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ABSTRACT

We conducted three-point bending tests of specimens with span/depth ratios larger than those used
in the major standards, and examined the influence of deflection on the measurement of bending
properties. The specimens were taken from Western hemlock (Tsuga heterophylla Sarg.) and buna
(Japanese beech, Fagus crenata Endl.). Bending tests were conducted with the specimens whose span/
depth ratios varied from 20 to 140. Bending stress was calculated by the equation based on elementary
bending theory and that in which the influence of deflection is taken into account, whereas the strain
at the center of the bottom plane was obtained from the deflection and strain gage output. The bending
stress-strain relations obtained from the different procedures were compared with each other, and the
influence of deflection on the measurement of bending properties—Young’s modulus, proportional
limit stress, and bending strength—were examined. In addition to the bending tests, simple numerical
analyses considering the material nonlinearity were conducted, and the results were compared with
those obtained from the bending tests. We found that the deflection had a small influence on the
measurement of Young’s modulus and proportional limit stress. In contrast, the bending strength
obtained by elementary bending theory decreased when the span/depth ratio exceeded 100, whereas
that given by the equation considering the deflection was stable throughout the span/depth ratio range
examined here. The stress-strain relation given by the numerical analysis showed a rather good ap-
proximation of the one obtained from the bending test.
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INTRODUCTION

For the effective utilization of wood re-
sources, the demand for products fabricated by
bonding thin wooden materials such as ply-
wood and laminated veneer lumber (LVL)
needs to be markedly increased. To develop a
design methodology for these products, it is
important to know the mechanical properties
of materials made of these products, for which
the bending test is one of the most effective

methods. When bending a thin specimen, fail-
ure does not occur in the small deflection con-
dition, and so elementary bending theory,
which is usually used for evaluating bending
properties, is not applicable because of the fi-
nite deformation and the change in the direc-
tion of reaction force at the supporting point.
Although the span/depth ratio standardized in
the major standards is specified not to be in-
fluenced by the deflection (ASTM D143-94,
1997; ISO 3349-75, 1975; JIS Z2101-94,
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TABLE 1. Crosshead speed corresponding to each test
span.

Test span (mm) Crosshead speed (mm/min)

100
200
300
400
500
600
700

1.0
5.0

10
20
40
60
80

1994), bending properties of specimens with
large span/depth ratio cannot be obtained
properly without considering the influence of
deflection. Nevertheless, there have been few
studies on the influence of deflection on mea-
suring the bending properties of wood.

In this research, we conducted three-point
bending tests (center point load application)
using specimens with span/depth ratios larger
than the standardized ones, and examined the
influence of deflection on the measurement of
Young’s modulus, proportional limit stress,
and bending strength. In addition to the bend-
ing tests, the influence of deflection was ex-
amined by numerical analyses taking into ac-
count the material nonlinearity.

EXPERIMENT

Materials

Buna (a kind of Japanese beech, Fagus
crenata Endl.) and western hemlock (Tsuga
heterophylla Sarg.) were used for the speci-
mens. The density of beech was 0.65 g/cm3,
whereas that of hemlock was 0.45 g/cm3.
Specimens were cut from the same lumber,
and were conditioned at 208C and 65% rela-
tive humidity before and during the tests. The
dimensions of cross section were 20 and 5 mm
in the radial and tangential directions, respec-
tively, and the specimens were tested in the
flatwise orientation, whereas the length in the
longitudinal direction was 150 mm longer than
the span length mentioned below. Five were
used for each testing condition.

Bending tests

Three-point bending tests were undertaken
by varying the span lengths, and Young’s
modulus, proportional limit stress, and bend-
ing strength corresponding to the span/depth
ratio were obtained. Since the span length (l )
varied from 100 to 700 mm at intervals of 100
mm, the span/depth ratio varied from 20 to
140, which is larger than those used in the
major standards; 14 in the ASTM and JIS, and
12–16 in the ISO (ASTM D143-94, 1997; ISO
3349-75, 1975; JIS Z2101-94, 1994). The ra-
dius of the supporting point was 10 mm,
whereas that of the loading nose was 15 mm.
The vertical load was applied to a longitudi-
nal-radial plane of the specimen. The constant
load rates used are shown in Table 1 and were
determined such that the strain rate at the cen-
ter did not exceed 0.005/min so that specimen
broke after approximately 5 min. The strain
gage (Tokyo Sokki FLA-2-11, gage length 5
2 mm) was bonded on the longitudinal-radial
plane opposite to the loading points. The load
P, loading period, and strain at the center «g

were recorded by a data log (Tokyo Sokki
TDS-303) at intervals of 5 s. The deflection d
at the midspan was calculated by multiplying
the crosshead speed by the instantaneous time.

Bending stress was calculated from the
equation based on elementary bending theory
and that in which the deflection is taken into
account. The bending stress derived from el-
ementary bending theory is defined as seb and
is represented as follows:

3Pl
s 5 (1)eb 22wh

where w and h are the width and height of
specimen, respectively. In contrast, there are
several equations in which the deflection is
taken into account (Uemura et al. 1978; Uem-
ura 1981). In this research, we examined the
equation standardized in the JIS (JIS K7074-
88, 1988), which is defined as sld and given
by

23Pl d
s 5 1 1 4 (2)ld 2 1 2[ ]2wh l
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FIG. 1. Diagram of static bending tests.

FIG. 2. Stress-strain relation and definition of param-
eters.

When d is obtained from the strain gage output
«g, it is derived as follows:

2l
d 5 « (3)g6h

Strain in the longitudinal direction was direct-
ly obtained from the strain gage output «g and
from the loading point displacement. The
strain obtained from the loading point dis-
placement is defined as «d1 and is derived by
elementary bending theory as follows:

6h
« 5 d (4)d1 2l

By the stress seb and sld and strain «d1 and «g,
four stress-strain relations seb-«d1, seb-«g, sld-
«d1, and sld-«g were obtained.

The bending strength smax was derived from
the maximum stress obtained from Eqs. (1)
and (2). Young’s modulus was calculated by
regressing the stress-strain relation into Ram-
berg-Osgood’s function represented as follows
(Ramberg and Osgood 1943):

n
s s

« 5 1 b 1 c (5)1 2E smax

where E is Young’s modulus, b and n are the
material parameters, and c is the offset strain.
Figure 2 shows the diagram of stress-strain re-
lation. The proportional limit stress spl was de-
termined from the intersection point of Eq. (5)
and the straight line with the inclination of 3%
reduced Young’s modulus. The equation with
the reduced modulus is represented as:

s
« 5 1 c (6)

0.97E

From Eqs. (5) and (6), spl is derived as:
1/(n21)n3smaxs 5 (7)pl 1 297Eb

Since four stress-strain relations were obtained
for one test specimen, four values of Young’s
modulus and proportional limit stress were de-
termined. Three bending strengths were deter-
mined since the bending strengths obtained
from seb-«d1 and seb-«g coincided with each
other.

Numerical analyses considering the material
nonlinearity

The influence of deflection was analyzed by
a simple numerical technique. Considering the
symmetry of the three-point loading test, the
analysis can be conducted as a cantilever beam
subjected to an end load. The length of the
beam, which corresponds to a half span, is
uniformly divided into several finite elements.
As shown in Fig. 3, the reaction force at the
support, N, is supposed to be vertically applied
at the end of the cantilever. When the angle
between the tangential line and x-axis is de-
fined by u, the bending equation correspond-
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FIG. 3. Bending model used for the numerical analy-
sis.

TABLE 2. Parameters determining the nonlinear stress-
strain relation.

Species n b (3 1023) smax (MPa)

Beech
Western hemlock

7.2
9.6

8.2
5.1

100
110

ing to each element is represented as follows:

Du P
E9I 5 2M 5 2 (x 1 y tan f) (8)

Dx 2

where M is the bending moment, E9 is the
tangent modulus of the element, I is the sec-
ondary moment of inertia of the beam, P is
the applied load, and f is the slope angle at
the supporting point. The definition of tangent
modulus is shown in Fig. 2. From this equa-
tion, we can obtain the following relation:

P9
Du 5 2 (x 1 y tan f)Dx (9)

2E9I

The angle u can be determined by summing
up Du from x 5 0 to x 5 x. The slope of the
deflection curve Dy/Dx is derived by u as:

Dy
5 tan u (10)

Dx

From this equation, the vertical displacement
y is calculated by summing up Dx tan u from
x 5 0 to x 5 x. The angle u at the end of the
beam corresponds to f used in the next stage.

The longitudinal strain « can be obtained
from Eq. (8) as follows:

Mh Ph(x 1 y tan f)
« 5 5 (11)

2E9I 4E9I

The strain increment D« is calculated by sub-
tracting the strain at the previous stage from
the temporary one, and the stress increment
Ds is calculated as:

Ds 5 E9D« (12)

The bending stress of each element is cal-
culated using the two different methods. In the
one method, the stress was updated by adding
Ds of Eq. (12) to that in the previous stage.
In the other method, the stress was obtained
by substituting the applied load P into Eq. (1).
Using Ramberg-Osgood’s function, which is
written as Eq. (5), the tangent modulus E9 is
converted by the updated stress as follows:

21n21ds 1 nb s
E9 5 5 1 (13)1 2[ ]d« E s smax max

From this procedure, the deflection curve and
the stress-strain relation corresponding to each
element are updated in every stage.

In the calculation, the beam was divided
into 20 elements along the long axis. The di-
mensions of the testing model coincided with
those in the real bending tests. In the first
stage, the tangent modulus of each element
was uniformly given by Young’s modulus.
Young’s modulus and bending strength were
derived from the experimental data, whereas
the parameters n, b, and smax used for Ram-
berg-Osgood’s function were determined from
the data of the specimens with the span/depth
ratio of 20. Table 2 shows these parameters
corresponding to each species. To simplify the
calculation, the change of loading direction at
the support was considered, and the influence
of frictional force and radii of loading and
supporting points were ignored. The calcula-
tion was repeated until the bending stress at
the loading point attained 150 MPa.

RESULTS AND DISCUSSION

Bending tests

In obtaining the strain from the deflection,
we used Eq. (4) based on elementary bending
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FIG. 4. Comparisons of the strains obtained from different procedures. Strains «g, «d1, and «d2 are obtained from
the strain gage output, equation based on elementary bending theory, and equation considering the geometrical non-
linearity, respectively. Solid and dashed lines correspond to «d1 and «d2, respectively.

theory. Nevertheless, the influence of geomet-
rical nonlinearity on the strain can be taken
into account as well as that on the bending
stress. As for the relation between the deflec-
tion and the strain at the midspan, Uemura and
colleagues derived the correct equation (Uem-
ura et al. 1978). The corrected strain, which is
defined as «d2, is represented as follows:

2 46h d d
« 5 d 1 2 12.34 1 161.6d2 2 1 2 1 2[ ]l l l

2
d

3 1 1 4 (14)1 2[ ]l

Figure 4 shows the strain «d1 and «d2 cor-
responding to the strain gage output «g. When
the span/depth ratio was in the lower test
range, the values of «d1 and «d2 coincided well
with that of «g throughout the strain range.
When the span/depth ratio was large, however,
«d1 and «d2 tended to be larger than «g in the
large strain range. In particular, the difference
between the values of «d2 and «g was quite
marked when «g was larger than 0.01 in spite
of the correction. Although «d1 also tended to
be larger than «g, the difference was smaller
than that between «d2 and «g. Therefore, for the
relation between the deflection and strain at

the midspan, some corrected equation would
be more appropriate than Eqs. (4) and (14). In
the succeeding discussion, however, we used
Eq. (4) for the strain given by the deflection.

Figure 5 shows the typical seb-«d1 and sld-
«d1 relations obtained from the different span/
depth ratios. At lower span/depth ratios, these
relations were similar to each other. In con-
trast, the discrepancy between the relations
was marked in the large strain region when the
span/depth ratio was large. This tendency was
applicable to the seb-«g and sld-«g relations.

Figure 6 shows the calculated Young’s mod-
ulus corresponding to the span/depth ratios
tested. This figure indicates that the Young’s
modulus obtained by using the strain gage was
larger than that calculated from the vertical
displacement using test machine speed and
time. When comparing the moduli obtained
from the seb-«d1 and sld-«d1 relations, however,
the difference was not significant at any of the
span/depth ratios examined here. This tenden-
cy was found in the moduli obtained from the
seb-«g and sld-«g relations.

Figure 7 shows the proportional limit stress
corresponding to the test span/depth ratios.
The proportional limit stress obtained by using
the strain gage output was smaller than that
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FIG. 5. Typical stress-strain relations obtained by the bending tests and numerical analyses. The solid line and black
circles are the experimental and numerical results, respectively, without considering the influence of deflection, whereas
the dashed line and white circles are those in which the influence of deflection is taken into account.

measured by vertical displacement when the
span/depth ratio range was smaller than 100,
whereas this tendency was not significant
when the span/depth ratio exceeded 100. We
initially thought that the proportional limit
stress might be influenced by the deflection
because it is determined in the deflection range
larger than that used for determining Young’s
modulus. Nevertheless, the statistical analysis
revealed that the influence of deflection was
not significant over the entire range of span/
depth ratios.

Figure 8 shows the bending strength corre-
sponding to the test span/depth ratios. When
the bending stress is derived by elementary
bending theory, it is determined independently
of the strain measurement. Thus, the influence
of the strain measurement on the bending
strength exists when the deflection is taken
into account. In contrast to the properties men-
tioned above, the bending strength was not
markedly influenced by the measurement of
strain at any of the span/depth ratios, whereas
it was influenced by the deflection. When the
strength was calculated by elementary bending
theory, it tended to decrease as the span/depth
ratio increased. In contrast, the strength cal-
culated by the equation in which the deflection

is taken into account was stable and indepen-
dent of the span/depth ratio. Statistical analy-
sis revealed that the decrease of strength ob-
tained by elementary bending theory was
marked when the span/depth ratio exceeded
100. Hence, the equation considering the de-
flection is preferable when the specimen has a
span/depth ratio larger than 100. In previous
works, it was shown that the span/depth ratio
should be larger than 20 for reducing the ef-
fect of shearing force (Yoshihara and Matsu-
moto 1999; Yoshihara et al. in press). There-
fore, the span/depth ratio range should be re-
stricted to between 20 and 100 when the bend-
ing properties are measured based on
elementary bending theory. Otherwise, the
equation considering the deflection should be
used for measuring the bending strength.

Numerical analyses considering
the material nonlinearity

Figure 5 also shows the stress-strain rela-
tions at the loading point obtained from the
numerical analyses. When the influence of de-
flection was taken into account, the bending
stress was larger than that obtained from ele-
mentary bending theory because the additional
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FIG. 6. Young’s modulus corresponding to the span/
depth ratio. Columns and horizontal bars are the average
and standard deviations, respectively.

FIG. 7. Proportional limit stress corresponding to the
span/depth ratio. See Fig. 6 for further information.

bending moment caused by the deflection,
which is represented by the second term in the
parentheses of Eq. (9), was marked with in-
creasing deflection. This additional moment
was emphasized when the span/depth ratio
was large. The numerical calculations give a
rather good approximation of the correspond-
ing stress-strain relations experimentally ob-
tained whether the deflection was taken into
account or not. Although several simplifica-
tions were introduced, the numerical technique
adopted here was effective in predicting the
bending behavior.

CONCLUSIONS

Using 20- 3 5-mm specimens of western
hemlock and beech, we examined the influ-
ence of large deflection on the measurement
of flatwise bending properties, and obtained
the following results:

(1) When the deflection is quite large, the
strain at midspan that is calculated from
the deflection shows a discrepancy from
that measured by the strain gage because
the geometrical nonlinearity is significant.
Thus it is difficult to estimate the strain at
midspan from the deflection.

(2) Deflection had little influence on the mea-
surement of Young’s modulus and propor-
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FIG. 8. Bending strength corresponding to the span/
depth ratio.

tional limit stress. In contrast, the bending
strength obtained by elementary bending
theory decreased when the span/depth ra-
tio exceeded 100, whereas that given by
the equation considering the deflection
was stable throughout the span/depth ratio
range examined here.

(3) In using elementary bending theory for

determining the bending properties, the
span/depth ratio should be restricted
smaller than 100. Otherwise, the equation
considering the deflection should be used
for measuring the bending strength.

(4) The bending behavior including the influ-
ence of large deflection could be well ap-
proximated by the simple numerical anal-
ysis considering the material nonlinearity.
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