compo~lcilts given by 

e = L 5  
1 1  r l  ( 3 6 )  - a x  k a x k  

I - 1-1 X T  ( 4 3 1  
k=1 1 

I t  i 5  in gcncral possible to express the 
strcsscs S,,  in terms of thc 'strctchcs" Using (35)  in (43) we have 
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1 1 n . . - - ( l -  - 
The modulus Q was derived by Biot 

1 ,  -* ri' ( 441  (1963)as 

Wc now use (44) in (42) so that the S,, 
I  

2 2 

arc, defined in terms of the r,. The resulting Q 7 ( s1 - S22 )  r l  + I-2 ( 50 )  
cxprcssion is u ~ e d  in (41) to get t l ~ c  moduli rf - r; 
BLj.  Four of the moduli rr,levant to plane 
problems are for materials that arc isotropic in finite 

strain. When SI1 is the only nonvanishing 
p + 2 G  II initial stress, by virtue of (48) we reduce 

B l l  = --- ; BIZ= 7 : 2 
( 50) to 

If wc invert (42) so that strains nit are Let US set 
givcn in terms of stresses Sii and use (44) 
for the strains, wc have Sll - - E - - P  

1  I I  
(52) 

- ( I  - ) - Y ( S  
2 r 2  E i i  j j  - s,, )] 

I 
Then (49) and (50) take the form: 

( i * ; f k  I (.46 ) 

We now investigate thc special case when B1l = ( P  + 2 G 1 ( I  + 2 p 1 
SZ2 = S:+:% = 0 and Sl l  + 0. In this casc, 
(46) gives B12 = P ( I  - 2 u p )  

from which wc llavr Note trom (47) that if rl and r2 arc, the 

s11 - I 
same for both materials A and B. then p 

1 - 2 -  - 
E -  

is thc sa~nc  for both materials, and a170 wc 
r: must have v4 = " I ) .  Further, note that p 

( 4  rcprc\cnts the finitc eomprcssivc strain in 
I +  *VS,, = 7 

E r22 the x-direction. Equations (53) with pl opcr 
superscripts to clistinguisl~ between A and 

Su1)stitutiiig (48) in (45) gives B -are the evprcssioil~ to bc usctl in thc 
calcl~lations of' Section 2. 

S 
B,,  = ( t C  + 2 G I ( 1  - 2 2 :  E RESU1,TS An'D DISCUSSION 

Equations (53) for the moduli havcx been s 
B12 = p ( I  + 2 u - - - f l )  uscd in the results of Section 2 and the 

E various dispersion rclatioils and stability 
(' ) cqnations have heel1 numerically solved. 

B2, - p ( i  - 2 % )  
E Thew eqnations, as they appear ill Scction 

2, have not been rcduced to dinlensionless 
S1 1 B22 = ( ~ + 2 G ) ( l +  2v--) forms so that the symmetry in A and B is 
E apparent. Some manipulation will show, 
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howc,vcr, that they can bc rcduccd to rcla- 
tions 11c>twccn the following dinic~nsionless 
c[u;u~titics: 

Thc rcsults given in this section arc in 
terms of the above paramc,tcrs. In what 
follo\vs, Equation (28 ) ,  or ( 28 )?  is to be 
collstrucd as Equation (28)  with K 1  defined 
11y (30)  or (31) .  A similar mca~\iiig holds 
for ( 32 ) ,  and (32),. 

( a )  IVaue propagation: Figurc 3 shows 
crluations (17) ,  ( 2 5 ) ,  (28) and (28)z 
plottcd for certain values of the parameters. 
Tllc curves show that for infinite wave- 
length ( ( 1  = 0 ) ,  all the equations yield the 
skume \?alut: of phase velocity. For long 
\vavc~leugths, the diffcrc,ncc betwccn the 
v;lriol~s thcorics is not apprccinl~lc. For 
s~~ la l l  wavclcngths, Ilowcvcr. t11e ~llicrostruc- 
turc theory gives the best approxi~~lation to 
thc ctlasticity solution. This is because the 
dcformatioli field assmned in the micro- 
strl~cturc solution ~iiost closely approximates 
t lu t  given by thc elasticity solution (see 
Pcrkins 1972). A largc nun11,cr of cnrves 
w c v  obtained for various valucs of the 
p a r a ~ ~ ~ ~ t e r s ,  but t h y  have not Ijccn prc- 
scntcd siilcc Fig. 3 is typical. Howcver, in 
Figs. 3 a-d, the cffcct of changing various 
pararnctcrs on the elasticity solution is 
shown. The otlicr tlicoric~s give' curves that 
fit rclati\re to these as in Fig. 3, b11t they 
Ilavc not 11ccli prcscnted so as to avoid cou- 
fusion ill the figures. 

Sun ct al. (1968) used thc n~icrostructure 
approach for the case of zero i~litial stress, 
i.c,., r ,  = 1; the rcsults p r e sc~ i t~d  here for 

FIG. 3. Phase velocity parameter $ versus wave 
11111nber p;~rarneter f. 

r, = 1 agree generally with their rcsults. 
Figurc 3cl shows the effect of increasing 
initial comprcssivc stress ( decreasing I'l ) 
on the dispersion curve. I t  is seen that in- 
creasing thc cornpressioll decrcascs thc 
phase vcklocity for a given wavc~lcngth (al- 
though for the lllagnitudes of initial stress 
considered hcrc, the change is quite sn~al l ) .  
This agrees with general remarks by  Riot 
( 1940, 1965) rcgarding wave propagation 
in a continuum under initial stress. 

(11) Elastic stability: Figures 4 and 5 
show Equations (24) ,  (26) ,  (32) ,  , ( :32):! 
and (34)  plottrd for various valucs of thc 
para1nctc.r~. The elasticity solutior~ for 
or.* = 0.1, -1 = 10 and 50 yields a pher~ome- 
non quite djstinct from the bellavior for 
other valucs of thc parameters. Attc,mpts 
to identify thcse two phenomci~a with I3iot's 
(1963) "intc.ma1 illstabilities of the sc~cond 
and first kind," respectivcly, led to no sue- 
cc,ss. Notc,, however, that thc approxiniate 
tl.icorics do not exhibit the behaviol- of the 
c.lasticity solutio~l for a.' = 0.1, y = 10 and 
50. In tllv othcr figures, however, it is again 
found that the lnicrostructure theory gives 
the best approxilnation to the elasticity solu- 
tion. This is 11cst appreciated in Fig. 4c. 

Thougll Equation (34)  has been plottcd 
for tlic full rang(% of parameters, it is fully 
realized that it is valicl only when thc in- 
cclualitics (33)  arc: satisfied. Note that 
\vhcn such is the case (Fig. 4a, = 500), 
Eqnntioii (34) almost coiilcides wit11 the 
c~lasticit), solution. I t  should also 1)c noted 



315 H. W. PERKINS, JR. ,  ET AL. 

E q u .  (17 )  

lilc. 38. Phase velocity parametcl- $ versus wave number parameter < for various values of 
layer thickness ratio a.'. 

- E q u .  (17 )  

FIG. 3b. Phase velocity parametel. $ versus wave numl)cr pnralneter ( for various values of the 
Young's modulus ratio r. 
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FIG. 3c. Phase velocity parameter ;L versus wave number parameter 1 for various va1ut.s of the 
t l r~~s i ty  ratio 8. 

L- - Equ. (17 )  

- 
0 1 2 3 4 5 6 

FIG. 3d. Phase velocity parameter + versus climensionless wave number parameter { for various 
v,ll11es of initial strain. 
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1'1(:. 4a. Initial stress parameter 17 versus wave number para1netc.r :C for various Young's n~ocllilus 
I-atios y.  Coml>arison of exact solution Eq. ( 2 4 )  with microstructure solution Eq. ( 2 6 )  and Ki~lsalaas 
a11t1 Jarmzentis solution Eq. (34) .  L a y r  thickness ratio a* = 0.1. 

0 . 6 - ~  

t 

0. z-. 

1:~:. .1L. Initial strcss paran~eter 11 versus wave numbel. parameter 5 for various Young's modulus 
ratios y. Coinpavisoll of exact solutior~ Eq. ( 2 4 )  with microstmct~~re solution Eq. (26 )  and Kil~salaas 
ant1 J~m~izeinis sol~ition Eq. ( 34 ) . L a y u  thickness ratio a" = 0.2. 
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FIG. 3c. Initial stress pal.ameter 1 )  versus wave number parameter ( for various Young's ~nodulus 
ratios y. Comparison of exact soll~tion Eq. (24) with microstructure solution Eq. (26)  and Kiusalaas 
i~ntl Jal~nzcniis solution Eq. ( 3 3 ) .  Laj.er thickness ratio a" = 0.5. 
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FIG. 5;1. Initial stress parameter p trersus wave nrnirl~er paran~eter j. for various Young's niotlulus 
ratio.; y. Co~nparison of exact solution Eq. (24)  with couple-strcss so l~~t ions  Eq. (32) .  Layer thick- 
ncss ratio a t  = 0.1. 
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Frc:. 511. Initial stress parameter p versus wave number parameter { for various Young's n~otlulus 
ratios y. Co~llparison of exact solution :Eq. (24)  with couple-stress solutions Eq. (32) .  Layer thick- 
ness ratio a" = 0.2. 
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1'1~:.  5c. Initial strcs.; parn~iictcr TI versus wave 1in1ii11c:r paaamc,ter < for various Yonng's ~notlnlus 
ratio\ y. Conipa~.isoll of exact so l~~t ion ISq. ( 2 4 )  with col~l>le-stress solutions Eq. (32) .  Li1yc.r thick- 
ncss ratio cu ' = 0.5. 
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that wllilc all other sol~~tions coincide at folding. Proc. ROY. Soc., Series A. 298: 
n = 0, Equation (34)  deviatcs considerably 
whcn ( y a  ' )  is small. This is probably duc 
to the, fact that it is not proper to neglect 
thc 1xcstrain energy in the matrix when 
( y c r " )  is small. 

l'hc authors arc grateful to the U.S. 
National Seicncc, Foundation for support 
of this work through Grants GI(-938 and 
GK-3810. 
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