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ABSTRACT

Process control of wood density with near infrared spectroscopy (NIR) would be useful for pulp mills
that need to maximize pulp yield without compromising paper strength properties. If models developed
from the absorbance at wavelengths in the NIR region could provide density histograms, fiber supply
personnel could monitor chip density variation as the chips enter the mill. The objectives of this research
were to a) develop density histograms from actual density versus density histograms developed through
NIR modeling, and b) determine the precision of density models developed from absorbance in the NIR
region with a recommendation for the sample size needed to estimate the standard deviation of density at
a given precision.

Models for density were developed from calibration samples (n�170) and then validated with 93
randomly held aside samples. The samples were systematically removed from 10 longleaf pine trees of
equal age, but different growth rates. The histogram patterns for actual density almost paralleled the
histogram patterns developed from predictive models. Subsequently, the validation data set was randomly
categorized into groups of three, and the standard deviations of density were measured. For three mea-
surements per data point, the predicted standard deviation covaried with the actual standard deviation of
density with an R2 � 0.61 and 0.55 for the calibration and validation data set, respectively. A sample size
of 30 was recommended to estimate the standard deviation of density with a precision of 0.01 g/cm3.

Keywords: Chip, density, near infrared spectroscopy (NIR), wood, pine, statistical process control, pulp
yield.
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INTRODUCTION

Wood density is the most important factor af-
fecting pulp and wood quality (Kleppe 1970;
Kibblewhite 1984; Duffy and Kibblewhite
1989). Being able to monitor the density of the
raw material going into the mill is, perhaps, the
next crucial step in improving efficiency for
pulp and paper manufacturers. The pulp and pa-
per industry places a high importance on lower-
ing the variation of any variable that will de-
crease costs with density being important
(Kleppe 1970). While many technological im-
provements have been made over the decades,
there is still one inherent variation to overcome,
the material itself. This paper evaluates the abil-
ity of near infrared spectroscopy (NIR) to moni-
tor wood density.

For paper products, an increase in density will
increase pulp yield and tear index, but will de-
crease tensile, burst, apparent density, and
stretch (Duffy and Kibblewhite 1989; Kibble-
white et al. 1997). Since increased density will
bring about a compromise in paper strength,
Kleppe (1970) suggested that density should be
improved for increased pulp yield as long as an
acceptable level of strength is maintained. For
example, linerboard can utilize high density
southern pine chips while maintaining an accept-
able burst index (Kleppe 1970).

The increase in pulp yield with increased den-
sity is caused by the higher concentration of cel-
lulose in latewood and the additional porosity of
the earlywood zone (Gladstone et al. 1970; La-
bosky and Ifju 1972). Differences in the magni-
tude of porosity between latewood and early-
wood result in uneven rates of liquor penetration
and thus pulp yield, especially for shorter cook-
ing periods (Labosky and Ifju 1972). Latewood
can exhibit 2 to 7 percentage points higher yield
than earlywood, setting the boundaries for pulp
yield variation (Gladstone et al. 1970). As a re-
sult, density variation becomes a primary factor
for most pulp and paper properties.

One mill study found density variation to
double from one month to the next because of
changing chip supply attributable to lack of con-
trol of mixing the right blend of species, but also

natural variations in density within a species oc-
cur due to variations in log age (Farrington
1980). To solve this problem, efficient separa-
tion of topwood, slabwood, and corewood chips
is suggested (Veal et al. 1987). Others support
the segregation of species by age and growth
rate, since the predictive power of these vari-
ables on fiber morphology and strength indices
is high (Kärenlampi and SuurHamari 1997).
Mills already blend sawmill pine chips, or pine
chips from thinnings, with hardwood chips to
achieve a target chip density. As a result, non-
normal distributions are likely to occur, making
the mean density less useful. Some method to
monitor this complex variation is needed so that
adjustments can be made at the blending station.
With such a method, a mill could monitor in-
coming chips to make sure that fiber supply is
providing the density that was paid for. But per-
haps most important, the variation in density
could be lowered so that there are fewer over-
and undercooked chips. Such process control ca-
pacity would result in fewer rejects from cus-
tomers while optimizing the use of manufactur-
ing resources.

Near infrared spectroscopy (NIR) is now used
to estimate solid wood density with R2 values
between 0.70 to 0.95 (Hoffmeyer and Pedersen
1995; Schimleck et al. 2001a,b; Schimleck et al.
2002; Schimleck and Evans 2003; Schimleck et
al. 2003b; Via et al. 2003). Pulp yield can also
be modeled with success through partial least
squares regression (Michell and Schimleck
1998). However, by using the area under the
spectra curve (absorbance of light at each wave-
length in the near infrared range) as an indepen-
dent predictor of density, a more robust model
can be developed for both juvenile and mature
wood (Via et al. 2003). Gindl et al. (2001) also
found the average absorbance from every wave-
length in the NIR region, to correlate with den-
sity. Manufacturing research shows NIR to pre-
dict lumber stiffness from density although later
research cautions against using NIR to stress
grade wood originating from the pith (Meder et
al. 2003; Thumm and Meder 2001; Via et al.
2003).

Manufacturers also need to be able to measure
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the wood density across a range of species,
moisture content, and temperature. For 54 spe-
cies, multivariate equations built from NIR spec-
tra can be used to estimate density, with high
accuracy. (Antti et al. 1996; Schimleck et al.
2001a; Schimleck et al. 2003). It is also possible
to classify wood to a species before predicting
density (Schimleck et al. 1996; Tsuchikawa et
al. 2003). Such a procedure may help to decide
which density calibration equation to use for dif-
ferent species.

Moisture may be an additional variable to add
noise to absorbance response. Hoffmeyer and
Pedersen (1995) found wood density prediction
to be reasonably independent of moisture con-
tent below fiber saturation point (FSP). Above
FSP, robust calibration models for many chemi-
cal and physical properties of chips can be built
when moisture is allowed to vary (Axrup et al.
2000). Also, during calibration, removal of hy-
droxyl-associated wavelengths can result in
more robust calibration equations for density
(Swierenga et al. 2000). If temperature varies, as
in a manufacturing environment, then one needs
to account for the temperature by either remov-
ing temperature-sensitive wavelengths before
calibration or include the full range of tempera-
ture into the design of model development (Thy-
gesen and Lundqvist 2000; Wülfert et al. 2000).

Absorbance in the NIR region may thus be an
applicable independent variable for measuring
the density distribution of wood. NIR absor-
bance is currently being monitored for other
wood properties in a manufacturing environ-
ment. For example, histograms of estimated lig-
nin can be successfully plotted to monitor online
variation and distribution (Jääskeläinen et al.
2003).

While not the objective of this experiment,
success at measuring density variation from NIR
signal would provide a tool to control the varia-
tion of chip density going into the mill. For this
experiment, the absorbance in the NIR range
was restricted to the radial face of wood, under
controlled temperature and moisture content,
with a fixed distance between the probe and the
wood sample, and with negligible variation in

sample dimensions. For an industrial setting, all
these factors will vary, and the proper inclusion
of this multiple variation is necessary when
building calibration equations. Jonsson et al.
(2004) provides a detailed experimental design
for manufacturers to capture such variation and
would be applicable to the calibration of chip
density.

For this paper, the objective was to determine
the ability to use absorbance from the NIR re-
gion to predict the variation in air-dry density of
solid wood in tightly controlled laboratory con-
ditions. Thus, histograms of actual density were
compared to histograms from predicted density.
Also, density standard deviations were com-
pared with NIR-estimated standard deviations of
density. Finally, the ability of NIR to classify
solid wood into density categories was investi-
gated.

METHODS

Ten longleaf pine (Pinus palustris) trees 41
years old were selected from a plantation on the
Harrison Experimental Forest, which is owned
and maintained by the USDA Forest Service
(Saucier, MS). Three trees of small diameter,
three trees of large diameter, and four trees in
the medium diameter range were randomly se-
lected. The location was 30.6° north and 89.1°
west. Prescribed fires were applied periodically
to the understory for the entire life of the stand
to keep down unwanted understory vegetation.
Trees were planted 3.66 m apart from neighbor-
ing trees in an equilateral triangle pattern, with
one border row surrounding the site. Each of the
10 trees was harvested and cut into bolts every
4.57 m in height, yielding 5 to 7 bolts. Each bolt
had an accompanying disk cut from the basal
end of the bolt. The specimens for density mea-
surement were taken from the bolt while the
spectra were acquired from the radial face of a
strip ripped from the adjoining disk. The spectra
acquisition was taken within 30 mm of the actual
density measurement and at the same age. Speci-
mens for density measurement were taken at
rings 1, 4, 8, 16, 32, and the last ring of each
disk. Since the number of rings decreases up the
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stem, not all of these rings were available at each
height. The volume for air-dry density (8.1%
moisture content) was measured with calipers,
and the weight was measured at equilibrium
moisture content (EMC). The EMC had a mean
of 8.1% and a standard deviation of 1.6%. Di-
mensions were measured to the nearest 0.0025
cm, while weights were measured to the nearest
0.001 g.

NIR absorbance was obtained using a Nexus
670 FTIR spectrometer (Thermo Nicolet Instru-
ments, Madison, WI). Scans were acquired at
1-nm intervals between the wavelengths of 1000
and 2500 nm. Forty scans were collected and
averaged into one spectrum. During NIR scan-
ning, the temperature was controlled at 22C° ± 1
with a mean relative humidity of 50%. The
samples were laid on a flat surface under a light
source and positioned such that the center late-
wood portion of the ring was in the center of the
5-mm-diameter spot-sized beam.

To reduce data set and computation time, the
spectra was reduced to 10-nm intervals by aver-
aging (Schimleck et al. 2004). One hundred sev-
enty samples were used to develop whole tree
models while ninety-three samples were set
aside for validation model building. In a separate
report, multiple linear regression models and
principal components regression showed slightly
higher R2 values of 0.75, but the area under the
spectra curve provided an interpretable model
and was used for this study (Via et al. 2003).

For data analysis, a linear model was devel-
oped predicting density from the area under the
spectra curve. Frequency distribution histograms
were developed for actual and predicted data.
For standard deviation estimation, the samples
were randomly clustered into groups of three,
and standard deviations in density were com-
puted from the actual and predicted data.

RESULTS AND DISCUSSION

Model validation

Multiple linear regression of selected wave-
lengths and principal components regression
yielded the best R2 values. However, since the

spectra shifted upward as density increased, the
following model was chosen:

D = 0.0008 * A + 0.1891 + � (1)

where D is the density, A is the area under the
curve, and � is error. An R2 value of 0.71 was
calculated when the actual density and predicted
density were regressed (Fig. 1). Equation (1) ex-
hibited better fits throughout the density range
than other preliminary models. The fit was su-
perior if the residuals around the regression line
fell at equal variance throughout the density
range and a mean of zero. Overfitting was de-
termined to occur when the residuals around the
predicted density did not randomly and normally
distribute around zero for the validation data set.
Overfitting may be defined as the instance
where too many factors or independent variables
were used to estimate the dependent variable
density resulting in an inflated R2 value and bias
in the prediction of density in future populations.
Table 1 presents the summary statistics when
predicting density from the area under the spec-
tra curve.

Equation (1) was important because it may
encourage other researchers to follow a similar
approach. The coefficient and intercept of many
commercially important species would be useful
information and may provide universal equa-
tions although machine differences would have
to be taken into account.

Excessive extractives were often present
nearby the pith. The additional extractives in-
creased apparent density by adding additional

FIG. 1. Regression analysis plot of air-dry density from
the area under the spectra curve versus actual density
(n�170).
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mass for a given volume of wood. At the same
time, the area under the curve increased dramati-
cally near the pith due to excessive extractives
(Via et al. 2003). It was thus suspected that ring
1 may not be appropriate for inclusion in the
calibration data set. While this paper did not
extract the wood samples, such information may
be ambiguous for those interested in density
variation attributable to the cell wall. However,
when ring 1 data was removed from the calibra-
tion data set to avoid excessive extractives, no
significant differences in models occurred.
Therefore, models encompassing ring 1 were in-
cluded during the calibration stage.

Distribution modeling

Distribution properties were first considered
for the calibration data. Histograms were devel-
oped from the actual density and compared to
the density predicted in Eq. (1). As seen in Fig.
2a, the histograms for both actual density and
NIR-predicted density deviated from the normal
Gaussian. The slightly lower variation in the den-
sity predicted from Eq. (1) was probably attrib-
utable to the central limit theorem, which states
that the variation in means is lower than the
variation in the actual data that comprised the
means (Freund and Walpole 1980). Since Eq. (1)
predicts the mean density for a given absor-
bance, the predicted density variation was ex-
pected to be lower than the actual density varia-
tion. The shape and variance of the actual and
predicted density were quite similar. To test the
legitimacy of Eq. (1), validation data from 93
hold-out samples were computed and compared
(Fig. 2b).

The histogram of the predicted and actual
density data, for the validation data, was almost
identical (Fig. 2b). A small shift in wood density
was apparent between the actual and predicted

data values (Fig. 2b). In other words, the NIR
model histogram appeared to slightly overesti-
mate density as apparent from the shift toward
higher density values. This did not occur in the
calibration data, suggesting a slight bias in the
model caused by random noise in selection of
the validation samples. Another noteworthy
point was the change in distribution shape when
going from Figure 2a to 2b. The model output
was mildly skewed to the right with the same
variance as the actual data (Fig. 2b). It should
also be noticed that the NIR calibration overpre-
dicted some of the lower density samples for
validation data set (Fig. 2a and b). Since the
lowest density material commonly occurred near
the pith and excessive extractives were common

TABLE 1. Summary statistics for density model and model distribution.

Sample size R2 RMSE
Distribution

mean density
Distribution

kurtosis
Distribution

skewness

Calibration 170 0.71 0.052 0.59 0.546 s 0.690 s
Validation 93 0.69 0.055 0.60 0.298 ns 0.626 s

Note: s represents significant kurtosis or skewness while ns represents non-significance.

FIG. 2. Histograms for actual and predicted density for
(a) calibration (n�170) and (b) validation data (n�93).
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in this region, perhaps local variations in extrac-
tives content near the beam resulted in overes-
timation of density. As explained earlier, exces-
sive extractives were apparent to the eye near the
low density pith and the corresponding spectra
increased in mean absorbance by some unquan-
tified amount resulting in an increase in the area
under the spectra curve. However, it should be
reiterated that removal of the ring 1 data from
the calibration set did not change model predic-
tions, perhaps due to a low sample size of data
from the pith wood region.

Being able to measure skewness or even bi-
modal distributions would prove useful in manu-
facturing. For example, if the distribution is
skewed right, a pulp mill may adjust for the
median density instead of the mean. For other
applications, such as lumber drying, the kiln-
drying schedule may be adjusted to ensure that
no pieces of lumber are above the required 19%
in moisture content.

For Fig. 2a and b, both distributions were
positively skewed as determined by statistical
tests reported in Tabachnick and Fidell (1996)
(Table 1). The skewness was attributable to the
higher counts of high density rather than low
density samples. Since density increased from
pith to bark, there were more high than low den-
sity samples resulting in a skewed distribution.

By plotting out density histograms, manufac-
turers would be able to notice subtle or large
changes in material variability. Currently, many
pulp manufacturers are reluctant to consider cat-
egorizing their logs by age, height, or both, since
such practices would require a heavy process
change and financial capital. However, in New
Zealand and Australia, such innovative practices
are helping to make pulp and forest product
manufactures more efficient by lowering the
variation in final product properties. Such a vi-
sual plot may encourage more inefficient mills
to classify their raw material in the log yard in an
attempt to lower or control density variation.

It should be noted that this experiment was
performed in the confines of a laboratory with a
low wood moisture content and temperature
range. In a manufacturing environment, the
moisture will vary widely and may be above

FSP. Any model developed by a mill should
incorporate the complete range of temperature
and wood moisture content in their calibration
equation (Thygesen and Lundqvist 2000; Wül-
fert et al. 2000; Jonsson et al. 2004).

Dispersion modeling

Mapping out complete distributions may re-
quire significant computing resources. It may be
more useful to consolidate the data into a vari-
ance or standard deviation estimate. The varia-
tion in density will probably lower if a batch of
similarly aged logs are processed at the same
time, and could be detected through a standard
deviation estimate. In a pulp mill, it is not uncom-
mon for a truck load of similarly aged logs to be
stacked and processed together, resulting in
wide shifts in material density from day to day.

Figure 3a demonstrates the ability to model
the standard deviation of density from Eq. (1).

FIG. 3. Actual standard deviation for samples grouped
into threes versus that predicted by NIR models (a) calibra-
tion (n�170) and (b) validation data (n�93).

Via et al.—CAPABILITY OF NIR TO MONITOR WOOD DENSITY VARIATION 399



Using 3 replicates to determine a single point, an
R2 of 0.61 was found between the actual density
and that predicted by Eq. (1). Since only three
samples were used to calculate each data value
for the actual and predicted density, a higher R2

may be possible in a manufacturing environment
where more scans are possible.

Figure 3b demonstrates the ability of Eq. (1)
to model the standard deviation of density for
the validation data. A slightly lower R2 � 0.55
was observed when the NIR predicted standard
deviations were regressed against the actual
standard deviations of density. It was interesting
to notice that both Figs. 3a and 3b exhibited
more data points on the bottom side of the 1:1
line than on the upper end, an indication of bias
due to the slight deviation from normality as
shown in Table 1.

Figure 4 was constructed to estimate the
sample size needed to closely assess the overall
population standard deviation of density.
Around 30 data points were needed to estimate
the standard deviation to a ±0.01 precision. As
can be seen in Fig. 4, many more data points
were needed to improve the estimation of the
population standard deviation below ±0.01 pre-
cision. Thus, one might develop a control chart
using 30 samples to estimate a single density
variance data point. A moving average may be
used to remove any autocorrelation between
samples collected in a short time span (Jonsson
et al. 2004).

Figure 5 shows the distribution of the standard
deviation to be heavily skewed right. Since the
standard deviation can not drop below zero and
the probability of lower values being higher was
intuitive, a right-sided skew was expected. This
non-normal property would need consideration
when developing a control chart for density.
Otherwise, false alarms could occur when the
estimated standard deviation falls outside the
95% confidence limits as assumed under the
normal distribution.

Discrimination of density

For some applications, it may be desirable to
classify on-line chip density into a given set of
classes instead of predicting a specific value. For
example, a pulp mill may be satisfied with a low,
medium, and high density classification given
the wide range in density that may occur from
tree to tree. This wide variation might occur if
tree age is heterogeneous within the log yard or
by the time a group of trees are processed.

Table 2 demonstrates the ability to classify
according to the number of classes/partitions as
a function of the full range of density. In this
table, the range of density was between 0.35 to
0.9 grams per cubic centimeter. A partition of 2
resulted in a separation of low, medium, and
high density. When this was done, 99% of the
specimens were properly classified.

When going from 2 to 11 partitions, the per-
cent correct classification column was expected

FIG. 4. Sample size versus estimated standard deviation
with the known standard deviation of the population plotted
as a dashed line.

FIG. 5. Histogram of density standard deviations for all
samples demonstrating the non-normal response.

WOOD AND FIBER SCIENCE, JULY 2005, V. 37(3)400



to drop since the error remained constant while
the defined range in each class dropped. The
drop in percent classification did occur, but not
as distinctly as expected (Table 2). The reason
for the variability in the correct classification
with increased partions was attributable to the
change in boundaries as shown in the increment
column of Table 2. Each time a new partition
was added, the increment became lower and all
the classes changed to a narrower range resulting
in different class boundaries. Thus, what might
be correctly classified under one partition
scheme might fall in the error region for another
partitioning scheme.

According to Table 2, when the density incre-
ments were lowered to 0.045 grams per cubic
cm, approximately 70% correct classification
occurred. This agreed well with the variation in
residuals of actual versus predicted density
which fell at 0.06 or ±0.03 g/cm3, as determined
by the 95% confidence interval.

One limitation to the precision estimate was
the diameter of the NIR spot size. A 5-mm di-
ameter light beam in the near infrared range was
used. However, some of the latewood and ear-
lywood rings were as small as 0.3 mm in thick-
ness, especially in the 30- to 40-year-old ring
region, as measured from the pith outward. A
typical difference between early and latewood
density was 0.45 g/cm3. As a result, an error
between what was measured gravimetrically and
what was actually scanned occurred if even only
a slight difference in proportion of latewood was
introduced. Using a smaller spot size may thus

yield improved R2 when predicting density from
the area under the spectra curve (Eq. 1).

SUMMARY AND CONCLUSIONS

The mapping of density histograms, as pre-
dicted from area under the absorbance response
for a range of NIR wavelengths, was nearly
equivalent to the actual density histograms for
the calibration and validation data. When the
ability to monitor the variation in a sequential
manner was investigated, the use of NIR was
successful at roughly estimating the variation
with just three measurements and resulted in a
precision of between 0.03 to 0.05 g/cm3. A
sample size of 30 was recommended to estimate
the standard deviation of density with a preci-
sion of 0.01 g/cm3. Any measurements greater
than 30, yielded much smaller incremental im-
provement in precision for a given improvement
in sample size.

These results were based on a tightly con-
trolled moisture and temperature range. More
work beyond the scope of this paper is recom-
mended to determine the precision of measuring
density above fiber saturation point. What was
critical about this work was that Eq. (1) was
based on a fundamental positive relationship be-
tween absorbance and density. Future research
determining the coefficients and intercepts for
various species may be useful in building a da-
tabase of models. Also, this study was based on
10 longleaf pine trees from the same site. For
better model accuracy, a larger sample size from
a broad range of longleaf sites would be re-
quired.
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