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ABSTRACT 

In this paper, we consider the fatigue strength of wood structural members. That is, we develop a 
mathematical model for time-dependent strength under sinusoidal load. This work extends the model 
for time-dependent strength under constant load and ramp load derived previously by two of the 
authors. It is based on the statistical theory of the absolute reaction rate in a version favorably reviewed 
in the literature. Under the isothermal condition, the model predicts that the time at fracture is 
independent of stress frequency. The need to evaluate experimentally some of the model parameters 
that may depend on stress frequency indirectly through temperature changes is discussed. 

Keywords: Absolute reaction rate, bending strength, creep rupture, Douglas-fir, duration of load, 
fatigue, frequency, sinusoidal load, strength, temperature, wood. 

NOMENCLATURE 

Activation energy (J/mol) 
Fraction of unbroken bonds 
Modified Bessel function of 
kind, of order zero 
Rate function (1 /sec) 
Boltzmann's constant (J/K) 
Gas constant (J/mol.K) 
Absolute temperature (K) 
Lifetime(s) 

Y 
the 1st 

6 
(r * 
Q 

Stress coefficient in process of ruptur- 
ing ( 1 /MPa) 
Stress coefficient in process of reform- 
ing ( 1 /MPa) 
Volume of moving element (m3) 
Applied stress (MPa) 
Average stress per bond (MPa) 
Circular frequency; stress frequency 
(1 /sec) 
Frequency of motion (1 /set) 

a Dimensionless parameter Subscripts 

b Bond rupture 
c Constant load; mean stress 
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INTRODUCTION 

Wood structural members exhibit time-de- 
pendent rupture behavior. The design of these 
members requires an appropriate considera- 
tion of the effect of load duration. The esti- 
mation of load-duration effects is usually ob- 
tained from mathematical models whose 
parameters were determined from long-term 
test data. The tests may employ either constant 
load or ramp load, in which the applied load 
increases linearly with time. For the same fail- 
ure load, the lifetime under ramp load always 
exceeds the lifetime under constant load. The 
required test times can extend from a fraction 
of an hour to 10 yr or more. Because there are 
many other loading conditions of practical in- 
terest, we investigated how the results from 
these tests can be applied to the design of wood 
structural members under other loadings. 

In the past, fatigue in wood was recognized 
in aircraft design; in recent years, fatigue has 
been a factor in the design of wind turbine 
generators (Tsai and Ansell 1990). However, 
mathematical modeling of fatigue and fatigue 
test data for wood are limited in the literature. 
In this study, we develop a mathematical mod- 
el for the time-dependent strength of wood 
structural members under sinusoidal load. Our 
model is an extension ofthe model for constant 
load and ramp load (Liu and Schaffer 1991) 
that is based on the theory of reaction rate for 
the fracture of solids originally proposed by 
Tobolsky and Eyring (1943). The physical pa- 
rameters are the same. When we equate the 
sum of the applied mean stress and a function 
ofthe sinusoidal stress amplitude with the stress 
caused by constant load, we find that the mod- 
els for the two loading conditions are identical 
in form. 

Tobolsky and Eyring (1943) proposed that 
the breaking of polymeric threads under load 
is due to the slipping of bonds at a rate that is 
dependent on both stress and temperature. 
Their rupture rate equation was used to show 
that constants obtained from creep tests ofcer- 
tain polymerics can successfully predict life- 
times, not only for creep tests but also for con- 

stant strain-rate tests, over wide ranges of 
stress-time history and temperature (Graham 
et al. 1969). 

A reaction rate model of the rupture of poly- 
meric filaments subjected to constant load, 
ramp load, and sinusoidal load was derived by 
Coleman (1 956). Making use of the observed 
phenomenon that the elongation at break is 
relatively independent of the rate of load, 
Coleman derived a general superposition prin- 
ciple for the calculation of the time to break a 
filament by creep failure under an arbitrary 
loading history. In Coleman's model, the vari- 
able of distortion appears in place of the num- 
ber of unbroken bonds as applied by Tobolsky 
and Eyring (1 943). 

Hsiao and Ting (1 966) and Hsiao et al. (1 968) 
chose to employ a more general model than 
that by Tobolsky and Eyring (1943). Hsiao, 
Ting, and coworkers used a different set of 
constants for frequency of motion and stress 
coefficient for bond fracture and bond refor- 
mation in the reaction rate theory. They sug- 
gested that, under small loads, the reformation 
processes may be responsible for the frequently 
observed nonlinearity of the relationship be- 
tween the applied load and the logarithm of 
time-to-fracture. Their expression for the rate 
of bond fracture, after identification of con- 
stants, is identical to that of Tobolsky and Eyr- 
ing (1943). Hsiao (1966) applied the model to 
estimate the fracture time of solids under con- 
stant load. In studying the effect oftemperature 
on the strength of wood, Schaffer (1973) used 
the same mode1 (Hsiao et al. 1968) for constant 
load and derived a new model for ramp load. 

Coleman (1956) developed a model based 
on distortion as the basic mechanism of bond 
rupture and applied it to sinusoidal load. Hen- 
derson et al. (1970) reviewed the literature of 
the application of the theory of reaction rate 
to the fracture of solids. They found that the 
evidence better supports slipping than distor- 
tion as the basic mechanism of bond rupture 
leading to fracture of certain polymer systems. 
Therefore, we applied the model that uses slip- 
ping as the basic mechanism of bond rupture 
to the same load considered by Coleman, 
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namely sinusoidal. It will be shown here that 
the resulting models are functionally identical. 

The models by Hsiao (1966) for constant 
load and Schaffer (1973) for ramp load were 
extended by Liu and Schaffer (199 1 )  to analyze 
the nonlinear behaviors between the applied 
stress and the logarithm of time-to-fracture as 
observed in test data of wood and other solids. 
The present study further extends that work 
to a superposition of constant load and sinu- 
soidal load. 

BASIC EQUATIONS 

The time-dependent nature of solids can be 
formulated using the statistical theory of the 
absolute reaction rate for a given orientation 
of the constituent elements or bonds with re- 
spect to the direction of applied stress. Let f 
be the fraction of unbroken bonds and a func- 
tion of orientation and time. The rate of change 
o f f  is given as follows (Hsiao et al. 1968): 

in which 

is the rate of reformation of broken bonds; 

is the rate of rupturing of unbroken bonds; w, 
and w, are respectively the frequencies of the 
jump motion of the bonds with respect to 
forming and breaking processes; E is the ac- 
tivation energy; R the universal gas constant; 
T the absolute temperature; y and p are stress 
coefficients that modify the energy barrier as 
a consequence of the applied stress in the di- 
rection of each element, and $(t) is a stress 
function that may be interpreted as the average 
stress on the unbroken bonds. For a complete- 
ly oriented system, if the applied stress is a in 
the direction of the bonds, then 

and f is independent of the system orientation. 

For high values of stress, K, << K,. To a 
first approximation, K, in Eq. (1) can often be 
ignored (Hsiao 1966; Henderson et al. 1970; 
Schaffer 1973; Hansen and Baker-Jarvis 1990; 
Kozin and Bogdanoff 1990). The omission of 
K, can also be justified by the fact that until 
failure is imminent, f is nearly one. 

From Eq. (1) with K, = 0 and Eqs. (3) and 
(4), we have 

The solution of Eq. ( 5 )  follows. 

METHOD OF SOLUTION 

Consider a sinusoidal stress, 

in which uc is the constant mean stress, a, is 
the amplitude of the cyclic stress, Q is the cir- 
cular frequency, and a, > a,. 

From Eqs. ( 5 )  and (6), we obtain 

in which the initial value o f f  is equal to 1 by 
definition, and f, is the value of f a t  time t, 
when failure is imminent. Between t, and the 
time t when failure occurs, there is a final cas- 
cade of bond ruptures. We shall treat t, as being 
essentially t, the time at failure. Because f is 
essentially equal to 1 until failure is imminent, 
it is a good approximation to set f = 1 under 
the integral sign on the right side of Eq. (7). 
The phenomenon of a final cascade was borne 
out by the fatigue tests of wind turbine blades 
by Tsai and Ansel! (1990), who observed no 
reduction in strength until the final stage of 
damage development. 

Let a - pa,. Then, 

In f, = -w,exp - - + pa, Q(a) (8) LR:. 1 
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in which we can put Eq. (14) in the following form 

Q(a) = l e x p [ a  sin Rr] dr. (9) 

Let x ..- R r  and write 

The integrand of Q(a) is periodic, with period 
2a. If we measure time in whole cycles, then 
9t = 2an where n is the number of whole cy- 
cles. Therefore, 

,(a)= $ J 2 T n  expla sin XI dx 

= 1 12r expIa sin XI dx n 
2 r  

= f expfa sin XI dx 
2a 

in which I,(a) is the modified Bessel function 
of the first kind, of order zero (Rainville 1960). 

Hence we have from Eqs. (8) and (1 1) 

In - = obexp - - + pa, tIo(pa,) (12) (1) [R: I 

For a, = 0, Io(0) = I ,  and Eq. (14) reduces to 
the same form as the constant load case. We 
note Eq. (1 4) is considerably simpler than the 
fatigue life expressed in terms of an integral 
derived by Moghe (1971) and applied by Pai 
et al. (1 99 1) for the same loading condition in 
Eq. (6). 

If we write 

in which fs is to be determined from cyclic 
fatigue tests to be consistent with Eq. (14). 

Note that Eq. (1 4) does not contain the stress 
frequency 9. That is, according to the theory 
in this study, the time at fracture is indepen- 
dent of stress frequency. This contradicts the 
usual view that fatigue life can be measured in 
cycles (Coleman and Knox 1957). 

MODEL CORRELATION 

Because there are few existing cyclic fatigue 
test data that can be used to correlate with the 
model in Eq. (14), we used existing data from 
constant load tests to correlate with the fol- 
lowing model developed by Liu and Schaffer 
(1 99 1): 

in which a, is the constant stress at fracture; f, 
is the value of f when fracture is imminent, 
and the other parameters are as in Eq. (1 4) and 
are independent of loading conditions. 

According to Gerhards (1 977), the test data 
on bending strength of small, clear Douglas- 
fir beams under constant load reported by 
Wood (1 95 1) are more comprehensive than 
any of those reported by others and were an- 
alyzed by most duration-of-load researchers of 
wood structural members. Although the re- 
action rate theory was derived for tensile 
strength of solids (Tobolsky and Eyring 1943; 
Coleman 1956; Zhurkov 1965; Hsiao et al. 
1968), the theory was shown to be applicable 
for bending strength of wood (Caulfield 1985; 
Liu and Schaffer 1991). In air-dry wood of 
structural dimensions, final bending failure is 
always in the tension side (Tsai and Ansell 
1990). 

The data by Wood (1951) covering a time 
span from 0.1 h to 10 yr are shown in Fig. 1. 
Although the specimens are of clear wood, 
the data scatter is seen to be much more ex- 
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cessive than those of other materials reported 
by Zhurkov (1 965). However, Wood's data are 
usually represented by the following equation 
that shows a linear relationship between 
strength ratio and the logarithm of time-to- 
fracture. 

in which a, is the short-term ultimate strength 
of Douglas-fir, and t is in seconds. 

For stress to vary linearly with the logarithm 
of time t, we may set In ln(l/f,) = 0 in Eq. (1 7), 
as suggested by Hsiao (1966), so that f, = l/e 
= 0.3679. From the literature, we also have 
the following values for the parameters in Eq. 
(17): E = 1.73 x lo5 J/mol and R = 8.314 
J/mol K (Caulfield 1985); T = 300 K (Clouser 
1959), and a, = 53.1 MPa (Liska 1950). With 
these data and by comparing Eq. (1 7) with Eq. 
(18), we obtain p = 0.6885 MPa-I and w, = 

1.6470 x 1012 sec-I. 
The value of w, so obtained is of the same 

order of magnitude as the values obtained for 
silver chloride, aluminum, and polymethyl 
methacrylate (Zhurkov 1965). 

RESULTS AND DISCUSSION 

With the parameter values determined, we 
can proceed to solve Eq. (14). We set In ln(l/ 
f,) = 0 as we did in the constant load case, 
although we could retain it as another param- 
eter to fit our model to cyclic fatigue test data. 
When we set f, = l/e [i.e., In In (l/f,) = 01, we 
note that our Eq. (14) agrees in form with the 
model obtained by Coleman (1956). Cole- 
man's model has the form 

in which t(a,, a,) is the fatigue lifetime corre- 
sponding to a mean stress a, and a stress am- 
plitude a,, 6 is the volume of the moving el- 
ement or force center (defined as the product 
of the effective cross section area per force cen- 
ter and the separation between the positions 

FIG. 1 .  Relation of strength to time of loading (Wood 
195 I), based on constant load bending tests of clear Doug- 
las-fir. 

of minimum potential of mean force), k is 
Boltzmann's constant, and T is the absolute 
temperature. 

The resulting models agree exactly if we 
identify Coleman's 6/2kT with our stress co- 
efficient, p. In that case, we obtain 6 = 5.70 x 
lo-*' m3. This agrees closely with the estimate 
of 6 = 5.6 x 1 0-27 m3 obtained by Caulfield 
(1 985) using Douglas-fir data of Youngs and 
Hilbrand (1963). Because both 6 and /3 are un- 
known microscale parameters and must be in- 
ferred by fitting to macroscopic data, the two 
models are functionally identical. The values 
for each of the other parameters in Eq. (14) 
are assigned as follows: 

With these input data, results from Eq. (1 4) 
are shown in Fig. 2. The nonlinear portions of 
the curves for small stress amplitude ratio val- 
ues are due to the characteristics of the Bessel 
function. The horizontal distances between any 
two curves are constant. For comparison pur- 
poses, we also show in Fig. 2 results from Eq. 
(1 7) with a, replaced by a, + a,. Clearly, the 
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- Eq. (14) and Coleman (1956) 
. . . . . . . 

FIG. 2. Stress amplitude ratio, uo/g,, versus fatigue life 
in seconds. In this figurc, u, is the mean stress, and the 
static ultimate strength, u,, has been taken equal to 53.1 
MPa. 

lifetime resulting from a mean stress, a,, plus 
a sinusoidal stress, a,, is longer than that re- 
sulting from a static stress equal to a, + a,, 
and shorter than that resulting from a static 
stress equal to a,. 

However, results in Fig. 2 are based on the 
assumption that f, = f, = I/e to be consistent 
with Coleman's model, Eq. (1 9). These results 
are not in agreement with the cyclic fatigue 
data of rayon reported by Moghe and Skolnik 
(1986), showing that the curve for cyclic fa- 
tigue should fall below that for static stress. In 
any case, f, in Eq. (14) and f, in Eq. (17) need 
not be numerically equal. They can take dif- 
ferent values between 1 and 0 because of the 
catastrophic rapidity with which failure oc- 
curs. If we replace t in Eq. (14) by mt, with m 
= 1 corresponding to In In(l/f,) = 0, and keep 
the other terms unchanged we obtain 

The relation between m and f, is presented in 
Fig. 3. By choosing m < 1, we can describe 
the same trend as observed by Moghe and 
Skolnik (1 986). Equation (1 4) can fit any fa- 
tigue failure data corresponding to the loading 
condition in Eq. ( 6 )  by adjusting the values for 
f,. This flexibility of Eq. (14) makes it more 

FIG. 3. Value o f f ,  that results from choice o f  m.  

attractive than other similar models in the lit- 
erature. 

Even if the lifetime resulting from a mean 
stress, a,, and a sinusoidal stress, a,, is longer 
than that resulting from a static stress equal to 
a, + a,, the failure mode for the former may 
be more definite than that for the latter as re- 
ported by Burton (1 968) on metals. A less def- 
inite failure mode may account for some of 
the data scatter in Fig. 1. 

Note that the volume of the moving element 
6 in Eq. (19) is the same as the constant coef- 
ficient modifying the applied stress in Zhurkov 
(1 965) and is effectively equivalent to the stress 
coefficient p in Eq. (14) or Eq. (1 6). According 
to Zhurkov (1 965), that coefficient is very sen- 
sitive to various structural changes in solids, 
and a precise physical meaning of it is difficult 
to formulate. Regel and Leksovsky (1 967) em- 
phasized that the condition of loading should 
definitely affect this structure-sensitive coeffi- 
cient. Kozin and Bogdanoff (1 990) concluded 
that p must be estimated from test data and 
may vary for different loading conditions. We 
found from solving Eq. (19) that seems to 
be dependent on temperature as suggested by 
Schaffer (1 973). To evaluate all the parameters 
in Eq. (14) with acceptable accuracy, an ex- 
tensive testing program is required, using 
methods such as those described by Tsai and 
Ansell (1 990) and Bonfield and Ansell (1 99 1). 

Although a fatigue life independent of stress 
frequency seems to be an innate feature of re- 
action rate theory, it is not physically indis- 
putable. It is well known that frequency of 
loading will increase the specimen temperature 
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in a cyclic fatigue test (Regel and Leksovsky 
1967; Tsai and Ansell 1990; Kozin and Bog- 
danoff 1990) and a temperature increase will 
result in a decrease in lifetime (Schaffer 1973, 
1982). Therefore, temperature should be a 
function of stress frequency, unless the stress 
frequency is low and the temperature increase 
is small. In deriving Eqs. (14) and (19), the 
isothermal condition was assumed to exist, 
leading to a lifetime that is independent of 
stress frequency. If, in Eq. (7), temperature is 
expressed as a function of stress frequency, the 
mathematical developments that follow would 
be much more complex. However, the actual 
physical phenomenon can only become clear 
when the functional relationship between tem- 
perature and stress cycle is established. 

CONCLUSIONS 

We applied the statistical theory of the ab- 
solute reaction rate to describe the fatigue life 
of wood structural members under sinusoidal 
load. The parameters in the derived mathe- 
matical model are evaluated from a corre- 
sponding model for constant load, for which 
test data of Douglas-fir beams under constant 
bending load are available. The models for 
sinusoidal load and constant load are of the 
same mathematical form. 

Our results predict that the fatigue life under 
cyclic bending load is independent of stress 
frequency for a polymeric material such as 
wood. It depends only on the mean stress and 
a function of the stress amplitude of the ap- 
plied load if the isothermal condition is as- 
sumed to exist. This agrees with the earlier 
predictions of Coleman (1956), whose model 
is functionally identical to ours, and those of 
Moghe and Skolnik (1 986), whose model shows 
independence of frequency at frequencies 
greater than 1 Hz. 
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