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Abstract. The importance of lumber yield on the financial success of secondary solid wood products
manufacturers has been known for quite some time. Various efforts have been undertaken to improve
yield, such as inclusion of character marks (defects) in parts, “cookie-cutting” of boards, improved
optimization algorithms, or improved cut-up technologies. For a variety of reasons, the relationship
between cutting-bill requirements and lumber yield has attracted limited attention. This is Part I of a
2-part examination of this relationship.

The standardized and simplified Buehlmann cutting bill and the Forest Service’s Romi-Rip lumber
cut-up simulator were used in this study. An orthogonal, 22°~!! fractional-factorial design of resolution
V was used to determine the influence of different part sizes on lumber yield. All 20 part sizes contained
in the cutting bill and 113 of a total of 190 unique secondary interactions were found to be significant
variables in explaining the variability in observed yield. Parameter estimates for the part sizes and the
secondary interactions were used to specify the average yield contribution of each variable. Parts 445 mm
long and 64 mm wide were found to have the most positive influence on yield. Parts smaller than 445 by
64 mm (such as, for example 254 by 64 mm) had a less pronounced positive yield effect because their
quantity requirement is relatively small in an average cutting bill. Thus, the quantity required is obtained
quickly during the cut-up process. Parts with size 1842 by 108 mm, on the other hand, had the most
negative influence on high yield. However, as further analysis showed, not only the individual parts
required by a cutting bill, but also their interaction determines yield. In general, it was found that by
adding a sufficiently large number of smaller parts to a cutting bill that required large parts, high levels
of yield can be achieved.
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INTRODUCTION

Rough mills have limited cutting and sorting ca-
pabilities. Therefore, they can cut only a limited
number of different part sizes at any given time.
The ability to select this limited number of dif-
ferent part sizes to be cut concurrently out of the
larger pool of needed sizes, while achieving high
yield is of crucial importance to rough mills.
Thus, obtaining the highest possible yield from a
given set of lumber is the central challenge for
every rough mill operation (Buehlmann et al
1998; Buehlmann et al 2003; Wiedenbeck and
Thomas 1995; Wengert and Lamb 1994). Plan-
ning is important because “Lumber yield is
largely foreordained in the planning process
and only secondarily influenced by operations
on the cutting room floor (Moser 1996, as cited
in BC Wood Specialties Group, p. 22).” Know-
ing that a 1-2% lumber yield increase can save
$150,000 to $300,000 annually in a medium-
sized rough mill (Kline et al 1998), the impor-
tance of understanding what parameters contrib-
ute to high yield is of great importance. Wengert
and Lamb (1994) emphasize the close interrela-
tionship of yield to the profitability of a rough
mill operation. They estimate that a 1% increase
in yield in a furniture rough mill can save up to
2% of manufacturing costs (Wengert and Lamb
1994). Other authors (Buehlmann et al 2003,
1998; Hamilton et al 2002; Wiedenbeck and
Thomas 1995; Manalan et al 1980) also empha-
size the considerable importance of achieving
high yield in a rough mill.

Research into the cutting-bill-lumber yield re-
lationship has been done predominantly in con-
junction with work on yield nomograms (Thom-
as 1965; Englerth and Schumann 1969; Dunmire
1971; Hallock 1980; and Manalan et al 1980).
More recently, Buehlmann et al (2003) pub-
lished a study on the effect of cutting-bill re-
quirements on lumber yield in a rip-first rough
mill. Given part quantity distributions as used in
industry, this simulation-based study showed the

importance on lumber yield of short parts
(shorter than 940 mm), while part widths impact
on yield was less. The study also revealed the
need for a more refined approach in defining
part sizes used in the test cutting bill. In re-
sponse, Buehlmann et al (2008a, 2008b) ad-
dressed the need for a more refined, standard-
ized, and simplified cutting bill.

This study used the standardized and simplified
cutting bill (Buehlmann et al 2008a and 2008b)
to research the influence of cutting-bill part size
and part quantity requirements on lumber yield.
It was hypothesized that a better understanding
of these relationships would lead to cutting bills
that provide higher yields. Two publications de-
scribe the methodology and results of this re-
search. Paper I focuses on describing the meth-
odology and the importance of part sizes and
part quantities using least squares regression.
Paper II shows a more generalized description of
the influence on lumber yield of part sizes and
part quantities using correlation coefficients.
Furthermore, Paper II also discusses the influ-
ence of the number of different part sizes cut
concurrently on yield.

METHODS

For this research, methods were specified in re-
spect to: a) the lumber cut-up simulation to de-
rive valid yield results (Thomas and Buehlmann
2002) and b) the statistical analysis tools used to
analyze the results. This study used rip-first
rough mill lumber cut simulation (Thomas
1995a, 1995b) and digitized representations of
red oak lumber (Gatchell et al 1998). Its findings
and conclusions therefore do not necessarily ap-
ply to other types of rough mills (eg crosscut-
first) or lumber species.

Lumber Cut-up Simulation

To execute the necessary tests, the simulation
parameters, the composition of the digital lum-
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ber data set, and the cutting-bill requirements
had to be defined.

Rip-first rough mill yield simulation. ROMI-
RIP 1.0 (Thomas 1995a, 1995b) was used to
simulate the cut-up of lumber in a rip-first rough
mill. ROMI-RIP has been shown to be a valid
representation of lumber cut-up in industrial
plants (Thomas and Buehlmann 2002). The set-
tings used for this study were as follows: 1)
all-blades movable arbor; 2) dynamic exponen-
tial cutting-bill part prioritization (Thomas
1996b); 3) smart and unlimited salvage opera-
tion (Thomas 1996a; Anderson et al 1992) 4) no
random width and no random length parts; 5) no
fingerjointed or glued-up parts; 6) continuous
updating of part counts; 7) end-and-side trim set
at 6 mm on both sides; and 8) only clear-2-side
(C2F) parts (Thomas 1995a, 1995b). Prelimi-
nary tests indicated that the necessary number of
simulation replicates is three (Buehlmann 1998).
Unless noted otherwise, yields are given in ab-
solute terms, and include primary and smart sal-
vage yield (Thomas 1995a, 1995b).

The simulation did not substitute parts whose
quantity requirement had been met. Thus, the
number of part sizes to be cut in a given simu-
lation run would decline toward the end, when
some part size quantity requirements were met.
However, since the simulation used dynamic ex-
ponential cutting-bill part prioritization (Thomas
1996b), this decline in number of different part
sizes to be cut did occur only toward the very
end of fulfillment of all parts requirements.

Lumber. Digital lumber representations created
by Gatchell et al (1998) that are contained in
“The 1998 kiln-dried red oak data bank” were
used for this research. No. 1 Common lumber
collections with board size and quality distribu-
tions according to Wiedenbeck et al (2003) were
composed using the “custom datafile creation”
feature of ROMI-RIP (Thomas 1995a, 1995b).
The cutting-bill quantity requirements were set
such that a minimum of 150 boards were neces-
sary to be cut to achieve the required quantities
(Buehlmann et al 1998).
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Cutting bills. Cutting-bill requirements vary
greatly depending on the company or the indus-
try sector. To obtain a better tool for conducting
research involving cutting bills, Buehlmann et al
(2008a and 2008b) created a standardized and
simplified cutting bill (often referred to as the
“Buehlmann” cutting bill), which was used in
this research. Table 1 shows the part-size and
-quantity requirements of the cutting bill used.
The part quantity was set such that a minimum
of 150 boards was required for all tests (Buehl-
mann et al 1998). Since each of the parts in this
cutting bill represents a part group midpoint rep-
resenting a range of potential part lengths and
widths (Buehlmann et al 2008a), the term part
group or part is used interchangeably to refer to
a specific part in this cutting bill.

Statistical Analysis

To obtain data to create a model indicating the
yield contribution of different part sizes, a frac-
tional-factorial design had to be designed and
executed to obtain the data to derive the least
squares estimates for the parameters as a proxy

Table 1. Part sizes and part quantity requirements of the
Buehlmann cutting bill.

Quantity Length Width
Part no. Part name —units — —mm-—

1 LW, 341 254 38
2 L,W, 742 445 38
3 LW, 1083 699 38
4 LW, 608 1207 38
5 LW, 258 1842 38
6 LW, 379 254 57
7 L,W, 746 445 57
8 LW, 1200 699 57
9 LW, 654 1207 57
10 LsW, 246 1842 57
11 L W, 114 254 89
12 L,W, 254 445 89
13 LW, 365 699 89
14 LW, 221 1207 89
15 LsW, 142 1842 89
16 LW, 123 254 108
17 L,W, 248 445 108
18 LW, 395 699 108
19 LW, 213 1207 108
20 LsW, 100 1842 108
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for individual part contributions to yield. Since a
2-level fractional-factorial design, which as-
sumes linearity between the minimum and maxi-
mum quantity setting, was the preferred design
of experiments to minimize the necessary simu-
lation runs, linearity had to be verified.

Fractional-factorial design. Assuming linearity
of the part quantity—yield relationship, the
study’s fractional-factorial design was a 1/2048
replicate of a 2-level 20-factor fractional-
factorial design with resolution V, ie a 22°~'!
fractional-factorial design (Box et al 1978). The
complete factorial design for this study would
consist of 22° = 1,048,576 experiments. In a
resolution V fractional-factorial design, main ef-
fects are free of secondary and tertiary degree
interactions, and secondary interactions are free
of other secondary interactions. Hence, accord-
ing to the “sparsity of effects principle” (Mont-
gomery 2005; Box et al 1978), both the main
effects and the secondary interactions can be re-
liably estimated. Details about the 2*°~'" frac-
tional-factorial design used can be found in
Buehlmann (1998). Analysis of variance
(ANOVA, a = 0.05) of the data was performed
to establish the importance of individual part
groups on yield. Since both main effects and
secondary interactions are free of the same order
effects, the importance of all the 20 main effects
and the 190 unique secondary interactions can
be established.

Validation of the within-part group linearity
assumption. The within-part group linearity as-
sumption describes the relationship between part
quantity required by a specific part size (also
called a part group as explained in Buehlmann et
al 2008a and 2008b) and yield. When part quan-
tity of one part size changes, yield also changes
in most cases. However, it is unknown if the
change in yield is a linear function of the part
quantity. Figure 1 displays two hypothetical part
quantity-yield relationships. The dashed line
represents a linear, whereas the solid line repre-
sents a nonlinear relationship. If the part quan-
tity—yield relationship is found to be approxi-
mately linear, a 2-factor factorial design will
suffice to capture the effect of a part quantity
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yield contribution

7 part-group
part quantity
0 max.

Figure 1. Example of a nonlinear and a linear part quan-
tity-yield relationship.

change on yield over the entire part quantity
range, ie from 0- to maximum-part quantity. If
this relationship is found to be non-linear, more
than 2 factors will be needed, since information
about the curvature between 0- and maximum-
part quantity will have to be obtained. Increasing
the numbers of factors, however, will require an
increased number of tests to be performed under
the fractional-factorial design (512—6561 from a
2- to 3-factor fractional-factorial design). The
linearity assumption only applies for the within-
part group quantity —yield relationship, but is not
required between part groups.

To test for the assumed within-part group lin-
earity, each of the part groups was tested as fol-
lows: 1) Set all part groups at maximum quan-
tity; 2) Run ROMI RIP simulation (3 replicates);
3) Fori = 1, j = 1, set part quantity in part
group (L;W;) at 75% of maximum, with all other
part groups remaining at maximum quantity; 4)
Repeat step 2; 5) Repeat steps 3 and 4 but set
part quantity for the part group under investiga-
tion to 50, then to 25 and, subsequently, to 0%;
6) Repeat steps 2—5 for all lengths (i = 1-5),
and all widths (j = 1-4). Overall, 5 tests with 3
replications of each were necessary for each part
group. The design of experiments for part group
L, W, is displayed in Table 2.
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Table 2. Experiments to research whether the within-part group linearity assumption holds for part group L,W,, eg only

the part quantities in L,W, are adjusted.

Length Width Test 1 Test 2 Test 3 Test 4 Test 5
Part group (mm) (mm) quantity 100% quantity 75% quantity 50% quantity 25% quantity 0%
LW, 254 38 341 256 171 85 0
L,W, 445 38 742 742 742 742 742
LW, 699 38 1083 1083 1083 1083 1083
* * * * * * * *
* * * * * * * *
LW, 699 108 395 395 395 395 395
LW, 1207 108 213 213 213 213 213
LsW, 1842 108 100 100 100 100 100
A purely linear relationship would produce yield RESULTS

results that lie on a straight line between the
yield obtained for maximum quantity and yield
obtained for 0 quantity for a particular part
group. Nonlinearity is measured as the distance
between the linear line and the actual yield-point
obtained (see Fig 1). Paired t-tests were em-
ployed to detect if there is a significant deviation
(oo = 0.05) from linearity. The standard devia-
tion of all the tests conducted for the determina-
tion of linearity was used as the population stan-
dard deviation.

There may be some part groups that behave non-
linearly under the tests described above, but the
error they introduce may be rather small, there-
fore, the following thresholds to conclude lin-
earity were defined: 1) no more than 20% of all
points tested are allowed to be nonlinear at the
95% level of significance; and 2) no single parts
group nonlinear deviation shall exceed 1% ab-
solute yield.

Least squares parameter estimate for each part
group. Simple linear least squares parameter es-
timates can be derived as proxy for individual
parts group contribution to yield if within-part
group linearity is found to be true and the data
derived using the fractional-factorial design are
found to show that at least one of the effects is
different from the others (ANOVA, a = 0.05).
For such least-squares models to be valid, the
factor levels have to be known constants, the ob-
served responses must be random variables, and
the random error terms have to be independently,
identically, and normally-distributed with mean O
and common variance o (Ott 1993).

Before the resolution V 2-factor fractional-
factorial design could be executed, the within-
part group linearity assumption had to be tested.
Only after verifying that a 2-level fractional-
factorial design could derive the data for a linear
least squares model, could the number of factors
be set.

Validation of the Within-part Group
Linearity Assumption

One hundred tests, each with three replicates,
were conducted to obtain the data necessary to
test the within-part group linearity assumption.
Table 3 shows the results obtained. Test 1 (col-
umn 4, representing the yield with maximum
part quantity specified in a part group) and test 5
(column 8, representing the yield with O part
quantity specified in a part group) were used to
set the starting and ending point of the linear
yield-line for each part group. This line was then
compared with the deviation of the yield data
obtained for test numbers 2, 3, and 4. Using
paired t-tests, this deviation was tested for sig-
nificance (o« = 0.05) of the obtained yield point
and the linear line calculated previously.

As can be seen in Table 3, the largest nonlinear-
ity observed was 0.62% for part group L,W,
when requiring 50% of the maximum quantity.
In fact, part group L, W, was the only part group
that resulted in significant nonlinearity (o =
0.05) for all three points tested (ie part quantities
at 75, 50, and 25%). Part group L,W, had two
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Table 3. Results of the experiments testing the within-part group linearity assumption.

WOOD AND FIBER SCIENCE, OCTOBER 2008, V. 40(4)

Length

Width

Yield

Yield difference (% absolute)

Yield

Test 1 quantity
100%

Test 2 quantity
75%

Test 3 quantity
50%

Test 4 quantity
25%

Test 5 quantity
0%

Part group (mm) (mm)
L, W, 254 38 70.19 0.19%* 0.06 0.01 69.55
L,W, 445 38 70.19 0.15 0.11 0.06 68.89
LW, 699 38 70.19 0.12 0.20 0.35%%* 69.48
LW, 1207 38 70.19 0.02 0.13 0.08 70.28
LW, 1842 38 70.19 0.12 0.18 0.08 70.39
LW, 254 57 70.19 0.00 0.01 0.02 69.25
L,W, 445 57 70.19 0.33%* 0.62%* 0.38%%* 68.55
LW, 699 57 70.19 0.04 0.01 0.11 70.36
LW, 1207 57 70.19 0.02 0.04 0.04 70.25
LsW, 1842 57 70.19 0.09 0.21%* 0.19 70.33
L,W; 254 89 70.19 0.03 0.05 0.06 69.85
L,W, 445 89 70.19 0.13 0.05 0.16 69.52
LW, 699 89 70.19 0.11 0.11 0.04 70.05
LW, 1207 89 70.19 0.11 0.18* 0.05 70.22
LsW, 1842 89 70.19 0.09 0.06 0.17 70.12
LW, 254 108 70.19 0.05 0.12 0.03 69.68
L,W, 445 108 70.19 0.25% 0.34%%* 0.01 69.14
LW, 699 108 70.19 0.08 0.03 0.18* 70.32
LW, 1207 108 70.19 0.13 0.09 0.04 70.33
LsW, 1842 108 70.19 0.09 0.10 0.06 70.23

notation: * = significant at 95% level
** = significant at 99% level

observations that were significant (a« = 0.05),
however, its maximum deviation from linearity
was about one-half of that found for part group
L,W,, —0.34%. Overall, however, only 10 out of
60 observations were found to be significant (a
= 0.05). Since the results of the tests were be-
low the threshold set forth to conclude nonlin-
earity, a two-level resolution V fractional-
factorial design could be employed.

Fractional-factorial Design

The resolution V two-level fractional-factorial
design required the execution of 512 tests, each
with 3 replicates. Details of the design can be
found in Buehlmann (1998), Appendix D. The
maximum yield response difference between
minimum and maximum yield observed from
these 512 tests was 22.94% yield (70.81 vs
47.87%). The average yield found for these tests
was 65.09% yield, with a standard deviation of
3.59%. The standard deviation between repli-
cates for the cuttings that resulted in low yield
was higher than the one observed for the cuttings

that resulted in high yield. The standard devia-
tion between replicates for the 10 lowest yield-
ing cutting bills was found to be, on average,
0.48% compared with an average standard de-
viation for the 10 cutting bills resulting in
highest yield of 0.29%. However, this het-
eroscedasticity was still below levels that
would require transformation (Ott 1993), given
that an equal sample size was maintained for all
tests.

Analysis of variance performed on the 20 main
effects and 190 secondary interactions returned
an F-Value of 123.5 (p > 0.0001), showing that
at least one of the effects is different from the
others. All 20 main effects were found to be
significantly different (@ = 0.05) from each
other (19 at p < 0.01 and 1 LsW; at p < 0.05).
Also, 113 of the 190 secondary interactions were
found to be significant (o« = 0.05). The coeffi-
cient of determination, R?, which indicates how
much of the variability of the data can be ex-
plained by the variables tested, was found to be
0.95.
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Contribution of Individual Part Groups
on Yield

Since the main effects and 113 of the secondary
interactions were significantly different from
each other, parameter estimates could be calcu-
lated that account for the influence of individual
part groups on yield. These estimates are an in-
dicator of the average yield contribution of a
specific part group to yield, for the 512 tests
performed. However, to better understand their
contribution to yield, some explanation is nec-
essary as to how they were derived. When the
least squares estimation procedure (Proc GLM
in SAS Institute (1996)) was run, the amount
reflecting O-part quantity in a given part group
was encoded as —1, and maximum part quantity
was encoded +1. Hence, 50% part quantity was
encoded as 0. The yield contribution of a part
group as measured by the parameter estimate
therefore is multiplied by a negative value (be-
tween 0 and —1) when O or less than 50% of the
maximum part quantities are required, 0 when
50% quantity is required, and positive (between
0 and +1) when more than 50% of the maximum
part quantity is required. Figure 2 displays the
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yield slopes of 2 part groups, namely part groups
L,W, and LsW, to illustrate the concept ex-
plained above.

The intercept (ie the average yield of all 512
cutting bills tested) was found to be 65.09%,
while the parameter estimates (ie the slopes) of
part groups L,W, and LsW, were found to be
1.60 and —0.32, respectively. Thus, when part
group L,W, requires no parts to be cut, (part
quantity is 0) yield will decrease by 1.60%. If
L, W, requires 50% of the maximum part quan-
tity to be cut, this part group will have no impact
on yield. However, when L,W, asks for maxi-
mum part quantity, this part group will increase
yield by 1.60%. Thus, the total possible contri-
bution to yield of a particular part group between
0 and maximum part quantity is twice the value
of the parameter estimate. Hence, on average for
the 512 tests performed, the part group L, W,
total contribution to yield is 3.20% (2 x 1.60%)
and the part group LsW, contribution to yield is
—0.64% (2 x —0.32%). However, this observa-
tion holds only when all other 19 part groups ask
for 50% of maximum quantity. Only then are all
secondary interactions zero (and thus do not in-

67.00 +
66.50 +
66.00 4 Intercept
— 65.50 4
T
@
5
2 65.00 ~
o
8
> 64.50 4
Yield slope for part Yield slope for part
64.00 + group LW, group LW,
63.50 +
AL 'l i ‘ ’ Il L ! d
63.00 t y =¥ [ y + ¥ |
0 0.5 1 0 0.5 1
part quantity in part group (0 to maximum)
Figure 2. Intercept and yield slopes of part groups L,W, and LsW,.
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fluence the yield from the part group observed).
In the case in which 1 or more of the other 19
part groups ask for a part quantity other than
50%, the secondary interaction terms (and other
higher interaction terms that could not be quan-
tified but must be of small magnitude) alter the
influence of part groups L,W, and LsW, on
yield (positively or negatively). Basically the
higher interaction terms describe how the vari-
ous part sizes interact to compete for lumber
resources by appropriately altering the part
group slopes. Table 4 reveals the parameter es-
timates (slopes) for all 20 part groups and the
average for each length and width group.

DISCUSSION

Marginal yield contributions of each part group
under base conditions (eg all part quantities at
50% of maximum quantity requirements) are
shown in Table 4. According to these parameter
estimates, length is more influential than width
on yield. This can be concluded from the obser-
vation that the parameter estimates vary more
over length (ie columns) than over width (ie
rows). Width group W, ranging 25-51 mm, is
the group that contributes most positively to
yield followed by width groups 2, 3, and 4. This
is consistent with generally accepted knowledge.
The greater the width of the required parts, the
more difficult it is to find a clear area within the
board from which these parts can be cut. Also,
when a board is cut into wider strips, the prob-
ability of having defects in these strips increases,
thus reducing yield. However, as Table 4 shows,
the difference in positive contribution to yield
between width groups 1 and 2 is only 0.04.
Thus, adding parts to a cutting bill with either
widths between 25 and 51 mm (group W,) or 51

Table 4. Parameter estimates and average parameter es-
timate of each length or width group.

Width/length L, L, L L, Ls Average
W, 048 124 120 058 0.14 0.73
W, 083 1.60 095 021 -0.16 0.69
W, 030 0.78 0.64 024 -0.04 0.38
W, 046 089 032 -0.06 -032 0.26
Average 052 1.13 0.78 024 -0.09
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and 76 mm (group W,) has nearly the same ef-
fect on yield, on average for the 512 cutting bills
researched. Adding parts wider than 76 mm,
however, has a less favorable impact on yield.

As to length groups, Table 4 shows that group
L,, ranging 381-508 mm has the most positive
effect on yield (average yield slope estimate
1.13, Table 4). Thus, it is not the shortest length
group that has the most favorable influence on
yield, but the longer parts belonging to group L,.
This observation is consistent with findings by
Buehlmann et al (2003) that, given a cutting bill
that requires a finite, restricted number of parts
of various sizes, the shorter parts do not contrib-
ute the most to yield. Given the ability to rapidly
attain short parts from group L,, the required
quantities are obtained after few boards are pro-
cessed. Thus this does not leave short parts
(from group L,) that could be cut from the re-
maining boards later in the production cycle.
Given the restricted need for short parts in L,,
yield therefore declines. Since more parts are
demanded or required for group L, according to
the research of Araman et al (1982; also see
Buehlmann 2003 et al and Buehlmann 2008a et
al), group L, is more favorable for achieving
high yield than group L,. Group L5, on the other
hand, is a negative contributor to yield on aver-
age of the 512 cutting bills tested. This contra-
dicts the often-heard rule-of-thumb that long
lengths do not influence yield. Even though the
average parameter estimate for group Ls is not
much below 0 (Table 4), it is by far the most
negative contributor to yield compared with all
other length groups. The negative influence of
long length (ie L) is further amplified when the
part required is also wide. Therefore, part group
Ls;W, was found to be the one group that influ-
enced yield most negatively.

The above inferences about the contribution of
part groups give an indication of the marginal
yield influences under a base case when all part
groups require 50% part quantity, as explained
earlier. The more of a departure from this case,
secondary interactions, ie the mutual influence
of two part groups together on yield, need to be
considered to understand the contribution of in-
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dividual part groups. Assessing the effects of
secondary interactions is not only complicated
by the fact that there are 190 secondary interac-
tions that have to be taken into account, but also
because their effect on yield changes depending
on the part quantities associated with the two
main effects (ie part groups) involved. Interac-
tion-slopes are no longer unidimensional lines as
is the case for the main effects, but they are in
fact twisted planes. The interpretation of the sec-
ondary interactions for part groups and their in-
fluence on yield is therefore more complicated
than it is for main effects. Also, as was to be
expected according to the scarcity-of-effects
principle (Montgomery 2005; Box et al 1978),
the magnitude of the secondary interaction pa-
rameters was found to be lower than the one for
the main effects. The absolute average param-
eter estimate for all the 190 secondary interac-
tions was 0.08 compared with a value of 0.57 for
the main effects (Buehlmann 1998).

Based on the ANOVA tests performed, 113 of
the 190 secondary interactions were found to be
significantly different from 0. With a parameter
estimate of —0.39, the interaction between part
groups L;W, and L,W, (significant at o =
0.01) had the most negative impact on yield of
all secondary interactions (Table 5). The influ-
ence of this secondary interaction is best ex-
plained for the case when the two part groups,
L,W, and L,W,, require maximum part quantity
and all the other part groups require 50% part
quantity. The parameter estimates of the main
effects of part groups L,W, and L, W, are +1.20
and +0.58, respectively. Their secondary inter-
action parameter estimate of —0.39 indicates that
a loss will occur when both of these part groups
are added above the 50% level. For this scenario,
the yield contribution above the intercept of the
two main effects of part groups LW, and L, W,
is 1.39% yield (1.20 + 0.58—0.39). Theoretical-
ly, this loss in yield could be avoided by not
including part groups L;W, and L,W, in the
same cutting bill, but rather separating them into
two cutting bills.

Only two other secondary interactions had pa-
rameter estimates of —0.30 or lower (significant
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Table 5. Secondary interactions with parameter estimates
smaller than —0.20 and larger than +0.10.

Interaction between

Parameter Probability
Part group Part group estimate T for H, (p)
Negative secondary interactions below —0.20
LW, LW, -0.39 -17.98 0.0001
LW, LW, -0.35 -16.02 0.0001
L,W, LW, -0.32 -14.59 0.0001
LW, LW, -0.27 —-12.49 0.0001
LW, LW, -0.27 -12.43 0.0001
LW, LW, -0.26 -11.82 0.0001
L,W, LW, -0.25 -11.58 0.0001
L,W, LW, -0.25 -11.33 0.0001
L,W, LW, -0.25 -11.28 0.0001
L,W, LW, -0.23 -10.63 0.0001
LW, LW, -0.23 -10.60 0.0001
LW, LW, -0.23 -10.54 0.0001
Positive secondary interactions above +0.10

L,W; LW, 0.11 4.99 0.0001
LW, LW, 0.11 5.05 0.0001
LW, LsW, 0.11 5.22 0.0001
L, W, L, W, 0.12 542 0.0001
L,W, LW, 0.13 5.85 0.0001
LW, LsW, 0.15 6.87 0.0001
L,W, LW, 0.15 7.08 0.0001
L,W, LsW, 0.16 7.51 0.0001
LW, LsW, 0.17 7.97 0.0001
L,W; LsW, 0.19 8.92 0.0001
L,W, LW, 0.27 12.53 0.0001

at o« = 0.01). Another nine secondary interac-
tion parameter estimates were found to be be-
tween —0.20 and -0.30 (significant at o« =
0.01). Of the 190 secondary interactions, 120
were found to have negative parameter estimates
(not all significant at o« = 0.05, Buehlmann
1998). Table 5 shows the 12 secondary interac-
tions with parameter estimates smaller than
—0.20. It is interesting to note that all of the part
group combinations, whose parameter estimates
are below —0.20, are part groups that are adja-
cent, or near each other (Table 5). Adjacent part
sizes are similar and thus there is a small prob-
ability of fitting one of these parts into a clear
area in a board when a similar-sized part does
not fit. As this and the following observation
shows, secondary interactions are generally
negative for similar part sizes, and positive for
dissimilar part sizes. In general, dissimilar part
sizes allow the clear areas in boards to be used
more efficiently.
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Table 5 also displays the 11 positive secondary
interaction terms with values above 0.10 (all sig-
nificant at &« = 0.01). The largest secondary
interaction parameter estimate between part
groups L,W, and LW, was found to be +0.28
(significant at o = 0.01). Thus, the yield of a
cutting bill that requires the maximum part
quantity from both part groups L,W, and LsW,
will be higher, as compared with one where
these two part groups are not both required. That
this is the highest positive secondary interaction
can be explained by the fact that if parts from the
largest part group LsW, must be cut, strips of
width W, must be produced. With such long
lengths in length class Ls, the clear areas in the
W, widths cannot be used efficiently. The most
geometrical complementary use of the remain-
ing areas in a strip of width W, after parts LsW,
are cut, is thus to cut parts from L,W,. There-
fore, the secondary interactions that can be used
as a tool to guide which parts added to a cutting
bill are complimentary or not in terms of yield.

In the second part of this publication, entitled
“The influence of cutting bill characteristics on
lumber yield using fractional factorials Part II:
Correlation and number of part sizes,” the view-
point of the contribution of different part groups
to yield will be different. The impact of requir-
ing parts from a particular part group will be
researched under the assumption of having cut-
ting bills where no parts are added or removed.
In other words, based on the 512 different cut-
ting bills researched, which part groups have
been most positively correlated with high yield?
The second part will also look at the impact on
yield of the number of part sizes to be cut con-
currently.

SUMMARY AND CONCLUSIONS

Assuming that there is a linear relationship be-
tween part quantity and lumber yield, a 2-level,
20-factor resolution V fractional-factorial design
was employed to research the influence of cut-
ting-bill part size and part quantity requirements
on lumber yield. Analysis of variance performed
on the data obtained showed that all 20 main

WOOD AND FIBER SCIENCE, OCTOBER 2008, V. 40(4)

effects and 113 of the 190 secondary interactions
were significant (¢ = 0.05). Least squares pa-
rameter estimates indicated that the highest posi-
tive impact on yield can be achieved by adding
parts 445-mm long and 57-mm wide to the cut-
ting bill. Part sizes 1842-mm long and 108-mm
wide had the most negative impact on yield
when added to a cutting bill. The findings dem-
onstrate that by carefully selecting which part
sizes are added to a cutting bill, yield can be
increased.

Knowing which part sizes can help to increase
lumber yield in a rip-first rough mill will permit
practitioners to more carefully design their cut-
ting schedules. For example, based on the
knowledge gained in this research it can be hy-
pothesized that higher yield may be achieved if
a large requirement of a small- to medium-sized
parts can be broken up and assigned to two dif-
ferent cutting bills. By so doing, the overall yield
of two runs both requiring some of the small- to
medium-sized parts to be cut may be higher than
requesting this part size in only one cutting bill.
However, while this research has quantified the
impact of different sized parts in a cutting bill,
more research is needed to learn about the im-
pact of a wide variety of cutting bill scheduling
schemes. Further insight of the cutting-bill re-
quirements and lumber yield relationship will be
presented in the second part of this publication,
where the correlation of different part sizes with
high yield and the influence of the number of
different part sizes to be cut concurrently are
discussed.
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