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ABSTRACT 

Classical solutions for bending of orthotropic plates consist of infinite series and flexural rigidities. 
~ ~ . 

The computations of solutions would not be feasible ifthe computer were not available. The objective 
of this study was to truncate classical solutions into simolified solutions. Simolified solutions consist 
of only flexural rigidities with coefficients. Because of the elimination of infinite series in classical 
solutions, the simplified solutions are easier to solve and can be calculated without using a computer. 
The simplified solutions give practically the same results as those of the classical solutions. Limited 
experimental verification of these solutions was made using southern pine plywood and composite 
sandwich panels (particleboard with veneer faces). 

Kevwords: Wood-base plates, bending 

INTRODUCTION 

The classical solutions for bending of orthotropic plates presented in the en- 
gineering books (Lekhnitskii 1968: Timoshenko and Woinowsky-Krieger 1959) 
are usually expressed in terms of flexural rigidities coupled with infinite series. 
Some ofthe infinite series are rapidly convergent so that the approximate solutions 
can be quickly obtained. But some other series are slowly convergent, thus the 
calculations become tedious and require the use of a computer. The purpose of 
this study is to truncate the classical solutions into simplified solutions for bending 
of square wood-base plates. The truncating process is to replace the infinite series 
with coefficients. 

FUNDAMENTAL THEORY 

The center deflection for an isotropic rectangular thin plate, simply supported 
on four edges and uniformly loaded, is given by Timoshenko (1959) as follows: 

where 
W,,, = maximum deflection of plate 

q = uniformly distributed load 
D = flexural rigidity = Eh3/ 12(1 - v2) 
E = Young's modulus 
h = thickness of plate 
v = Poisson's ratio 

m, n = odd integers 
a, b = dimensions of plate in X-axis and Y-axis 
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TABLE 1. Coeficient K, calculatedfrom Eq. (11) for simply supported square plate wilh concentrated 
load at cmrer. 

PLW-'1s in., 3-ply 0.04106 0.04837 0.05083 0.05120 0.05 130 
PLW-'h in., 4-ply 0.04 106 0.04573 0.04728 0.04752 0.04758 
PLW-% in., 5-ply 0.04106 0.04501 0.04634 0.04655 0.04660 
SDW-94 in., 3-ply 0.04106 0.04686 0.04882 0.04912 0.04920 
SDW-'18 in., 5-ply 0.04106 0.04447 0.04562 0.04580 0.04584 

Average 0.04106 0.04609 0.04778 0.04804 0.04810 

PTB-'1s in. 0.04106 0.04500 0.04634 0.04654 0.04659 

11; ' ~ r s ,  1 Irllr.\ cI.~.cn%!c D! *OW P I U  sdnculin F I N  . i n J  pln ;lr?orJ PTII 1 ,IC. (0 lau 18 n.rnh.<$ cax#(rra  ctr 
~n .&ncqir\ .,inznl. 1 I,:\ \,,.lus.r p.,tcl\ u r n   ma^ u .h  .rca n.,.ll. ch?.,r.l : 1rsm.l .- n \<nr:r' 

If the plate is square (a = h), then Eq. (1) becomes: 

This is a rapidly converging series. By taking only the first four terms of the series. 
the approximation is obtained as follows: 

W,,, = 0.00406qa4/D (3) 

Although the computation of the series was made with 2,000 terms with a com- 
puter, the coefficient still remained the same. Thus, the accuracy of Eq. (3) is 
verified and it will give satisfactory results for isotropic plates. 

If the isotropic square plate is simply supported on four edges and with a 
concentrated load (P) at the center, the center deflection (Timoshenko and Woi- 
nowsky-Krieger 1 959) is: 

By taking the first 36 terms of the series, one obtains the approximate solution: 

W,,, = 0.0 1 1 6Pa2/D ( 5 )  

Computation of the series was made with 2.000 terms using a computer, and the 
coefficient still remained the same. 

In the case of orthotropic plates. it is assumed that the material has three 
mutually perpendicular planes with respect to its elastic properties. When a plate 
is simply supported on all edges and uniformly loaded, the solution can be obtained 
by the same theory (Timoshenko and Woinowsky-Krieger 1959) as follows: 

where 
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T A ~ I . E  2 .  Corficirnr K, calculatrd,frnm Eq. (I2),fnr simplr .sr~pportrd.~q~rareplalr with unforrn load. 

v ..a 

Tyne aVpmcl. l termb 4 lcrmr 2 5  lrrms 100 trrms 400 trrrns 

PLW-'/" in. 0.01664 0.01575 0.01582 0.01582 0.01582 
PLW-'/r in. 0.01 664 0.01610 0.01614 0.01614 0.01614 
PLW-?/a in. 0.01 664 0.01620 0.01623 0.01623 0.01623 
SDW-l/p in. 0.01664 0.01595 0.01601 0.01600 0.01600 
SDW-% in. 0.01664 0.01627 0.01630 0.01630 O.fllh7O 

Average 0.01664 0.01605 0.01610 0.01610 0.01610 

PTR-'1s in. 0.01664 0.01620 0.01623 0.01623 0.01623 
s a m e  as In Tahlc I 
S r m c  as in Trhlc I 

D, = E,~'/I  2( 1 - u,,u,,) 
Ex = Young's modulus in X-axis 
E, = Young's modulus in Y-axis 

u,,, u,, = Poisson's ratios 
H = D, + 2D,, 

D l  = E.u,h3/12(1 - u,,u,,) = E,u,,h3/12(1 - u.,v,,) 
D,, = ~ , , h 3 /  I 2 

In the case of an isotropic plate D, = D, = H = D, and Eq. (6) coincides with 
Eq. (1). In the case of a square plate (a = b), Eq. (6) can be simplified as: 

For a square orthotropic plate with all edges simply supported and with a 
concentrated load applied at the center of plate, the following solution for the 
maximum deflection is given (Lckhnitskii 1968): 

This solution is analogous to Eq. (4) for an isotropic plate. These solutions (Eqs. 
171 and [XI) for orthotropic plates consisted of infinite series coupled with flexural 
rigidities (D,, D,, and H); hence the computations of solutions are very time- 
consuming. 

SIMPLIFYING ASSIJMPTIONS 

Analogizing from Eqs. (3) and (S), solutions may be assumed by using only the 
flexural rigidities of orthotropic plates. (a) For concentrated load (P) at center: 

(b) For uniform load (q): 
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TAnLE 3. Factors afccling Ihp values qfcoeficicnr K, and K, 

E. E, C i ,  
T./E, h 
rrtm (I.(W 9s;) ( in)  *.. vo K,' K,' 

Effect of E./E, ratio 

I 1,150 1,150 100 0.860 0.300 0.300 0.04556 0.01632 
2 1,600 800 100 0.860 0.409 0.205 0.04585 0.01630 
3 1.700 567 100 0.600 0.380 0.127 0.04625 0.01626 
4 1,800 450 I00 0.600 0.368 0.092 0.04672 0.01622 
5 1.900 380 100 0.480 0.456 0.091 0.04727 0.01617 

10 1,900 190 100 0.600 0.473 0.047 0.04955 0.01597 
I5 2,100 140 100 0.350 0.310 0.021 0.05148 0.01580 
20 2.200 110 100 0.300 0.400 0.020 0.05313 0.01567 

Effect of G,, 
5 1,900 380 80 0.480 0.456 0.091 0.04721 0.01617 
5 1,900 380 100 0.480 0.456 0.091 0.04727 0.01617 
5 1,900 380 I20 0.480 0.456 0.091 0.04734 0.01616 
5 1,900 380 140 0.480 0.456 0.091 0.04740 0.01616 
5 1,900 380 160 0.480 0.456 0.091 0.04746 0.01615 
5 1,900 380 I80 0.480 0.456 0.091 0.04752 0.01615 

Effect of Poisson's ratio 

5 1,900 380 100 0.480 0.6 0.12 0.04737 0.01616 
5 1,900 380 100 0.480 0.5 0.10 0.04730 0.01617 
5 1,900 380 100 0.480 0.4 0.08 0.04724 0.01617 
5 1,900 380 100 0.480 0.3 0.06 0.04717 0.01618 
5 1,900 380 100 0.480 0.2 0.04 0.04710 0.01618 

Effect of actual values of Ex and E, 
(at the same E./+ ratio) 

5 2.200 440 100 0.480 0.456 0.091 0.04723 0.01617 
5 2.000 400 100 0.480 0.456 0.091 0.04726 0.01617 
5 1,800 360 100 0.480 0.456 0.091 0.04729 0.01617 
5 1,600 320 100 0.480 0.456 0.091 0.04733 0.01616 
5 1,400 280 100 0.480 0.456 0.091 0.04739 0.01616 
5 1,200 240 100 0.480 0.456 0.091 0.04746 0.01615 
5 1,000 200 100 0.480 0.456 0.091 0.04756 0.01615 

. K, and K, wcrc calculated according to Eqs. (1 I )  and (121 wrh 4W terns ofthe sencs. 

From Eqs. (8) and (9),  one obtains 

4(D, + 2H + D,) m m 1 
K, = 

114 nl ' I I> ' I m4D, + Im2n2H + n4D, (1 1) 

From Eqs. (7) and (lo), one obtains 

By using the orthotropic elastic constants of plywood and sandwich determined 
in a previous report (Lee and Biblis 1977), the coefficients K ,  and K2 are computed 
with a computer and listed in Tables 1 and 2. The average value of K, calculated 
with 400 terms is 0.0481. Thus, the approximate solution for a simply supported 
square wood-base plate with a concentrated load at the centcr is: 
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Fla. I .  Coeficient K ,  at various E,/E, ratios of square wood-base orthotropic plates in bending. 

Pa2 
W,,, = 0.048 10 

D, + 2H + D, 

For a wood-base orthotropic plate with uniformly distributed load, the average 
value of K2 is 0.0161. Thus, the approximate solution is: 

W,,, = 0.01610 4a4 
D, + 2H + D, 

The coefficients K, and K, calculated for 3/n-in. isotropic particleboard are listed 
in the last rows of Tables 1 and 2. They are used here to check whether the 
simplified solutions for orthotropic plates would agree with the solutions for 
isotropic plates. In this case, the solutions applied to isotropic plates of '/n-in. 
particleboard are: 

Pa2 
W,,, = 0.04659 

D, + 2H + D, 

Since for an isotropic plate D, = D, = H = D, Eqs. (15) and (16) agree very 
well with Eqs. (5) and (3). respectively. This indicates that the approximate so- 
lutions for orthotropic plates are applicable to isotropic plates as well. 

Calculated values of K, and K2 (Tables 1 and 2) varied among the different 
constructions of panels. A further investigation was made to determine the effect 
of E,/E, ratio, G,,, Poisson's ratios, and actual values of Ex and E, (at the same 
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FIG. 2. Coefficient K, at various E,/E, ratios of squarewood-base onhotropic plates in bending. 

E,/E, ratio) on K, and K2. The elastic constants Ex, E,, G,,, h, v,,, and u,, were 
chosen in the ranges corresponding to those of panels tested in thc previous study 
(Lee and Biblis 1977). The results are presented in Table 3. 

First, a series of EJE, ratios from 1 to 20 were chosen to compute K, and K2. 
Coefficient K, increases from 0.04556 to 0.05313 and K, decreases from 0.01632 
to 0.01567 as Ex/€, ratio increases from 1 to 20. The effect of G,,. Poisson's 
ratios, and actual values of Ex and E, (at the same EJE, ratio) on coefTicients K, 
and K2 are also presented in Table 3. Although K, and K, are affected by these 
three factors, the magnitude of changes in K, and K, is relatively small and 
insignificant compared to those affected by the Ex/€, ratio. 

The relationships of K, and K, values versus EJE, ratios of three types of 
plywood and two types of sandwich are shown in Figs. 1 and 2, respectively. 
Linear relation between K,, K,, and EJE, ratio was observed to have a highly 
significant coeficient of determination (0.99). 

EXPERIMENTAL VERIFICATION 

One panel (4 by S ft) of each construction was made at the same time with the 
same quality as those boards tested in the previous study (Lee and Biblis 1977). 
Three 20-in.-square plates were cut from each of three southern pine plywood 
constructions and two composite sandwich constructions. All plates were cut with 
face grain oriented parallel to two opposite edges of the specimen. In addition, 
three 20-in.-square particleboard plates ('In-in.-thick) were tested. All plates were 
conditioned to reach equilibrium moisture content at 65% relative humidity and 
72 F temperature prior to testing. 

Plates were simply supported on four edges with %-in.-diameter steel bars. 
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TAnLr 4. Defkdion ofplate bending lcsl with all edges simp1.v supporlrd and with a = h = 19.5 in. 

W,, (in.) at p = 100 pounds W... [in.) at q = I DW 

Specimen no. l d ~ . t i ~ a I )  (rimplibed) (ex!%) ( c l a ~ s i ~ l )  l\impiiSed) 

C o l , l l i  Cul, I21 Col. 131 Col. 141 Col, 15) 

PTB-'/x in.-l 0.2199 0.2199 0.241 1 0.2914 0.2914 
PTB-'18 in.-2 0.2199 0.2199 0.2129 0.2914 0.2914 
PTB-% in.-3 0.2182 0.2182 0.2224 0.2891 0.2891 

Average 0.2193 0.2193 0.2255 

PLW-'la in:l 0.1960 0.1968 0.2071 0.2299 0.2299 
PLW-K in.-2 0.1960 0.1968 0.1911 0.2299 0.2299 
PLW-'/a in.-3 0.1977 0.1985 0.1766 0.2318 0.2318 

Average 0.1966 0.1973 0.1916 

PLW-K in.-l 0.0727 0.0726 0.0792 0.0937 0.0938 
PLW-M in.-2 0.0727 0.0726 0.0754 0.0937 0.0938 
PLW-% in.-3 0.0727 0.0726 0.0809 0.0937 0.0938 

Average 0.0727 0.0726 0.0785 

PLW-'18 in.-l 0.0353 0.0354 0.0383 0.0467 0.0467 
PLW-'/a in.-2 0.0348 0.0348 0.0395 0.0460 0.0460 
PLW-K in.-3 0.0351 0.0352 0.0361 0.0465 0.0465 

Average 0.0351 0.0351 0.0380 

SDW-r/8 in.-l 0.0415 0.0414 0.0437 0.0513 0.0514 
SDW-$18 in.-2 0.041 1 0.0410 0.0482 0.0508 0.0509 
SDW-X in.-3 0.0407 0.0406 0.0435 0.0503 0.0504 

Averaee 0.041 1 0.0410 0.045 1 

Column Ill was calculated from Eq. 181 vllh 400 terms. 
Column 121 was cslotlafcd from E'I. 19) wilh K ,  lrom Fig. I 
coiumn 131 war experlmc"f.1 ESUIL 
C'olumn 141 war calculated from Fq. 171 wilh 400 terms. 
Column (51 war cnlculrlcd from Eq. 110) with K: lrum Fig. 2. 

Parallel bars were spaced 19.5 in. and supported full length by four columns. A 
concentrated load was applied at the center ofthe plate through a 2.25-in.-diameter 
disk. Static load was increased in 20-pound increments up to 100 pounds by using 
the lnstron Testing Machine calibration weights. 

Deflections were measured at the center of the plate directly beneath the load 
by a dial gauge with 0.0001-in. precision and 0.5-in. range. Deflection measure- 
ment was taken as soon as each increment load was applied. Afterwards, the platc 
was turned over to test the opposite surface in the same manner. 

REStJLTS AND DISCIJSSION 

The classical solutions for bending deflections of particleboard, plywood, and 
sandwich plates, calculated with a computer based on Eqs. (7) and (8). are listed 
in Columns (1) and (4) of Table 4. These calculations involved computations of 
infinite series coupled with flexural rigidities. The flexural rigidities were computed 
using the elastic constants determined in a previous study (Lee and Biblis 1977) 

The simplified solutions, calculated based on Eqs. (9) and (10) with the coef- 



244 WOOD AND FIBER SCIENCE, APRIL 1984, V. 16(2) 

ficients K, and K, shown in Figs. 1 and 2, are listed in Columns (2) and (5). The 
simplified solutions give results very close to the classical solutions. In fact, the 
differences are less than I% in all cases in this study. Therefore, the proposed 
equations (Eqs. [9] and [lo]) eliminate the tedious computations and give prac- 
tically the same results. Even the overall approximate solutions (Eqs. [I31 and 
[14]) are within a 6% error for wood-base orthotropic plates. 

The experimental results of the plate bending test are listed in Column (3) of 
Table 4. The experimental results of %-in. particleboard and 3/s-in. plywood gave 
the best fit with less than 3% difference from classical solutions. However, ex- 
perimental results of sandwich board were up to 16% higher than that of classical 
solutions. The difference may be attributed to either material variation or loading- 
supporting method. The primary cause was believed to be material variation, 
since the panels tested in this study were assumed to be the same quality as those 
tested in the previous study (Lee and Biblis 1977), and the elastic constants 
determined in that study were used for computations of classical and simplified 
solutions. 

The loading-supporting method may have some effect on the experimental 
results because plates were not all perfectly flat and small gaps existed between 
plate and supporting steel bars. Also, the 100-pound concentrated load produced 
more stress in thinner plates than in thicker plates. Thus, the deflections obtained 
for thicker plates represent only the initial portion of the elastic line. Another 
study (Superfesky et al. 1977) revealed that there was no significant difference 
between using a 4-in.- and a I-in.-diameter loading disk to simulate concentrated 
load. Therefore, the loading on the disk (diameter = 2.25 in.) used in this study 
shall be considered as concentrated loading. 

CONCLUSIONS 

Conventionally classical solutions for orthotropic plate bending consist of in- 
finite series coupled with flexural rigidities. A computer must be used to obtain 
the solutions. Two simplified solutions (Eqs. [9] and [lo]) with the coefficients K,  
and K2 shown in Figs. I and 2 give practically the same results as the classical 
solutions. The simplified solutions are much easier to solve and can be calculated 
without using a computer. Even the overall average solutions (Eqs. [I 31 and [I 41) 
for wood-base plate bending give the results with error less than 6%. These so- 
lutions are reasonably easy to calculate and can be applied to any simply supported, 
square, orthotropic, wood-base plate subjected to concentrated center or uniform 
loadings. 

Although the simplified solutions are affected by some of the elastic constants 
of the plate, the influences are insignificant (refer to Table 3) except for the E,/E, 
ratios. 

The experimental tests of six different types of plates in bending indicate that 
some results are in close agreement with theory. The experimental results for the 
sandwich plates, however, were up to 16% higher than classical solutions. This 
was attributed to the material's variation and loading-supporting condition. 
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