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ABSTRACT 

Localized modulus of elasticity (MOE) and tensile strength (T) were modeled for two visual grades 
of Douglas-fir laminating lumber. These material property models will be used as input to other 
structural analysis models that predict the strength and reliability of glued-laminated beams. Tensile 
strength and MOE are important material properties since most glued-laminated (glulam) timber beam 
failures initiate in the tension zone. Localized MOE and T exhibited significant within-piece variability 
as well as between-piece variability. These localized properties were also spatially correlated. A method 
that uses a transformation of the multivariate normal distribution was developed to simulate these 
localized properties for lumber up to 8-ft long. This method preserved the probability distributions 
of localized MOE and T as well as the spatial correlations between the localized property values. 
Procedures were described for expanding the model to simulate boards of any length. The method 
was also used to simulate long-span tensile strength. Mean simulated tensile strengths compared 
favorably with test results. Test results also confirmed a reduction in tensile strength as test span 
increased. 

Keywords: Modulus of elasticity, tensile strength, laminating lumber, spatial variability, stochastic. 

INTRODUCTION 

The design of engineered wood structures, such as trusses and glued-laminated 
beams, is governed by the mechanical properties of their individual components. 
Tensile strength (T) of the lower truss chord or tension lamination can be the 
critical design parameter in long-span trusses or glued-laminated timber beams, 
respectively. Deflection of the truss or beam, which is a function of modulus of 
elasticity (MOE), can also be the critical design criterion in many applications. 

If the MOE and T of the constituent lumber are known with certainty, the 
structural design process is straightforward. Unfortunately, the biological nature 
of wood causes wide variations in these two lumber properties. Variability in 
MOE and T exists between each piece of lumber and within each piece of lumber. 
This wide variation in strength and stiffness characteristics complicates the design 
process and leads to uncertainty in the performance of the total wood structure. 
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Reliability-based design techniques allow the designer to account for this vari- 
ability in structural performance. This design method requires accurate statistical 
characterization of the strength of the structural member. Unfortunately, the time 
and expense required to destructively test a sufficient sample of trusses or beams 
would be prohibitive. One solution to this testing dilemma is to use computer 
simulation. Monte Carlo simulation has been used to predict reliability of many 
engineered wood structures, such as glued-laminated timber beams (Foschi and 
Barrett 1980; Glos and Michel 1983; Bender et al. 1985; Ehlbeck et al. 1985a, b; 
Schaffer et al. 1986). Although there are differences in the structural analysis 
techniques employed in these models, one common attribute of these analyses is 
that they require accurate information on localized strength properties of the 
individual components (or elements) of the structural member. 

Most current models of lumber material properties are based on data that were 
collected from long-span tests; i.e., they account only for variability between 
different pieces of lumber. These models do not account for the variation of 
material properties within a given piece of lumber. However, this within-piece 
variability information is critical for structural analysis techniques that require 
localized properties of individual elements, such as the finite element method. 

Within-piece, or spatial, variability of MOE and T was recently investigated 
by Kline et al. (1986) and Showalter et al. (1987) for two grades and two sizes of 
southern pine lumber. Further research is needed to model spatial variability of 
localized MOE and T for other important species and grades of lumber that are 
used in engineered wood components, such as glued-laminated timber beams. 

The objectives of this research were: 

1. To characterize localized MOE and T properties in two visual grades of 
Douglas-fir laminating lumber. 

2. To develop a stochastic model for simulating localized MOE and T. This 
model can be used as input to structural analysis models that predict the 
reliability of glued-laminated beams. 

BACKGROUND 

Since most failures of glulam beams initiate in the tension zone, special grades 
of lumber have been developed for use as tension laminations in these beams 
(AITC 1987). Several studies (Marx and Evans 1986, 1988; Wolfe and Moody 
198 1) have investigated characteristics of MOE and T for high quality southern 
pine and Douglas-fir laminating lumber suitable for use as tension laminations. 
As in many other investigations, these studies of lumber strength properties em- 
phasized long-span values of tensile strength and MOE. 

Strength reducing characteristics in lumber, such as knots and grain deviations, 
can cause variation in strength and stiffness within pieces of lumber. A few studies 
have addressed the problem of lengthwise variability in the mechanical properties 
of lumber. However, much of this research emphasized relating lumber strength 
to the minimum stiffness within the piece of lumber and therefore was performed 
to develop more improved methods of lumber grading (Corder 1965; Kass 1975; 
Bechtel 1985; Foschi 1987). These studies were primarily concerned with pre- 
dicting long-span strength and did not address techniques for modeling localized 
stiffness and strength. 
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Kline et al. (1986) investigated the lengthwise variability of MOE along 30- 
inch segments of southern pine lumber. They found that 30-inch segment values 
of MOE within each piece of lumber were serially correlated. They developed a 
second-order Markov, or second-order autoregressive, model to simulate the 
lengthwise variability of MOE. 

Showalter et al. (1987) expanded the work of Kline by modeling spatial vari- 
ability of T as well as MOE for two grades and two sizes of southern pine lumber. 
Showalter combined the Markov MOE model presented by Kline with a regression 
approach developed by Woeste et al. (1979) that related MOE to T. Within the 
regression approach, Showalter modeled the regression residuals as a parallel 
Markov process. 

A new approach for simulating long-span correlated lumber properties was 
developed by Taylor and Bender (1988). This approach used a transformation of 
the multivariate normal distribution and could be extended to as many variables, 
or properties, as desired. This method exactly preserves the probability distri- 
butions of each random variable and closely approximates the correlation between 
the variables. Taylor and Bender (1989) demonstrated how the method could be 
used to simulate multiple correlated lumber properties by simulating four spatially 
correlated values of localized MOE. This paper will build on the description of 
modeling MOE and extend the procedure to simulate both localized MOE and 
tensile strength. 

EXPERIMENTAL PROCEDURE 

Two high-quality, visual grades of Douglas-fir laminating lumber were studied: 
302-24 and L1. Lumber was sampled from five laminators. Each laminator sup- 
plied 100 randomly selected 14-ft 2 by 6's from each of the two grades as they 
were graded by the laminating plant grader. This sampling scheme was intended 
to produce a representative sample of the type of lumber being used in the man- 
ufacture of glulam timber beams. The 302-24 and L1 groups of lumber, when 
combined, contained 500 and 502 boards, respectively. 

All testing procedures followed ASTM Standards Dl98 and D4761 (ASTM 
1989a, b) and are summarized as follows: 

1. The lumber was conditioned to a moisture content of approximately 12%, 
(dry-basis). Length, width, depth, moisture content, and weight were then 
recorded for each board. Location and size of knots were also recorded for 
each board. 

2. Localized MOE was measured on 4 contiguous 2-ft segments within each 
board using flatwise bending over a 6-ft span with third-point loading (the 
maximum applied load was 400 pounds). The influence of shear was min- 
imized by measuring deflection relative to the load head, over the center 2- 
ft portion of the total 6-ft span. 

3. The lumber specimens of each grade were then randomly divided into 3 
groups with sample sizes of 300 boards, 100 boards, and 100 boards, re- 
spectively. 
a) The group with 300 boards was destructively tested in tension parallel- 

to-grain at two locations within each board using a 2-ft test span. These 
data were used to develop stochastic models of MOE and T. 
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FIG. 1 .  Sketch of 14-ft 2 x 6 shown with numbering scheme for 2-ft segments. Also shown is the 
graphical illustration of the transformation from segment MOE and T values to the multivariate vector 
X = (x,, x,, . . . , xJT. - 

b) The remaining two groups (of 100 boards each) were destructively tested 
in tension at test spans of 5-ft and 7-ft, respectively. These data were 
used to validate the stochastic MOE and T models. 

The rate of loading for all of the tensile tests was approximately 4000 psi/ 
minute, resulting in failure times from 1 to 2 minutes. 

The 24-inch element length was chosen because of testing limitations related to 
the flatwise-bending and tensile strength measurements. The numbering scheme 
for the 24-inch segments is shown in Fig. 1. It is desirable to obtain tensile strength 
measurements for each of the four segments; however, this was impossible since 
space had to be allowed for the grips of the tension machine. Furthermore, there 
was a possibility that specimens could split during a test and damage adjacent 
segments. Because of these constraints, the lumber was cut in half, and tensile 
strengths were obtained for Segments 1 and 4. 

LABORATORY TEST RESULTS 

Summary statistics for localized MOE and T are listed in Table 1 for each grade 
and supplier. Multivariate analyses of variance (MANOVA) were performed on 
the localized MOE and T data to determine if there were significant differences 
in the properties of the lumber from the different laminators. The MANOVA 
tests indicated significant differences (at a significance level of 0.0 1) in the prop- 
erties of lumber from the various laminators. Hence, it may be advisable to use 
varying statistical characteristics of lumber to simulate mill variation when mod- 
eling glulam beam performance. Therefore lumber property statistics are reported 
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TABLE 1. Test results for 2-3 segment modulus of elasticity (MOE) and tensile strength parallel-to- 
grain (T). 

Tensile strength 
Modulus of elasticity 

5% 
Standard Standard exclusion 

Sample Mean deviation Sample Mean deviation limit* 
Grade and supplier size (10' psi) COV (%) size (psi) cov (%) (PSI) 

302-24 A 240 2.609 0.332 12.72 117 10,303 3,051 29.61 5,294 
302-24 B 240 2.658 0.395 14.86 120 10,396 2,993 28.79 5,277 
302-24 C 240 2.221 0.463 20.85 120 10,513 2,437 23.18 7,055 
302-24 D 240 2.712 0.415 15.30 119 9,266 2,779 29.99 5,223 
302-24 E 240 2.427 0.367 15.10 119 8,937 2,595 29.04 4,762 

302-24 All 1.200 2.526 0.435 17.22 595 9.884 2.846 28.79 5.257 

L1 A 244 2.306 0.377 16.34 122 7,338 2,722 37.09 3,553 
L1 B 240 2.427 0.388 16.00 120 7,968 2,456 30.82 4,577 
L 1 C 240 2.198 0.339 15.41 120 7,378 2,249 30.48 4,261 
L 1 D 240 2.288 0.412 18.02 119 6,851 2,320 33.86 3,708 
L1 E 240 2.132 0.355 16.41 120 6,492 2,297 35.38 3,342 
L1 All 1,204 2.270 0.388 17.08 601 7,206 2,460 34.14 3,645 

Non-parametric fifth percentile at 50% confidence. 

in this paper for each supplier. However, to illustrate the simulation model, the 
data from all suppliers were combined into one group. 

Serial and cross-correlations in localized material properties were estimated 
from the test data for each of the laminators and each of the two grades as shown 
in Appendix 1. The lag-k correlation, pk, is the correlation between an observation 
from one segment and an observation from k previous segments. For example, 
the lag-2 MOE serial correlation refers to the correlation between the MOE's of 
Segments 1 and 3 and Segments 2 and 4. In general, the estimated lag-k serial 
correlation, jk, for a data set x(l), . . . x(n) is given by: 

n-k 

2 [x(i) - a][x(i + k) - n] 

where x(i) is the it, observation of X and is the sample mean. Similarly, the 
estimated lag-k cross-correlation for a data set x(l), . . . , x(n) and y(l), . . . , y(n) 
is given by: 

n-k  

2 Mi) - Xl[y(i + k) - 71 

The lag- 1, lag-2, and lag-3 serial correlations in localized MOE were estimated 
directly from the data since there were four observations of 2-ft MOE per board. 
Since there were only two observations of 2-ft T per board and since they were 
separated by two segments, only the lag-3 serial correlation in T was calculated 
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directly from the test data. Procedures for estimating the lag-1 and lag-2 serial 
correlation coefficients in T will be discussed in a succeeding section. Cross- 
correlation between localized MOE and T was calculated for lag-0, lag-1, lag-2, 
and lag-3. Additional details on estimation of the correlation coefficients can be 
found in Taylor (1 988). 

Significant serial and cross-correlation existed for localized MOE and T. For 
example, the lag-1, lag-2, and lag-3 MOE serial correlation coefficients for the 
302-24 lumber from all suppliers were 0.9581, 0.9277, and 0.8902, respectively. 
The lag-3 T serial correlation coefficient was 0.5 136. These high serial correlations 
can probably be attributed to the high quality of this laminating grade. The lag- 
0, lag-1, lag-2, and lag-3 MOE-T cross-correlation coefficients for the 302-24 
lumber were 0.40 15, 0.3603, 0.3407, and 0.3322, respectively. Overall, the lag- 
1 MOE serial correlation coefficients ranged from 0.89 56 to 0.9 5 8 1 for the various 
groups of lumber. Lag-3 T serial correlation coefficients ranged from 0.6637 to 
0.866 1 and lag-0 MOE-T cross-correlation coefficients ranged from 0.40 15 to 
0.7677. The serial correlation coefficients for MOE and T were similar to those 
reported by Kline et al. (1986) and Showalter et al. (1987). The lag-0 cross- 
correlation between MOE and T was similar to results reported by other research- 
ers (Doyle and Markwardt 1967) for similar quality lumber. 

SIMULATION OF LOCALIZED MOE AND T 

A multivariate statistical approach developed by Taylor and Bender (1 989) was 
used to model the localized MOE and T data. The following text describes how 
the multivariate method is applied to an 8-ft-long board comprised of four 2-ft 
segments. The four 2-ft segment MOE's shown in Fig. 1, denoted by X, through 
X,, and the four 2-ft segment T's, denoted by X, through X,, are treated as 8 
correlated random variables. The procedure can be used to generate random 
vectors Xcontaining observations of 8 correlated variables (x,, x,, . . .,x,)=. Hence, 
each random vector can be thought of as a single board with 4 observations of 
segment MOE's and 4 observations of segment T's. 

The procedure for modeling the correlated variables begins by estimating the 
parameters for the best fitting probability distributions for each variable, X,, X,, 
. . . , X,. These distribution functions, Fx,(x), Fx,(x), . . . ,Fx,(x) need not be 
normal. This step only involves fitting a distribution to the segment MOE's and 
the segment T's. It is assumed that the MOE's and T's of the different segments 
are identically distributed; therefore, one MOE and one T distribution is used to 
represent the properties of each segment. Appropriate goodness-of-fit tests should 
be performed on the hypothesized distributions. 

The second step in modeling the variables is to estimate the correlation matrix, 
2, for the variables X I ,  X,, . . . , X,. This step involves calculating the lag-0, lag- 
1, lag-2 and lag-3 serial correlation for the segment MOE's and the segment T's. 
It also involves calculating the lag-0, lag- 1, lag-2 and lag-3 cross-correlation be- 
tween segment MOE's and segment T's. The calculation of most of these corre- 
lation coefficients is straightforward. However, since it is not possible to determine 
the tensile strengths of Segments 2 and 3, or X, and X,, the lag-1 and lag-2 serial 
correlations for tensile strength could not be directly estimated from experimental 
data; only the lag-3 serial correlation could be estimated from the test data. 
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Showalter et al. (1987) used the assumption that tensile strength can be ap- 
proximated by a first-order autoregressive process [AR(l)], also referred to as a 
first-order Markov process. The autocorrelation function for the AR(1) model is: 

pk = p l k  for k > 0. (3) 

Equation (3) can be used to estimate the lag-1 and lag-2 serial correlation coef- 
ficients, p l  and p,, in tensile strength given the lag-3 serial correlation, p , ,  by: 

All of the correlation coefficients can now be substituted into the 8 x 8 correlation 
matrix, 2. The simulation procedure can proceed once the probability distribu- 
tions have been selected and the correlation matrix has been determined. 

Simulating the correlated variables begins by generating vectors from the mul- 
tivariate normal distribution using the localized MOE and T correlation matrix, 
Z. Although these vectors of lumber properties will have the correct spatial cor- 
relation structure, they will all be normally distributed. 

A transformation is used to convert the normally distributed observations to 
observations with the best fitting univariate distribution. The transformation 
begins by evaluating the standard normal cumulative distribution function for 
each component of each vector resulting in vectors of observations distributed 
uniformly between 0 and 1, i.e., U(0, I). These uniformly distributed vectors are 
then substituted into the appropriate inverse cumulative distribution function 
(either for MOE or for T) to obtain vectors of correlated observations from the 
correct univariate probability distributions. 

The transformation between the normal and non-normal distributions is dem- 
onstrated graphically in Fig. 2. Software is widely available for numerically in- 
verting distribution functions that cannot be expressed in closed form. Since all 
cumulative distribution functions are uniformly distributed between 0 and 1, the 
transformation exactly preserves each of the univariate distributions. This non- 
linear transformation results in simulated data with a correlation matrix that 
closely approximates the original matrix. Experience with numerous sets of lumber 
properties data indicates the the transformation has no significant effect on the 
original correlation matrix. 

SIMULATION RESULTS AND DISCUSSION 

Modeling localized MOE and T 

All of the 302-24 data were combined into one group to illustrate the simulation 
method. The three-parameter Weibull distribution provided the best fit for the 
segment MOE and T data from the 302-24 lumber. Figures 3 and 4 contain 
frequency histograms of the original data with overlays of the fitted probability 
density functions for MOE and T. Parameter estimates for the Weibull distri- 
butions are listed on the figures. Chi-square goodness-of-fit tests were performed 
on the fitted distributions. These distributions could not be rejected at the 0.10 
significance level. Distribution parameters for the lumber from each laminator 
and each grade are listed in Appendix 2. 
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FIG. 2. Illustration of the transformation from the normal distribution, @(y), to the non-normal 
distribution, F(x). 

The serial and cross-correlation coefficients listed in Appendix 1 were used to 
fill in the correlation matrix for input to the simulation procedure. All correlation 
coefficients were estimated from the test data except the lag-1 and lag-2 serial 
correlation coefficients for tensile strength. These coefficients were estimated using 
the assumption of a first-order autoregressive model discussed earlier. The com- 
plete set of original correlation coefficients is listed in Table 2. 

The algorithm presented earlier was used to simulate segment values of MOE 
and T for the 302-24 lumber. One thousand multivariate normal vectors of length 
8 were generated using the correlation matrix estimated from the test data. Then 
the normal cumulative distribution function was evaluated for the 8 components 
of each vector. This step resulted in vectors containing 8 correlated U(0, 1) 
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Actual Data 

Location = 1.070 x 1 o6 psi 
Scale = 1.61 2 x 1 o6 psi 

2.0 4.0 

2-ft MOE 
(million psi) 

FIG. 3. Frequency histogram with best fitting probability density function overlaid for 2-ft segment 
MOE. The lumber group contained 302-24 lumber from all suppliers combined. 

observations. These U(0, 1) observations were substituted into the appropriate 
inverse cumulative distribution functions for MOE and T. The result of this step 
was a set of 1,000 vectors containing 8 correlated components representing 1,000 
imaginary 8-ft long boards with 4 segment MOE's and 4 T's. This entire procedure 
was replicated 10 times so confidence intervals could be constructed for the 
simulated correlation values. 

Validation of the simulation procedure 

Probability distributions. -As previously mentioned, the multivariate approach 
is formulated to exactly preserve the distributions of each random variable. As 
an additional check, histograms of the simulated segment MOE's and T's with 
overlays of the original probability density functions are shown in Figs. 5 and 6 
for the MOE and T of the 302-24 lumber, respectively. Kolmogorov-Smirnov 
(KS) goodness-of-fit tests were used to test the hypotheses that the simulated data 
could have been a sample from the given probability distributions. Ninety-five 
percent confidence intervals were calculated for the values of the KS test statistics 
after the 10 replications. The confidence interval for the KS statistic for MOE 
was [0.01944, 0.034961. The confidence interval for the KS statistic for T was 
[0.02394, 0.031241. The critical KS statistic for n = 1,000, for a = 0.15, and for 
the case where all parameters are known is 0.03585. Therefore, since the upper 
bounds of both confidence intervals were below the critical value, both hypotheses 
could not be rejected at the 0.15 level of significance (it is easier to reject the null 
hypothesis as the sample size and the level of significance increase).These figures 
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Actual Data 

0.00 

0 4 8 12 16 20 

2-ft Tensile Strength 
(1 000 psi) 

Location = 2.565 x 1 o3 psi 
Scale = 8.21 8 x 1 0' psi 

FIG. 4. Frequency histogram with best fitting probability density function overlaid for 2-ft segment 
tensile strength. The lumber group contained 302-24 lumber from all suppliers combined. 

and hypothesis tests are confirmation that the random number generator func- 
tioned properly and that the algorithm exactly preserved the marginal distribu- 
tions. 

Correlation matrices. -The second step in the validation process was to deter- 
mine if the correlation matrix was preserved by the simulation procedure. Sample 

T-LE 2 .  Serial and cross-correlation coeficients from actual data, average correlation coefficients 
from simulated data, and 99% confidence intervals for the simulated correlation coefficients. The lumber 
group contained all of the 302-24 lumber. The maximum dttference between the simulated correlation 
coeficients and those from actual data was 1.8%. This dzfference is not practically signzjkant. 

Simulated correlation 
Mean correlation confidence limits 

Correlation from from slrnulated 
Correlation actual data data Lower Upper 

Serial MOE 
Serial MOE 
Serial MOE 
Serial MOE 

Cross MOE-T 
Cross MOE-T 
Cross MOE-T 
Cross MOE-T 

Serial T 
Serial T 
Serial T 
Serial T 

lag-0 
lag- l 
lag-2 
lag-3 

lag-0 
lag- 1 
lag-2 
lag-3 

lag-0 
lag- 1 
lag-2 
lag-3 
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Simulated Data 

2.0 4.0 

2-ft MOE 
(million psi) 

FIG. 5.  Frequency histograms of simulated 2-ft segment MOE for the 302-24 lumber. The original 
probability density function is overlaid. The close agreement between the simulated histogram and 
the original density function provides visual confirmation that the distribution was preserved. 

correlation matrices were calculated for each of the 10 replications of the simu- 
lation procedure. Table 2 contains original correlation coefficients, mean simu- 
lated correlation coefficients, and 99% confidence intervals for the simulated 
correlation coefficients for the 302-24 lumber. There is a close correspondence 
between the original correlation coefficients and the mean simulated correlation 
coefficients, with a maximum difference of 1.8%. 

Independent validation of the model. -The simulation model has been shown 
to accurately model the probability distributions of localized MOE and T as well 
as the correlation matrix of these localized properties. However, a more funda- 
mental test of the model involves validating the original assumptions on the spatial 
variation of MOE and T. For example, one question to ask is: was the use of the 
autocorrelation function from the first-order autoregressive model [Eqs. (4) and 
(5 ) ]  a valid method of estimating the lag- 1 and lag-2 serial correlations in localized 
tensile strength? If the model accurately simulated localized tensile strength, then 
it should have been possible to simulate long-span tensile strength as well. These 
simulated long-span tensile strengths could then be compared to the long-span 
tensile test data to validate the original assumptions of the model. 

Long-span tensile strength over a given span was defined as the minimum 
2-ft tensile strength within that span. Simulation results from the model were 
used to calculate long-span tensile strength for spans of 2 ft, 4 ft, 6 ft, and 8 ft. 
The mean simulated long-span tensile strengths for the 302-24 lumber are plotted 
versus length in Fig. 7. Ninety-nine percent confidence intervals for the mean 
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Simulated Data 
0.35 

0.00 

0 4 8 12 16 20 

2-ft Tensile Strength 
(1 000 psi) 

FIG. 6 .  Frequency histograms of simulated 2-ft segment tensile strength for the 302-24 lumber. 
The original probability density function is overlaid. The close agreement between the simulated 
histogram and the original density function provides visual confirmation that the distribution was 
preserved. 

tensile strength (from the test data) are also shown in this figure for the 2-ft, 
5-ft, and the 7-ft tensile test spans. 

Although all confidence intervals contain the curve of the simulated strength, 
the mean tensile strength of lumber tested at the 7-ft span is slightly lower than 
the curve of the simulated tensile strength. This apparent overprediction of 7-ft 
tensile strength by the simulation model may be due to an overestimation of the 
lag- 1 and lag-2 serial correlation in tensile strength or it may be due to sampling 
error in the actual 7-ft span test data. Overall, it appears that the simulation model 
accurately predicted long-span tensile strength for this set of lumber data. This 
procedure was repeated for all 302-24 and L1 lumber groups (Taylor 1988). The 
results showed that there was close agreement between the simulated and actual 
tensile strengths. Table 3 summarizes the results of the long-span tensile tests. 
These tables also confirm the significant reduction in tensile strength with in- 
creasing lumber length reported by Showalter et al. (1987). 

EXTENSION OF THE MULTIVARIATE MODEL TO SIMULATE 

LONGER LUMBER 

Extension of algorithm 

The localized MOE-T simulation model presented here was initially developed 
to simulate localized MOE and T for 8-ft long boards. However, Monte Carlo 
simulation models that determine glulam beam strength quite often need the 
properties of lumber that is longer than 8 ft. Therefore, the original localized 
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FIG. 7. Mean simulated long-span tensile strength versus lumber length for the 302-24 lumber. 

Ninety-nine percent confidence intervals for the actual mean tensile strength (from test data) are also 
shown. 

MOE-T simulation procedure was embellished to simulate the localized properties 
of lumber that were up to 20-ft long (boards composed of ten 2-ft segments). 

The embellishment of the model required the modification of the algorithm to 
generate vectors of length 20 i.e., X = (x,, x,, . . . , x,JT, instead of length 8. The 
new model treats the MOE's of Segments 1 through 10 as X, through XI, and 
the T's of Segments 1 through 10 as X l l  through X,,. The initial step in modeling 

TABLE 3. Tensile strength parallel-to-grain test results.for the lumber tested at spans of 5 f t  and 7ft. 

5-ft test span 7-ft test span 

Standard Standard 
deviation deviation 

Grade and suppl~er Sample size Mean (PSI) (psi) COV (%) Sample size Mean (psi) (psi) COV (%) 

302-24 A 20 9,884 2,843 28.76 20 8,391 2,369 28.23 
302-24 B 20 9,584 2,603 27.16 20 8,920 2,639 29.59 
302-24 C 20 9,249 1,721 18.61 20 8,295 2,499 30.13 
302-24 D 20 9,113 2,343 25.71 20 7,403 1,826 24.67 
302-24 E 20 7,675 2,521 32.85 20 6,002 2,120 35.32 
302-24 All 100 9,101 2,506 27.54 100 7,802 2,484 31.84 

L1 All 100 5,831 2,057 35.28 100 5,662 2,014 35.57 



5 14 WOOD AND FTBER SCIENCE, OCTOBER 1991, V. 23(4) 

the probability distributions of localized MOE and T remains the same as in the 
original model. Distributions only need to be fit to localized MOE (which will be 
used for XI through XI,) and to localized T (which will be used for X,,  through 
X20). 

The second step in modeling the variables, constructing the correlation matrix, 
required estimates of the lag- 1 through lag-9 MOE serial correlations, the lag-1 
through lag-9 T serial correlations, and the lag-0 through lag-9 MOE-T cross- 
correlations. However, no test data were available to directly estimate the lag-4 
through lag-9 correlations. One solution to this problem is to assume that these 
higher-lag correlations were equal to 0. However, this assumption is not very 
realistic since the previously discussed lag-0 through lag-4 correlations were so 
high. 

Another potential solution to the problem of estimating these higher-lag serial 
correlations in MOE and T is to estimate them using the autocorrelation functions 
for various order autoregressive models. The autocorrelation function for an 
AR(p) model requires knowledge of at least the lag- 1 through the lag-p correlations. 
Therefore, since only the lag-1 through lag-3 correlations of MOE were known, 
an AR(3) model is the highest-order model possible to use for estimating the 
higher-lag correlations. The autocorrelation function for an AR(3) model is written 
as: 

where: 

The higher-lag MOE correlations, which were estimated using the autocorrelation 
function for an AR(3) model and the original serial correlation coefficients from 
the test data, are listed in Table 4. 

The higher-lag tensile strength serial correlations were estimated from the lag-3 
T serial correlation by using the assumption of an AR(1) model as listed in Eqs. 
(4) and (5). These higher-lag serial correlation coefficients, p,, were calculated by: 

where p3 is the lag-3 T serial correlation. The estimated higher-lag tensile strength 
correlation coefficients are also listed in Table 4. 

The higher-lag MOE-T cross-correlation coefficients were estimated by a re- 
lationship presented by Matalas (1 967) that preserved the lag-0 cross-correlation 
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TABLE 4. Higher-lag correlation coeficients estimated from actual test data, mean correlation coef- 
ficients from simulated data, and 99% confidence intervals for the simulated correlation coefficients. 
The lumber group contained all of the 302-24 lumber. The maximum d~fference between the simulated 
correlation coefficients and those from the actual data was 5.7% (lag-9 T serial correlation). This 
difference is not practically significant. 

Simulated correlation 
confidence llmits 

Correlation from Mean correlation 
actual data from simulated data Lower Upper 

Serial MOE lag-0 
Serial MOE lag- 1 
Serial MOE lag-2 
Serial MOE lag-3 
Serial MOE lag-4 
Serial MOE lag-5 
Serial MOE lag-6 
Serial MOE lag-7 
Serial MOE lag-8 
Serial MOE lag-9 

Cross MOE-T lag-0 
Cross MOE-T lag- l 
Cross MOE-T lag-2 
Cross MOE-T lag-3 
Cross MOE-T lag-4 
Cross MOE-T lag-5 
Cross MOE-T lag-6 
Cross MOE-T lag-7 
Cross MOE-T lag-8 
Cross MOE-T lag-9 

Serial T lag-0 
Serial T lag- 1 
Serial T lag-2 
Serial T lag-3 
Serial T lag-4 
Serial T lag-5 
Serial T lag-6 
Serial T lag-7 
Serial T lag-8 
Serial T lag-9 

and the first-order serial correlation in MOE. These additional correlation coef- 
ficients were calculated by: 

where pMOE-,, is the lag-k MOE-T cross-correlation, pMOEk is the lag-k MOE serial 
correlation, and pM0,-,, is the lag-0 MOE-T cross-correlation. These estimated 
cross-correlations are also summarized in Table 4 for the 302-24 lumber data. 

Validation of embellished simulation model 

The ability of the model to preserve the original probability distributions of 
localized MOE and T has already been discussed. However, the modification of 
the correlation matrices made it necessary to confirm that the method preserved 
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these larger correlation matrices. Therefore, the simulation procedure was re- 
peated using the original localized MOE and T probability distributions and the 
new 20 x 20 correlation matrix. The procedure was carried out exactly as before, 
i.e., replicating the simulation procedure 10 times and simulating 1,000 boards 
per replication. Correlation matrices for the simulated MOE-T data were calcu- 
lated after each replication of the simulation procedure. The original correlation 
coefficients, the mean of the simulated correlation coefficients, and 99% confidence 
intervals for the simulated correlation coefficients are presented in Table 4 for 
the 302-24 lumber. All the original correlation coefficients fell within their re- 
spective 99% confidence intervals developed from the simulated data. 

Simulation results from this embellished model were also used to calculate long- 
span tensile strengths for spans up to 20 ft. Again, the mean simulated long-span 
tensile strengths fell within 99% confidence intervals for mean tensile strength 
from the 2-ft, 5-ft, and 7-ft test data. This comparison of simulated and actual 
mean long-span tensile strengths and correlation coefficients indicates that the 
embellished model is mathematically valid. However, additional test data are 
needed to determine the model's accuracy in predicting tensile strength at these 
longer test spans. 

CONCLUSIONS 

The goal of this study was to develop accurate stochastic models for simulating 
localized MOE and tensile strength in Douglas-fir laminating lumber. Accurate 
models of localized MOE and tensile strength are needed as input to Monte Carlo 
simulation models that predict the strength and stiffness of glued-laminated beams. 

One thousand 14-ft-long Douglas-fir 2 by 6's from 2 high quality laminating 
grades (302-24 and Ll) were tested to determine variation in localized MOE along 
the length of the lumber. Six hundred of these specimens were destructively tested 
in tension (at a 2-ft test span) in two locations along the board. The remaining 
specimens were destructively tested in tension at test spans of 5 ft and 7 ft. The 
lumber was sampled from five laminators. 

An approach for simulating multiple correlated lumber properties developed 
by Taylor and Bender (1989) was extended here to model the spatially correlated 
values of localized MOE and T for 8-ft long lumber. The method was illustrated 
for the 302-24 lumber data. The model preserved the probability distributions 
of MOE and T, and the correlation of the localized properties. In addition, the 
model was used to simulate long-span tensile strength for spans up to 8 ft. Sim- 
ulated mean long-span tensile strength compared favorably with actual long-span 
tensile test data at spans of 5 ft and 7 ft. The long-span tensile test results also 
confirmed earlier work by other researchers and showed a significant decrease in 
tensile strength as lumber length increased. 

The original simulation algorithm was embellished to allow the simulation of 
localized MOE and T for lumber up to 20 ft in length. Autocorrelation functions 
for various order autoregressive models were used to allow the estimation of 
higher-lag serial and cross-correlation coefficients. The revised simulation pro- 
cedure preserved the larger 20 x 20 correlation matrices and appeared to suc- 
cessfully predict long-span tensile strength. 

Additional research is needed to develop similar information and models for 
other grades and species groupings of laminating lumber. Further modeling and 
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testing are needed to determine if this simulation procedure successfully predicts 
long-span tensile strength over a wider range of test spans. These results can be 
used in reliability models of glulam timber beams, trusses, wood I-beams, and 
many other engineered wood structural components. 
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APPENDIX 1. Serial and cross-correlation coejicients estimated from the test data for each group of 
lumber. 

All suppliers 
Correlation 302-24 A 302-24 B 302-24 C 302-24 D 302-24 E 302-24 

Serial MOE 
Serial MOE 
Serial MOE 
Serial MOE 
Cross MOE-T 
Cross MOE-T 
Cross MOE-T 
Cross MOE-T 
Serial T 
Serial T 
Serial T 
Serial T 

lag-0 
lag- 1 
lag-2 
lag-3 
lag-0 
lag- 1 
lag-2 
lag-3 
lag-0 
lag- 1 
lag-2 
lag-3 

A11 suppliers 
Correlation LL A LL B LI C LI D LI E L1 

Serial MOE 
Serial MOE 
Serial MOE 
Serial MOE 
Cross MOE-T 
Cross MOE-T 
Cross MOE-T 
Cross MOE-T 
Serial T 
Serial T 
Serial T 
Serial T 

lag-0 
lag- 1 
lag-2 
lag-3 
lag-0 
lag- 1 
lag-2 
lag-3 
lag-0 
lag- 1 
lag-2 
lag-3 
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APPENDIX 2. Parameters for the best fitting probability density functions for each group of lumber. 

Summary of probability distributions selected for short-span MOE of the 302-24 lumber. Parameters 

Location Scale Shape 
Supplier N Distribution type (109%) (1 Ovsi) 

A 240 2-P Lognormal NA 1.069 0.129 
B 240 2-P Lognormal N A 0.966 0.149 
C 240 2-P Lognormal N A 0.778 0.202 
D 240 3-P Weibull 1.520 1.332 3.188 
E 240 3-P Weibull 0.000 2.579 8.106 

All suppliers 1,200 3-P Weibull 1.070 1.612 3.705 

Summary of probability distributions selected for short-span MOE of the L1 lumber. Parameters 

Location Scale Shape 
Suuolrer N Distribution t v ~ e  (1 Oh psl) (lo6 psi) 

A 244 3-P Weibull 1.376 1.046 2.668 
B 240 3-P Weibull 1.395 1.158 2.907 
C 240 3-P Weibull 1.270 1.039 3.026 
D 240 3-P Weibull 1.149 1.273 2.969 
E 240 3-P Weibull 0.978 1.279 3.597 

All suppliers 1,204 3-P Weibull 1.1 11 1.292 3.245 

Summary of probability distributions selected for short-span T of the 302-24 lumber. Parameters 

Location Scale Shape 
Supplier N Distribution type (10' psi) (loJ psi) 

A 117 3-P Weibull 3.684 7.457 2.276 
B 120 3-P Weibull 2.803 8.534 2.774 
C 120 3-P Weibull 1.552 9.865 3.980 
D 119 3-P Weibull 2.946 7.128 2.442 
E 119 3-P Weibull 3.3 17 6.347 2.334 

All suppliers 595 3-P Weibull 2.565 8.218 2.764 

Summary of probability distributions selected for short-span T of the L1 lumber. Parameters 

Location Scale Shape 
Supplier N Distribution t m  (10' psi) (1 0' psi) 

A 122 3-P Weibull 2.382 5.585 1.902 
B 120 2-P Lognormal N A 2.029 0.309 
C 120 2-P Lognormal NA 1.953 0.306 
D 119 2-P Lognormal N A 1.868 0.339 
E 120 2-P Lognormal N A 1.806 0.365 

A11 suppliers 60 1 3-P Weibull 2.310 5.527 2.090 




