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ABSTRACT 

The basic requirements needed for response analysis of wood structures against natural hazards are 
reviewed. A method for stochastic dvnamic analvsis of wood structures. which allows investieations 
into their performance and safety under naturai hazards such as earthquakes and severe winds, is 
presented. To illustrate the method, earthquake ground motions are modeled as a stochastic process 
with Gaussian white noise properties. A single-degree-of-freedom wood structural system is modeled 
by a hysteretic constitutive law that produces a smoothly varying hysteresis. It models previously 
observed behavior of wood joints and structural systems, namely, (1) nonlinear, inelastic behavior, 
(2) stiffness degradation, (3) strength degradation, and (4) pinching. The constitutive law takes into 
account the experimentally observed dependence of wood joints' response to the input and response 
at an earlier time (known as memoly). Hysteresis shapes produced by the proposed model compare 
favorably with common wood joints. The hysteresis model can produce a wide variety of hysteresis 
shaves. degradations, and pinching behavior to model a whole gamut of possible combinations of 
materials and joint config"rationsin wood construction. The nkstationa& response statistics of a 
sinde-dearee-of-fredom wood buildina subiected to white noise excitations are obtained bv Monte - - - .  
Carlo simulation and stochastic equivalent linearization. The latter is shown to give a reasonably 
accurate orediction ofthe svstem's resnonse statistics. which mav be used in calculatinedesien resoonse 
values. The method of analysis is general and may be used to study the response of various kinds of 
structural systems, including multi-degree-of-freedom systems, as long as appropriatestructural models 
are available and appropriate hysteresis model parameters for these systems are known. 
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INTRODUCTION 

Natural phenomena such as earthquakes, se- 
vere winds (including hurricanes and torna- 
does), snow, flood, storm surge, and landslides 
can cause significant losses of lives and prop- 
erties, and adversely impact the national econ- 
omy. Response analysis and structural design 
to mitigate losses are, however, difficult be- 
cause of a high level of uncertainties in these 
events. Newmark and Rosenblueth (1 97 1) re- 
marked, "It is our task to design engineering 
systems-about whose pertinent properties we 
know little-to resist future earthquakes and 
tidal waves (and severe winds)-about whose 
characteristics we know even less." This paper 
reviews the requirements needed for response 
analysis of wood structures against natural 
hazards, introduces key concepts of stochastic 
structural dynamics, and presents a method of 
computing response statistics of a simple non- 
linear, inelastic system under natural hazard 
loads modeled as stochastic or random pro- 
cesses. Only natural hazards involving dynam- 
ic action such as earthquakes and winds are 
considered, with emphasis given to the former 
in the example computation. The long-term 
view is to pave the development of realistic 
and reliable analysis and design procedures for 
wood structures under natural hazards. This 
is achieved by bringing together current know- 
how in the areas of stochastic structural dy- 
namics and wood engineering. 

There is little understanding ofthe dynamic 
behavior of wood structures under natural haz- 
ards. Most ofwhat we know about wood struc- 
tural behavior under dynamic loading comes 
from qualitative field data and/or limited ex- 
perimental data with little theoretical under- 
standing of actual behavior. Difficulties in 
characterizing wood system behavior (e.g., 
sensitivity of material properties to the rate 
and duration of loading, and inelastic and non- 
linear behavior) have hindered investigations 
into their performance under dynamic load- 
ing. Because ofthis, wood structures are treat- 
ed unfavorably in seismic design codes. Strin- 
gent and unclear code requirements put wood 

at a disadvantage in competing with other con- 
struction materials for the engineered struc- 
tures market. Efforts to revise the requirements 
for wood structures have been met with resis- 
tance because of a lack of technical informa- 
tion on the structural response of wood joints 
and systems to dynamic loads. Methods for 
inelastic dynamic analysis of wood structures 
are needed to investigate the performance and 
safety of engineered wood systems against nat- 
ural hazards and to demonstrate quantitatively 
that wood is a competitive structural engi- 
neering material. Without this ability, oppor- 
tunities for new, innovative structural wood 
products may be lost, the current market share 
of wood in the engineered structures market 
may dwindle, and present nonengineered wood 
structures may be compromised. 

BACKGROUND 

A dynamic analysis or dynamic response 
analysis problem is one in which the dynamic 
action (i.e., force) on a structural system- 
which is modeled mathematically by the as- 
sumed (or measured) mass, damping, and stiff- 
ness properties ofthe actual system-is known 
and the corresponding system response is 
sought. The system model should provide as 
realistic a description of the actual structure's 
behavior as possible, and the random nature 
of natural hazard loadings should be consid- 
ered in the analysis. 

Constitutive modeling 

With static monotonic loading, an appro- 
priate load-displacement relation is normally 
sufficient to predict system response. Under 
cyclic loading, the load-displacement trace 
produces hysteresis loops caused by damping 
and/or inelastic deformation. Figure 1, for ex- 
ample, shows experimental hysteresis re- 
sponse of wood buildings and subassemblies. 
(The area contained in the loop represents the 
energy dissipated by the system.) Analytical 
modeling of an inelastic structure under dy- 
namic loading ideally requires a force-dis- 
placement relation, or hysteresis model, that 
can produce the true behavior of the structure 
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FIG. I .  Typical hysteresis of wood structures and subassemblies: (a) three-story wood building (from Yasumura et 
al. 1988); (h) braced glulam frame (from Yasumura 1990); (c) plywood shear wall (from Stewart 1987); (d) oriented 
strand board diaphragm (from Hanson 1990). 

at all displacement levels and strain rates (Soz- 
en 1974). Consequently, the energy dissipation 
mechanisms ofwood joints and structural sys- 
tems must be known and the hysteretic be- 
havior modeled properly before we can ac- 
curately predict the overall system response of 
wood structures to dynamic loads. 

Several researchers have proposed hystere- 
sis models for wood joints andlor structural 
systems: Ewing et al. (1980) for wood dia- 
phragms; Kivell et al. (1 98 l) for moment-re- 
sisting nailed timberjoints used in glulam con- 

struction in New Zealand; Lee (1987), Chou 
(1987), Stewart (1987), and Dolan (1989) for 
nailed plywood-to-wood connections typically 
used in shear wall construction; Ceccotti and 
Vignoli (1 990) for moment-resisting semirigid 
joints used in glulam portal frames in Europe; 
Kamiya (1988) for wood-sheathed shear walls; 
Sakamoto and Ohashi (1988) and Miyazawa 
(1990) for Japanese wood houses; Gavrilovii. 
and Gramatikov (1 99 1) for truss-frame wood 
systems; Foschi and associates for dowel-type 
fasteners (UBC 1993). These models, howev- 
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er, use either a complex set of force-history 
rules or limited empirical relations. [The in- 
terested reader is referred to Foliente (1994, 
1995) for a review of these and other non- 
wood hysteresis models.] 

While current hysteresis models satisfied 
some of the specific features of the joints or 
structural systems that they meant to model, 
they may be inappropriate forjoints or systems 
with different configurations and material 
components (Foliente 1995). Furthermore, 
they are given in forms that are difficult to use 
in stochastic dynamic analysis (this will be de- 
scribed shortly). Since there are hundreds of 
combinations of materials and joint configu- 
rations in wood systems, and since wood-based 
products, fasteners, and use of wood-based 
products continue to evolve, a general consti- 
tutive model is preferred over models derived 
from specific configurations. A completely em- 
pirical model will not only be expensive to 
obtain but may also be of limited use in dy- 
namic analysis. A general constitutive model 
that simulates the general hysteretic features 
of wood systems and that is mathematically 
tractable in stochastic dynamic analysis is pre- 
ferred. Parameters ofthe new hysteresis model 
may be estimated from data obtained from 
previous tests of specific wood joints and as- 
semblies. 

Stochastic dynamic analysis 

There are two different approaches in eval- 
uating structural response to dynamic loads: 
deterministic, and nondeterministic or sto- 
chastic or random. The type of loading con- 
sidered in the analysis determines the kind of 
approach to use. When the loading is assumed 
as a known function of time (i.e., its time vari- 
ation is completely known at each time instant, 
also called deterministic dynamic loading), the 
method of analysis used to evaluate the re- 
sponse is called deterministic dynamic anal- 
ysis. When the loading is not completely known 
a priori but can be defined in a statistical sense 
(also called random loading or excitation), the 
corresponding analysis is defined as stochastic 
dynamic analysis. It is most popularly referred 

to as random vibration analysis in the litera- 
ture. 

The orthodox viewpoint in engineering de- 
sign "maintained that the objective of design 
was to prevent failure; it idealized variables as 
deterministic" (Newmark and Rosenblueth 
1971). The traditional approach was to make 
convenient assumptions that allow the use of 
"equivalent" static loadings and analysis (Cor- 
otis 1982) in place of the actual random dy- 
namic characteristics of natural hazard load- 
ings, such as earthquakes and high winds. Al- 
though actual recorded data of past earthquake 
and wind events have been used to analyze 
structural properties and behavior, this ap- 
proach is still strictly deterministic. A struc- 
ture that has been analyzed and designed based 
on only one or two earthquake or wind records 
may behave very differently when an earth- 
quake or wind event with different character- 
istics occurs; gross errors in analysis may lead 
to unsatisfactory design, e.g., the structure can 
collapse during an intense earthquake or have 
excessive sways in severe wind. 

In seismic analysis, a large number of strong 
motion earthquake records is necessary to es- 
timate response statistics. This approach is 
limited, however, by a relatively small number 
of available records of strong motion earth- 
quakes. Even if artificial accelerograms are 
used, the cost and effort needed to perform 
these time history analyses may be prohibitive. 
The random characteristics of natural hazard 
loadings and the corresponding structural re- 
sponse should be represented by stochastic 
mathematical models. Random vibration 
analyses proved useful in estimating response 
statistics of structures subjected to loadings 
modeled as random processes [e.g., Amin and 
Ang (1968); Wen (1980); Baber and Noon 
(1986); Soong and Grigoriu (1993); among 
others]. Kareem (1987) and Branstetter et al. 
(1988) provide excellent reviews of the prob- 
abilistic framework needed to compute the re- 
sponse statistics of structures to wind and 
earthquake, respectively, using random vibra- 
tion methods. With a reliable estimate of re- 
sponse statistics, one may then design a struc- 
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ture based on accepted levels of safety, mea- 
sured in terms of probability of failure. 

Research on the dynamic analyses of wood 
structures has, so far, been limited to deter- 
ministic approaches (Ceccotti 1989; Gupta and 
Moss 199 1) and has lagged behind advances 
in general structural dynamics. An appropriate 
hysteresis model for wood structures that is 
suited for both deterministic and random vi- 
bration analyses is clearly needed. 

Summary of basic requirements 
Response analysis of nonlinear dynamic sys- 

tems subjected to stochastic excitations basi- 
cally involves three elements: (I) a structural 
model with elements incorporating constitu- 
tive or hysteresis relations that best represents 
behavior under cyclic loading, (2) a stochastic 
process model that simulates natural hazard 
loadings, and (3) a solution technique that al- 
lows practical estimates of response of the 
structural system, modeled by (I), subjected 
to stochastic excitations, modeled by (2). These 
three elements are discussed next. 

DYNAMIC MODELING OF STRUCTURAL SYSTEMS 

Structures are continuous systems and as 
such have an infinite number of degrees of 
freedom (DOF). For analytical purposes, the 
structure is simplified by means of spatial dis- 
cretization of the continuum. The following 
discretization methods can be used in the dy- 
namic modeling of structures (Clough and 
Penzien 1993): (I) concentrated mass method, 
(2) generalized displacements method, and (3) 
finite element method. Use of any of these 
methods results in a discretized structural 
model with a finite number of DOF. The con- 
centrated mass method and the finite element 
method are most commonly used [see Foliente 
(1994) for a review of their use in dynamic 
analysis]. The resulting structural model should 
incorporate elements that exhibit the appro- 
priate hysteretic behavior. 

Hysteresis modeling 

Behavior of wood joints and structural sys- 
tems.-Dowrick (1986) collected cyclic test 

data of wood joints and structural systems in 
New Zealand, Japan, and North America and 
examined common hysteresis loops for timber 
structures. He noted that the hysteresis behav- 
ior of wood systems normally follows that of 
their primary connections. Stewart (1987) and 
Dolan (1989) corroborated this observation. 
(Compare, for example, the plywood shear wall 
behavior in Fig. Ic with the nailed plywood 
sheathing joint behavior in Fig. 2b.) Thus, for 
analytical purposes, Dowrick classified the 
hysteresis loops for timber structures, based 
on their shape characteristics, into joints with: 
(I)  yielding plates, (2) yielding nails, and (3) 
yielding bolts (Fig. 2). Similarities in the hys- 
teresis shapes of the dowel-type fasteners, i.e., 
nails and bolts, can be seen in Figs. 2b and c. 

Characteristic features of cyclic response 
typically observed in wood structural systems 
(e.g., Fig. 1) have been summarized (Foliente 
1995) as follows: (I)  nonlinear, inelastic load- 
displacement relationship without a distinct 
yield point; (2) progressive loss of lateral stiff- 
ness in each loading cycle (will be referred to 
as stiffness degradation); (3) degradation of 
strength when cyclically loaded to the same 
displacement level (will be referred to as 
strength degradation); and (4) pinched hyster- 
esis loops (i.e., thinner loops in the middle than 
near extreme ends). The response of wood 
joints (and wood structures, in general) at a 
given time depends not only on instantaneous 
displacement but also on its past history (i.e., 
the input and response at an earlier time). This 
is known as memory. Whale (1988) observed 
that nailed or bolted timber joints under ir- 
regular short or medium term lateral loading 
have memory. 

Proposed model. -Any hysteresis or consti- 
tutive model for timber structures should in- 
corporate experimentally observed character- 
istics such as those given above. All the avail- 
able models for wood systems use either a 
complex set of force-history rules or very lim- 
ited empirical relations. While these models 
satisfied some of the specific features of the 
joints or structural systems that they meant to 
model, they may be inappropriate for joints or 
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(a) joint with yielding 
plate (from 
Dowrick 1986) 

(b) joint with 
yielding nail 

(c) joint with yielding 
bolt (from 
Dowrick 1986) 

ho. 2. Typical hysteresis loops for common wood joints. 



116 WOOD AND FIBER SCIENCE, JANUARY 1996, V. 28(1) 

systems with different configurations and ma- 
terial components. A mathematical model, 
meeting all the criteria given above, is pre- 
ferred. Model parameters may be estimated 
from tests of representative wood joints or as- 
semblies. The hysteresis model proposed by 
Foliente (1995) is described next. 

The essence of the hysteresis model may be 
described with a single-degree-of-freedom 
(SDOF) system. The equation of motion ofthe 
SDOF system in Fig. 3 is generally written as 

where u = relative displacement of the mass 
rn with respect to the ground motion (dots 
designate derivatives with respect to time t, 
i.e., u = velocity and u = acceleration), c = 
linear viscous damping coefficient, F(t) = forc- 
ing function, 3,[u(t), z(t); t] = non-damping 
restoring force consisting of the linear restoring 
force aku and the hysteretic restoring force (1 
- a)kz, a = rigidity ratio, and z = hysteretic 
displacement. Dividing both sides of Eq. (1) 
by m, the following standard form is obtained: 

where to = system's linear damping ratio, wo 
= system's linear natural frequency, and f(t) = 

mass-normalized forcing function. The hys- 
teretic restoring force is given by the fourth 
term in Eq. (2) as (1 - a)wo2z. Since [(l - 
a)wo2] is a time-invariant system property, the 
hysteretic restoring force will also be referred 
to as z from here on. The constitutive law that 
relates the hysteretic restoring force z to dis- 
placement u is given by the following first- 
order nonlinear differential equation 

with pinching function 

where sgn(.) is the signum function [i.e., sgn(a) 
gives - 1, 0 or 1 depending on whether a is 

FIG. 3. Single-degree-of-freedom (SDOF) idealization 
of wood structural systems (from Foliente 1995): (a) truss 
frame, (b) shear wall, (c) SDOF mechanical model. 

negative, zero or positive, respectively], z, is 
the ultimate value of z given by 

I/" 

(5) 

and 

The hysteresis model parameters are sum- 
marized in Table 1, and their effect on hys- 
teresis shape was discussed by Foliente (1993). 
Tlie constitutive law given by Eq. (3) is based 
on a modified "endochronic" model of the 
force-displacement relations. The hereditary 
restoring force model satisfies the requirement 
that the response depends not only on instan- 
taneous displacement but also on its past his- 
tory (referred to earlier as memory). 

Strength and stiffness degradation are mod- 
eled, respectively, by 

Pinching and strength and stiffness degrada- 
tion are controlled by the hysteretic energy dis- 
sipation 

c = (1 - a)wo2 JI" z" dt. (9) 

The foregoing niodel is a generalization of 
the models proposed by Bouc (1967), Wen 
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TABLE I. Tabukafed~umma~y ofhysteresis modelparam- 
efers. 

PamOIC1Cr Dsfinition 

System properties and hysteresis shape parameters 
oo (radlsec) natural frequency of the structural sys- 

tem 
€0 damping ratio of the structural system 
01 rigidity ratio; a weighting constant repre- 

senting the relative participations of 
the linear and nonlinear terms (0 < ol 
< 1) 

8, Y parameters that control the basic hyster- 
esis shape @ > 0) 

n parameter that controls hysteresis curve 
smoothness 

Degradation parameters 

6. parameter that controls strength degra- 
dation 

4 parameter that controls stiffness degra- 
dation 

Pinching parameters 

f l  parameter that controls the severity of 
pinching; depends on the values of TI, 
and p 

h parameter that controls the rate of 
pinching; depends on the values of (1, 

Yo, 6, and A 
i-10 measure of total slip (e.g., fl, = 0.98 

means a high pinching system and TI, 
= 0.70 means a low pinching system) 

9 percentage of ultimate restoring force 2, 

where pinching (or slipping) occurs 
P parameter that controls the rate of initial 

drop in slope 
90 parameter that contributes to the 

amount of pinching 
6, parameter specified for the desired rate 

of change of fz based on f 
h parameter that controls the rate of 

change of rZ as rl changes 

(1980), Baber and Wen (1981), and Baber and 
Noori (1986), and is called the modified Bouc- 
Wen-Baber-Noon (BWBN) model (Foliente 
1995). It satisfies all the experimentally ob- 
served features of hysteretic behavior of wood 
joints and structural systems, namely, (1) non- 
linear hysteresis, (2) stiffness degradation, (3) 
strength degradation, and (4) pinching. 

The model is very flexible and can actually 
produce a wide variety of hysteresis shapes to 
model the behavior of hysteretic degrading 

Fro. 4. Possible hysteresis shapes, n = 1 

systems with general pinching behavior (such 
as reinforced concrete structures, braced steel 
frames, and laterally loaded piles), if the pa- 
rameters in Table l are varied. Figure 4, for 
example, shows some possible hysteresis shapes 
for various combinations of 8 and y values. 

Model ver$cation.-Foliente (1995) esti- 
mated the model parameters of three common 
wood joints to represent the major hysteresis 
types for timber structures that Dowrick (1986) 
identified. Figures 5a, b, and c show the hys- 
teresis shapes produced by the model when Kt) 
is taken as a sinusoidal function of the form 
Kt) = (a, + a,t)sin(ot), where the q s  are spec- 
ified constants and o is the excitation frequen- 
cy. Note that to get the exact hysteresis shapes 
and response values as shown in Fig. 2, com- 
plete information about connection materials, 
test set-up, and the forcing function that was 
used in testing is needed. Since most of this 
information is not known, the focus should be 
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Restoring Force, z 

model for joint 
with yielding plate 

Restoring Force, z 
1.2 

I I 

(b) model for 
joint with 
yielding nail 

Restoring Force, z 
1.2 I I 

(c) model for joint 
with yielding bolt 

FIG. 5. Hysteresis loops produced by the modified BWBN model (from Foliente 1995) 
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Fro. 6.  MDOF idealization of a multi-storey timber 
building. 

only on modeling the basic hysteresis shape of 
the joints in Fig. 2; thus, no specific force and 
displacement units are considered. 

Comparison of model hysteresis (Fig. 5) with 
experimental hysteresis (Fig. 2) shows that the 
proposed model reasonably mimics the basic 
hysteresis shape of test data. The slight dis- 
crepancy in the hysteresis shapes of the yield- 
ing bolt joints (Fig. 2c vs. Fig. 5c) may be 
attributed largely to different forcing functions 
used in the test and the analysis. Even then, 
the basic behavior of the bolt joint can be ob- 
served in the model hysteresis. 

Incorporation of the hysteresis model into a 
nonlinear dynamic analysis computer program 
for SDOF systems is relatively straightfor- 
ward. System response from arbitrary dynam- 
ic loading, such as cyclic or earthquake-type 
loadings, can be computed (Foliente 1995). 

Structural modeling 

A single-degree-of-freedom model is, in some 
cases, sufficient to obtain a basic understand- 
ing of the dynamic behavior of a structural 
system. Figure 3 shows an SDOF dynamic 
model idealization of a trussed wood-frame 
and a wood shear wall. Stewart (1987) and 
Kamiya (1988) performed time history anal- 
yses of wood-sheathed shear walls using an 
SDOF model that incorporates their hysteresis 
models. Stewart obtained hysteresis parame- 
ters from full-scale cyclic tests of the walls, 
while Kamiya obtained model parameters from 
pseudo-dynamic tests. GavriloviC and Gra- 

Fro. 7. Hysteresis frame discrete hinge model 

matikov (1991) also used an SDOF model to 
compute the dynamic response of a trussed- 
frame wood structure. The SDOF model for 
simple timber systems with the modified 
BWBN restoring force model is completely de- 
scribed by Eqs. (2) to (9). 

A more complex wood structure may be dis- 
cretized, to form a multi-degree-of-freedom 
(MDOF) system, as a weak column system 
("shear-beam"), a strong column system, or a 
more general discrete hinge system where plas- 
tic hinges, due to local plastic deformation, are 
allowed to form only at columns, only at beams, 
or both. 

In a shear-beam or shear building model, 
the simplest MDOF model possible, there are 
as many DOFs as it has lumped masses at the 
floor levels. Rotation at the girder-to-column 
joint is suppressed, and the rigid beadgirders 
remain horizontal during ground motion. De- 
spite these limitations, shear building models 
provide enhancements that make them pref- 
erable to alternative SDOF models. A two- 
story timber building shown in Fig. 6a, for 
example, is better represented by a three-de- 
gree-of-freedom (3-DOF) shear building than 
by an SDOF model. Sakamoto and Ohashi 
(1 988) used a shear building model to compute 
the seismic response of one-, two- and three- 
story conventional Japanese wood houses. 
Foliente (1995) formulated an MDOF shear 
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building model with the modified BWBN hys- 
teresis model as story restoring force. 

In a strong column system, the hysteresis 
model can be used as overall restoring mo- 
ment. In discrete hinge idealization, yielding 
is confined at certain regions, e.g., joints, that 
incorporate the modified BWBN constitutive 
relations (Fig. 7). Since rotation of the joints 
is allowed, in addition to story displacements, 
this is a better representation of the structural 
frame. More DOFs are, however, required. 
Ceccotti and Vignoli (1991), Kikuchi (1994), 
and Komatsu et al. (1 994), among others, used 
frame models with semirigid joints in deter- 
ministic static and dynamic analyses. Foliente 
is currently modeling hysteretic timber frames, 
e.g., glulam and heavy timber frames, using 
the discrete hinge concept for random vibra- 
tion analysis. 

Wood structures and structural systems have 
been modeled using finite elements in deter- 
ministic dynamic analysis. Dolan (1989), for 
example, used a combination of plate, framing, 
and connector elements to model wood shear 
walls. Lee (1987) used a composite-beam finite 
element as a key component of a wood-framed 
building model for seismic analysis. Recent 
attempt has been made to develop a three- 
dimensional finite element model of light- 
frame wood buildings for deterministic dy- 
namic analysis (Tarabia and Itani 1994). The 
parent form of the modified BWBN hysteresis 
model proposed herein has also been used in 
nonlinear random vibration analysis using fi- 
nite elements (Simulescu et al. 1989). 

The relative advantages and disadvantages 
of the preceding structural modeling tech- 
niques are discussed by Foliente (1994). Each 
modeling technique plays an important role in 
obtaining a better understanding of the dy- 
namic behavior of structures, in general, and 
timber structures, in particular. The choice of 
an appropriate structural model should be 
made to meet clearly defined analysis objec- 
tives. Careful considerations in the discreti- 
zation of, assigning DOFs in, and selecting an 
effective method of reducing dynamic matrices 
for wood structures are necessary to strike a 

balance between accuracy and computational 
efficiency. This is especially important if-go- 
ing beyond deterministic solutions-we are in- 
terested in studying the nonstationary re- 
sponse statistics of the structure under sto- 
chastic excitations. 

STOCHASTIC MODELING OF NATURAL 

HAZARDLOADS 

Earthquake ground motions are generated 
through numerous random phenomena-seis- 
mic waves from the hypocenter undergo a very 
large number of reflections and refractions, 
which are influenced by the unordered loca- 
tions of geological stratifications (Augusti et al. 
1984). Winds of random characteristics are 
produced when the atmospheric flow system- 
influenced by the earth's rotation, topography, 
reflective and thermal properties ofthe earth's 
surface, cloud cover, precipitation, etc.-in- 
teracts with other factors that lead to energy 
cascades from large- to small-scale motion 
(Kareem 1987). Thus, earthquakes and winds 
may be modeled as random processes. A ran- 
dom process is a parametered random vari- 
able. A random process, say X(t), represents a 
large number of possible time functions, none 
of which are exactly alike. A particular real- 
ization (or time history) of this process is a 
sample function ofthe underlying random pro- 
cess; an ensemble of the process is a collection 
or family of such sample functions (Ang 1974) 
as shown in Fig. 8. 

A random process is normally described by 
its probabilistic nature, which is normally lim- 
ited to the "two point" probability law, i.e., 
probabilistic information based on a pair of 
random variables X(t,) and X(t,) at any two 
time instants t,  and t,. These descriptors are 
further limited to the mean value function 
E[X(t)] and the autocorrelation function Rxx(t,, 
t,) = E[X(t,)X(t,)], where E[.] is the expected 
value. A stationary random process has an au- 
tocorrelation function that depends only on 
time lag r = t, - t ,  and not on actual time 
instants t, and t,. Its mean remains constant 
with time. 

For a stationary Gaussian random process, 



Folrente et a/-WOOD STRUCTURES UNDER NATURAL HAZARD LOADS 121 

FIG. 8. Ensemble of a random process, X(t). 

the mean value and autocorrelation functions 
are sufficient to completely describe the pro- 
cess. Since earthquake motions are usually as- 
sumed as a zero mean Gaussian process, the 
information about the autocorrelation func- 
tion is adequate. In seismic analysis, the use 
of the Power Spectral Density (PSD) function, 
a representation of the same random process 
in the frequency domain, rather than the au- 
tocorrelation function is preferred. PSD func- 
tion, Ox(w), and autocorrelation function, 
RXX(r), are Fourier transform pairs: 

where w is the frequency of the random process 
X(t). 

A stationary Gaussian process, also known 
as white noise, is most often used in stochastic 
modeling of seismic ground motions and winds. 
It has the following characteristics: 

where 6 is the Dirac delta function, giving a 
sharp impulse at r = 0. Although actual earth- 

quakes are nonstationary and do not have a 
flat power spectrum like a white noise, it may 
be satisfactory for wide band excitation (i.e., 
when the excitation spectrum varies slowly in 
the vicinity of the structures's natural fre- 
quency). Filtering and modulation of the input 
excitation can be easily incorporated in the 
model [e.g., Baber and Wen (1 98 I)]. 

The most common filter transfer function 
for stationary filtered white noise excitation is 
that proposed by Kanai (1957) and Tajimi 
(1960). Application of this filter gives the fol- 
lowing Kanai-Tajimi power spectral density: 

where w, and [, are the dominant frequency 
and damping, respectively, of the ground 
through which the seismic wave propagates. 
This gives a better approximation of the spec- 
tral power distributions in actual earthquakes. 
To obtain a nonstationary filtered white noise 
random process, the stationary filtered white 
noise may be multiplied by a specified time 
varying function [e.g., Amin and Ang (1968); 
Shinozuka and Sato (1967), among others]. 

A number of other stochastic models for ar- 
tificial ground acceleration has been developed 
and successfully applied to a variety of struc- 
tural dynamics problems. Shinozuka and Deo- 
datis (1988) and Kozin (1988) provide exten- 
sive reviews of currently available models, in- 
cluding those based on: (1) filtered white noise 
processes, (2) filtered Poisson processes, (3) 
spectral representation of stochastic processes, 
(4) stochastic wave theory, and (5) auto-re- 
gressive moving average (ARMA) models. 
Shinozuka and Deodatis (1988) provided the 
mathematical expressions for the first four 
models along with comments on their useful- 
ness, advantages, and disadvantages, while 
Kozin (1988) discussed the features and cur- 
rent developments in ARMA model proce- 
dures for earthquake engineering applications. 

Kareem (1987) reviewed strategies for nu- 
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merical simulation of wind effects using a 
Gaussian white noise process, fast Fourier 
transform techniques, and ARMA models. 

NONLINEAR RANDOM VIBRATION ANALYSIS 

An analytical solution of differential equa- 
tions, representing nonlinear dynamic sys- 
tems, is difficult. Powerful methods of linear 
system theory, such as the normal mode ap- 
proach and the convolution integral, cannot 
be applied because the principle of superpo- 
sition does not apply to nonlinear problems. 
Hysteretic systems, which have multivalued 
functions in the equations of motion, make an 
exact solution even more difficult to obtain. 
Thus, many researchers use approximate so- 
lutions, which may fall under one of the fol- 
lowing broad categories (Branstetter et al. 1988; 
Foliente 1993; Soong and Grigoriu 1993): (1) 
Markov methods, (2) perturbation and func- 
tional series methods, (3) moment closure, (4) 
statistical or stochastic equivalent lineariza- 
tion, (5) equivalent nonlinear equations, and 
(6) simulation methods. Other methods (e.g., 
associate linear system approach, and decom- 
position method of Adomian) have been pro- 
posed, but the equivalent linearization tech- 
nique is the one that has been most extensively 
used and is probably the most useful from an 
engineering point of view. This technique gives 
reasonably good results for even strongly non- 
linear systems, be it of the geometric or ma- 
terial source, and is easily extended into the 
analysis of MDOFsystems (Wen 1988). These 
make equivalent linearization the clear choice 
over other approximate methods in nonlinear 
random vibration analysis of complex MDOF 
systems. The other methods tend to involve 
severe analytical difficulty and/or excessive 
computational requirements in dealing with 
these types of problem. 

Herein, Monte Carlo simulation (MCS) and 
the equivalent linearization technique are used 
to obtain the response statistics of an SDOF 
wood system with a hysteresis behavior given 
by Eqs. (2) to (9) and subjected to a Gaussian 
white noise process (Eq. I I). In the former, a 
large number of sample functions of the ex- 

citation process is generated; then the corre- 
sponding sample function of the response is 
computed for each sample excitation. [Each 
deterministic solution follows that given in 
Foliente (1 995).] Response statistics are com- 
puted from the ensemble of response func- 
tions. MCS results are typically used as the 
basis in evaluating the accuracy of other ap- 
proximate solutions. 

Stochastic equivalent linearization 

Although the equivalent linearization tech- 
nique had been extensively used to solve non- 
linear random vibration problems, solution for 
highly nonlinear cases-as seen in seismic 
loadings-requires an iterative procedure and 
assumption of slowly varying response param- 
eters (known as the Krylov-Bogoliubov, KB, 
assumption). The special form of Eqs. (2) to 
(9) allows the closed form linearization of the 
equations, without resorting to the KB as- 
sumption. This is ideal because this assump- 
tion: (1) is equivalent to assuming a narrow 
band process (i.e., a random process with sig- 
nificant power spectral density values over a 
narrow frequency band around a central fre- 
quency) "while it is known that the response 
ofhysteretic systems is wide band" (Baher and 
Wen 1981); (2) prohibits drifts in the system; 
and (3) may seriously underestimate the root 
mean square (RMS) response (Wen 1988)-or 
in the present case, the response standard de- 
viation. 

A brief overview of the equivalent lineari- 
zation procedure is described next. Details of 
the solution procedure for systems with the 
modified BWBN restoring force model can be 
found in Foliente (1993) and Foliente et al. 
(1996). 

The nonlinear equation of motion, Eq. (I), 
is replaced by an equivalent linear system as 
follows: 

mii + c,u + ak,u + (1 - o))hz=F(t) (13) 

where c. and k, are determined by the require- 
ment that the mean square error E[e2] is min- 
imized, where 
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FIG. 9. Sample hysteresisplot ofa  SDOF wood system 
under white noise excitation. 

- [mu + c,u + ak.u + (1 - a ) k ~ ] .  (14) 

This error is a random process. If the mean 
square error is minimized, we obtain 

By substituting Eq. (14) into Eq. (15), the co- 
efficients of the equivalent linear system can 
be solved. Since c, and k, are functions of the 
response statistics, an iterative procedure is 
required to solve the covariance equation that 
is derived from Eq. (13), after further mathe- 
matical manipulation. The iterative process is 
repeated until a desired convergence is 
achieved. The nonstationary mean square re- 
sponses (or variances) are elements of the zero 
mean time lag covariance matrix, i.e., 

02,, = E[uZ] 

a2. = E[u2] 

oz, = E[z2]. (16) 

Numerical studies 

Consider an inelastic SDOF wood building 
whose response is governed primarily by ply- 

TABLE 2. White noise excitation intensity levels [g = ac- 
celeration ofgravity (32.2ff/sec2); I Ji = 0.305 m/. 

White noise level Average peak accclemdon 
% (bwd on 500 simvlation ~ r n ~ l c d  

1 .O 0.96 g 
0.5 0.68 g 
0.1 0.31 g 

wood shear walls and with hysteresis similar 
to that in Fig. 5b. Three levels of white noise 
excitation (So = 0.1, 0.5 and 1.0; see Table 2) 
are used to obtain the zero time lag covariance 
matrix response, starting with zero initial con- 
ditions. Figure 9 shows a sample response of 
an SDOF high degrading, high pinching wood 
system to a white noise input. Figures 10a to 
d show comparisons of MCS and linearization 
results. The nonstationary response statistics 
from MCS are computed based on two hun- 
dred response samples. 

Figure 10a shows that linearization results 
generally agree with MCS results. The former, 
however, tends to slightly underestimate root 
mean square (RMS) displacements, nu, from 
time t = 15 to 45 seconds at high excitation 
level (So = 1.0). On the other hand, RMS ve- 
locities, a,, RMS restoring forces, oz, and mean 
dissipated energy, a, are estimated very close- 
ly at all excitation levels as shown in Figs. lob 
to d. 

Thus, for practical purposes, the equivalent 
linearization technique may be used to obtain 
RMS responses of a hysteretic system under 
white noise excitation, in lieu of the Monte 
Carlo simulation. This is important since Spa- 
nos (1981) has estimated that for typical en- 
gineering applications involving SDOF sys- 
tems, the computational efficiency of the 
equivalent linearization method is of the order 
of one hundred (lo2) to one thousand (lo3) 
times greater than that of the approach based 
on simulation. The significance of the com- 
putational superiority of equivalent lineari- 
zation increases with (1) increasing number of 
response samples generated for the Monte Car- 
lo study, (2) decreasing values of the damping, 
and (3) increasing dimension of the structural 
system. 
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FIG. 10. Nonstationary response of a SDOF system under stationary white noise input: (a) root mean square (RMS) 
displacement, (b) RMS velocity, (c) RMS restoring force, and (d) mean energy dissipation. 

DESIGN RESPONSE VALUE CALCULATION 

The design responses of interest, such as dis- 
placement at the roof level, member forces, 
floor acceleration, etc., are obtained by: (1) cal- 
culating the response standard deviations, a or 
RMS, and (2) amplifying the standard devia- 
tions by a peak factor, F,. Two methods of 
calculating RMS responses were demonstrated 
in the previous section. Here, a simple method 
ofobtaining a maximum design resDonse value 
is presented. It should be emphasized that this F,O. I 1. ~i~~ crossing ofmaximum response u,, in 
represents the probable maximum response of time td. 
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the system from an ensemble of possible ground 
motion histories. 

Consider mass displacement, u, ofthe SDOF 
wood system as the response of interest. If a 
maximum response level, +Urn,, is assumed 
and a small probability, p,, of exceeding this 
value in time t, (Fig. 11) is allowed, we can 
obtain Urn, as 

where Fp is the peak factor, given by 

if the excursions are assumed as a Poisson pro- 
cess. If the calculation results in Fp = 3, the 
design response value Urn, is 3 standard de- 
viations higher than the mean response. 

If, on the other hand, the interest is to know 
the probability po that the system displace- 
ment will exceed a specified level *Us in the 
time interval 0 5 t 5 t,, then Eqs. (17) and 
(1 8) can be recast to obtain 

This shows that the distribution of the maxi- 
mum displacement in t, is of the double ex- 
ponential form and, therefore, is a Type I ex- 
tremal distribution (Ang 1974). 

Other approaches in system performance and 
safety evaluation using random vibration re- 
sults are discussed in Foliente (1 993) and Soong 
and Grigoriu (1993). 

SUMMARY 

Key concepts of stochastic structural dy- 
namics were introduced, and basic require- 
ments needed for response analysis of wood 
structures against natural hazards were re- 
viewed. A method for stochastic dynamic 
analysis of wood structures, which allows in- 
vestigations into their performance and safety 
under natural hazard loadings such as earth- 
quakes, was presented. 

Single-degree-of-freedom wood structural 

systems were modeled by a hysteretic consti- 
tutive law that produces a versatile, smoothly 
varying hysteresis. It models previously ob- 
served behavior of wood joints and structural 
systems, namely, (1) nonlinear, inelastic be- 
havior, (2) stiffness degradation, (3) strength 
degradation, and (4) pinching. The constitu- 
tive law takes into account the experimentally 
observed dependence of wood joints' response 
to their past history (or memory). Hysteresis 
shapes produced by the proposed model com- 
pare favorably with experimental hysteresis of 
wood joints with: (1) yielding plates, (2) yield- 
ing nails, and (3) yielding bolts. The hysteresis 
model can produce a wide variety of hysteresis 
shapes, degradations, and pinching behavior 
to model a whole gamut of possible combi- 
nations of materials and joint configurations 
in wood systems. Continued evolution of 
wood-based products, fasteners, and use of 
wood-based products need not be a problem, 
as long as hysteresis data from tests of repre- 
sentative wood joints or structural systems are 
available, from which model parameters can 
be estimated. 

Subjected to stochastic excitations modeled 
by a Gaussian white noise process, the non- 
stationary response statistics of an SDOF wood 
building with plywood shear walls were ob- 
tained by Monte Carlo simulation and sto- 
chastic equivalent linearization. It was shown 
that the use of equivalent linearization tech- 
nique is sufficient in obtaining relevant re- 
sponse statistics that can be used in calculating 
design response values. The response analysis 
technique is general and can be applied not 
only in random vibration analysis of wood 
structural systems but also in the analysis of a 
wide variety of hysteretic systems with general 
pinching behavior. It can also be applied to 
multi-degree-of-freedom systems, as long as 
appropriate structural models are available and 
appropriate hysteresis model parameters for 
these systems are known. 

This is the first time random vibration tech- 
niques have been usedin studying the response 
ofwood structures under natural hazards. This 
will hopefully help narrow the gap between 
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advances in general structural dynamics and 
those in structural wood engineering. This nu- 
merical tool can be used to perform various 
kinds of sensitivity and parametric studies of 
wood structural systems subjected to an en- 
semble of ground motion histories, even if we 
have a only limited set of experimental data. 
Future work includes the application of me- 
chanical control theory in systematically iden- 
tifying hysteresis model parameters from test 
data, extension of the present work to multi- 
degree-of-freedom systems, dynamic reli- 
ability analysis and first-passage studies, and 
seismic damage analysis of timber structures. 
Thus, with the proposed hysteresis model for 
wood structural systems and the successful ap- 
plication of stochastic equivalent linearization 
in nonlinear random vibration analysis of these 
systems, a number of future research oppor- 
tunities in the area of analysis and design of 
timber structures against natural hazards has 
opened. 
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