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ABSTRACT 

Shear deflection of wood beams usually is not included in design calculations. Ignoring shear 
deflection could lead to significant errors in total beam deflection predictions, especially for composite 
wood beams that have less and/or lower quality material in the core (or web) as compared to the outer 
zones (flanges). 

A generalized shear deflection equation was developed for layered composite beams. The model 
can accommodate variable numbers of laminations, nonprismatic shapes, and variable elastic prop- 
erties between laminations and along the beam length. The model was validated using full-sized glued- 
laminated timber beam test data. Sensitivity analyses were conducted on numerical integration step 
sizes, ratio of modulus of elasticity to shear modulus, and span-to-depth ratio (Ud). One important 
finding was that the common engineering design practice of not including shear deflection for solid- 
sawn wood beams with L/d ratios of 15 to 25 could lead to significant errors for composite wood 
beams. 
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INTRODUCTION 

Deflection of beams is comprised of two 
parts: 1) bending, and 2) shear deflection. Shear 
deflection is not included in many structural 
engineering calculations. This is an acceptable 
practice for steel structures because the total 
deflection usually is dominated by the bending 
component, except for very short, deep beams. 
United States engineering practice accounts for 
shear deflection of wood members by lowering 
published design values of E (by about 3.4%) 
to account for the omission of shear in com- 
mon bending deflection equations. The Com- 
mission of the European Communities, in Eu- 
rocode 5 (1987), approaches this problem in a 
more direct manner. The true bending E is 
published as the design E, and the code spec- 
ifies that shear deflection must be explicitly 
included in the total deflection prediction. 

Shear deflection is related to the shear mod- 
ulus (G) of the beam. The E/G ratio for steel 
is assumed to be 2.6 in the elastic range (Salm- 
on and Johnson 1990); however, the ratio of 
E/G for wood is generally assumed to range 
from 1 1 to 16 (USDA 1987). This large ratio 
for wood indicates that the shear component 
of the total deflection can be more significant 
for a wood beam than for a steel beam. Shear 
deflection is even more important for com- 
posite beams because the cores usually are 
made from lower quality material than the rest 
of the beam. Furthermore, this less stiff ma- 
terial is positioned at the point of maximum 
shear stress. 

Common engineering practice for calculat- 
ing deflection of wood beams is to use flexural 
equations derived for bending only, and since 
the design E is reduced to account for shear 
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deflection, they give reasonably accurate pre- 
dictions for span-to-depth (L/d) ratios ranging 
from 15 to 25. However, if the L/d ratio is less 
than 15, the predicted deflection will be sig- 
nificantly less than the actual deflection. Mod- 
ified equations can be used (Hoyle and Woeste 
1989) that take shear deflection into account; 
however, they are valid only for homogeneous 
materials. 

Simple methods of predicting shear stress 
and deflection are needed for layered com- 
posite wood beams. The finite element ap- 
proach is effective for predicting shear stresses 
and strains in beams; however, it is compu- 
tationally intensive and requires detailed ma- 
terial property data for each element or cell. 
Transformed-section approaches have been 
developed for layered beams with homoge- 
neous laminations; however, these methods do 
not fully account for lengthwise variability of 
the lamination elastic properties. A general, 
versatile method is needed to predict shear 
deflection in composite wood beams for the 
purposes of evaluating design procedures and 
assessing the need for research on localized 
elastic properties of wood (particularly shear 
modulus). 

RESEARCH OBJECTIVES 

1. Develop a model to predict shear stress and 
deflection in layered composite wood 
beams. 

2. Experimentally validate the shear deflec- 
tion model using test data from glued-lam- 
inated (glulam) timber beams. 

3. Integrate the shear deflection model into an 
existing glulam beam model and perform 
parameter sensitivity analyses. 

LITERATURE REVIEW 

Models 

Many mechanics of materials textbooks ad- 
dress deflection of homogeneous beams with 
rectangular-shaped cross sections. However, 
cross sections with irregular shapes or con- 
taining nonhomogeneous materials are often 
"beyond the scope of the textbook." The bases 
for many of the deflection equations for ho- 

mogeneous materials are energy methods. 
Equation 1 (Boresi and Sidebottom 1985) rep- 
resents the generalized form of the deflection 
equation due to flexure for homogeneous 
beams. The first term of Eq. 1 represents the 
bending component, and the second term rep- 
resents the shear component. 

where 

6, = deflection at point i, 
A = area of the cross section, 
E = modulus of elasticity, 
Fi = unit concentrated load at point i, 
G = shear modulus, 
I = moment of inertia, 
k = form factor as a function of beam ge- 

ometry, 
M = bending moment as a function of x and 
V = shear as a function of x. 

Unique k factor values can be derived for 
different cross sections. The k factor equals 1.2 
for rectangular cross sections, and it can be 
approximated as 1.0 for I-beams, provided the 
area of the I-beam web is used for A (Boresi 
and Sidebottom 1985). This general method 
for calculating deflection has a large range of 
applications; however, it is limited to homo- 
geneous materials. 

Wangaard (1964) studied the elastic deflec- 
tion of small-scale composite beams. The wood 
cores of the beams were covered with fiberglass 
reinforced plastic faces on the outermost fibers 
about the axis of bending. He showed that by 
including the second term from Eq. 1, the ac- 
curacy of the deflection model increased. This 
method is limited to cross sections that are 
symmetric about the neutral axis, referred to 
as balanced layups, and does not account for 
the variability of elastic properties (E and G) 
along the length of the beam. 

Biblis (1965) examined the deflection of 
small-scale solid wood beams of varying span- 
to-depth (L/d) ratios. An important finding was 
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that the shear component could account for 
over 40% of the total deflection at an L/d ratio 
of 8 for Douglas-fir lumber. This is significant 
because Douglas-fir is commonly used to man- 
ufacture glulam beams. 

Stieda (1967) presented a strain energy 
method to calculate shear deflection in ply- 
wood box beams and I-beams. He found that 
treating the web as a homogeneous section, 
(i.e., all laminations oriented in the same di- 
rection) was adequate for modeling the shear 
deflection. Orosz (1970) also used energy 
methods to calculate shear deflection of wood 
beams. He derived a form .factor (k) for an 
I-beam with the flange and webs having dif- 
ferent lumber properties. Orosz also assumed 
that the web of the beam was homogeneous. 
His method can be applied to glulam beams, 
but is limited to a cross section that is sym- 
metric about the neutral axis, allows only two 
different lumber grades, and does not account 
for material property variability. 

Hilson et al. (1 988, 1990) and Pellicane and 
Hilson (1985) presented a method for calcu- 
lating bending and shear deflection using a 
transformed-section approach. They devel- 
oped a finite difference equation similar to Eq. 
1 ; however, their equation is not exact for com- 
posite cross sections with varying E because it 
does not account for the changes in the shear 
stresses across the various laminations. They 
suggested using the transformed area of the 
cross section with the k factor equal to 1.2 for 
a rectangular cross section, but these two terms 
are based on the assumption of a rectangular 
cross section, not a transformed nonrectan- 
gular cross section. 

Mansour and Gopu (1 990) presented an ex- 
act method for predicting deflection of pitch- 
cambered glulam beams using Eq. 1 with a 
transformed-section analysis. Their derivation 
includes an equation to solve for the form fac- 
tor k for unbalanced layered beams. Monte 
Carlo simulation was performed to randomly 
assign E values along the length and depth of 
the beam, and the E/G ratio was set to 16. 
Simulated beams then were analyzed using a 
finite element approach. They concluded that 

simple equations for homogeneous beams ac- 
curately predicted total deflection as long as 
the shear component was included. 

Elastic properties 

Gaining a better understanding of the me- 
chanical properties of wood could influence 
designers to use this material for more com- 
plex structures. Many models can predict the 
theoretical stresses and strains of wood sys- 
tems, but these models require input in the 
form of elastic constants that are not com- 
pletely characterized for every wood species 
grouping. 

Early work on the relationships of E and G 
was conducted by Doyle and Markwardt (1 966, 
1967). They tested full-sized southern pine di- 
mension lumber for a variety of structural 
grades. They reported linear correlation coef- 
ficients between E and G ranging from -0.342 
to +0.554, depending on the lumber grade. 
They stated that G appeared to be less affected 
by grade or quality of the material than E. 
Doyle (1968) tested another sample of No. 2 
dense kiln-dried southern pine dimension 
lumber and again reported that G was not sig- 
nificantly correlated with flatwise E. These three 
studies formed the basis of the E/G ratio of 12 
for southern pine lumber, published in the 
Wood Handbook (USDA 1987). 

Palka and Barrett (1 985) presented a report 
to the ASTM task group investigating the va- 
lidity of Table 2 in ASTM D 2915-74. This 
testing consisted of two samples of Canadian 
spruce structural lumber specimens. They re- 
ported a wide range of values for the E/G ratios 
and that the average value was considerably 
larger than the reported value of E/G of 16. 
They concluded that E/G is dependent on the 
test method and lumber quality. The table that 
instigated this investigation has since been re- 
placed by a footnote (ASTM 199 1 a) that states, 
"Limited data indicate that the E/G ratio for 
individual pieces of lumber can vary signifi- 
cantly from E/G = 16 depending on the num- 
ber, size and location of knots present, the slope 
of grain in the piece and the span over which 
deflections are measured." 
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Bodig and Goodman (1973) used plate 
bending and plate twisting tests on small-scale 
clear wood specimens to predict the elastic 
properties. Power-type regression models were 
not statistically significant for G versus E. This 
study highlights the problem of trying to pre- 
dict G as a function of E. However, they did 
find significant correlations between specific 
gravity and the elastic properties E and G. 

Goodman and Bodig (1 978) presented a re- 
view of literature and a commentary on the 
problem of modeling elastic behavior of wood. 
Many of the data used to characterize the elas- 
tic parameters of wood were collected from 
clear wood specimens. They observed that grain 
deviations around knots caused the principal 
axes to rotate, making modeling procedures 
very difficult. They theorized that the assump- 
tions of orthotropic symmetry in the radial 
direction are most often the cause for deviation 
between theoretical and experimental mea- 
surements. 

Bradtmueller et al. (1 991) tested oriented 
strandboard (OSB) over quarter-point and five- 
point loading conditions to calculate G. Sen- 
sitivity analyses indicated that a small error in 
calculating E magnified the error in G. This is 
caused by E being considerably larger than G, 
resulting in ill-conditioned simultaneous de- 
flection equations. They noted that experi- 
mental results of G were lower than expected 
and theorized that this was caused by the com- 
paratively low shear stiffness in the core that 
corresponded to the point of highest shear 
stresses. 

Chui (1991) used a vibration technique to 
simultaneously evaluate E and G. His findings 
revealed that the common assumption of E/G 
equal to 16 for Douglas-fir (USDA 1987) may 
not be valid. Chui's data indicated that E/G is 
a random variable, not a deterministic value; 
furthermore, it was suggested to use E/G of 20 
for clear wood and 30 for lower quality lumber. 
This is meaningful since the beam combina- 
tions found in the American Institute of Tim- 
ber Construction (AITC) 1 17 -Manufacturing 
(1988) often specify lower quality lumber in 
the core, compared to the rest of the beam. 

MODEL DEVELOPMENT 

Calculating shear deflection is more com- 
plex for composite beams than for rectangular 
beams with homogenous properties. E and G 
vary within the cross section and along the 
length for multilayered beams and this vari- 
ation compounds the difficulty of calculating 
shear deflection. Mansour and Gopu (1 990) 
and Orosz (1970) presented methods to cal- 
culate k for composite beams using the tra- 
ditional shear deflection equation (Eq. 1); how- 
ever, a more general method is needed to fa- 
cilitate studies of spatial variation of E and G. 

Derivation 

Critical evaluation of Eq. 1 reveals that only 
the second term needs to be modified for com- 
posite beams. Finding the shear stress distri- 
bution in a homogeneous beam is straightfor- 
ward; however, as material properties vary, as 
in a composite beam, so do the shear stress 
distributions. After the shear stresses are de- 
rived for composite beams, such as glulam 
beams or I-beams, shear deflection can be 
found by applying the theory of complemen- 
tary virtual work. 

Figure 1 (a) illustrates a simply supported 
composite beam that is stressed by arbitrary 
loads P, Q, and w. Figure I(b) represents the 
cross section of this beam with width b and 
height h. The outer laminations of this com- 
posite beam have modulus of elasticity of El 
and the inner laminations have modulus of 
elasticity of E,. It is assumed that El is greater 
than E,, an assumption that generally would 
be true for glulam beams. 

Composite beams often are analyzed using 
the transformed-section method, because the 
usual elastic beam formulas can be used with 
slight modification. Figure 1 (c) illustrates the 
transformed cross section. This method trans- 
forms the composite cross section to a ho- 
mogeneous material with a modulus of elas- 
ticity of E,, where E, is an arbitrary constant 
and the width of the ith lamination is adjusted 
by the ratio of Ei to E,. After transformation, 
the elastic flexural formulas then can be used 
with slight modification. The bending stress in 
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L Section A-A Transformed-Section 

FIG. 1 .  Simple composite beam. 

the cross section is represented by: using statics as follows: 

where: 

FR, = resultant bending force on the right side 
where 

in the ith lamination, 
ubi = normal bending stress in the ith lami- FLi = resultant bending force on the left side 

nation, in the ith lamination and 
E, = modulus of elasticity of the ith lami- V,, = shear force acting parallel to line OP. 

nation, 
The bending stress (Eq. 2) can be integrated 

E, = transformed modulus of elasticity, over each area Ai, yielding the resultant com- 1, = moment of inertia of the transformed 
ponent forces over their respective areas. These 

cross section, 
resultant forces then can be substituted into 

= bending moment at the cross Eq. 3 to form Eq. 4. Figure 2(c) is a section 
section and 

removed from Fig. l(a) illustrating the infin- 
y = distance from the neutral axis to the 

itesimal area dAi. The area of integration Ai 
point in question. 

must be changed as the modulus of elasticity 
An element of the original simple composite 

beam, Fig. 1 (a), is removed and examined in 
greater detail in Fig. 2(a). This cut has length 
dx and cross-sectional properties identical to 
the original beam shown in Fig. l(b). The el- 
ement is subjected to a moment M on the left 
side and an opposing moment on the right side 
M + dM. The bending stress is superimposed 
on Fig. 2(a). Note the discontinuity in the stress 
distribution that accompanies the different 
values of Ei, with the slope becoming steeper 
as Ei increases. Both of these properties are 
characterized by Eq. 2. The shaded area in Fig. 
2(a) is now examined in greater detail in Fig. 
2(b). 

The bending stresses are resolved into re- 
sultant forces F ,  and FRL in Fig. 2(b). The shear 
V,, acting parallel to the line OP can be found 

changes. After simplification, the equation can 
be expressed as follows: 

where 

A, = area of integration of the ith lamination. 

The shear stress 70, can be found by dividing 
V,, by the area that it acts over (dx b). The 
relationship can be further simplified by noting 
that the derivative of the moment, dM/dx, 
equals the shear force, V, and the area integral 
is the first moment of the area, Q. The resulting 
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FIG. 2. Stresses, forces and moments on the composite cross 

general form of the equation for shear stress 
at any point A, along the depth of the beam is 
given by: 

where 

rA = shear stress at any point X along the 
length and depth of the beam. 

Qi = first moment of the area of the ith lam- 
ination. 

After the general equation for shear stress is 
derived, the shear deflection can be character- 
ized by using energy methods and Castigliano's 
theorem to yield: 

where 

a,,, = shear deflection at point x and 
F, = unit concentrated load at point x. 

Equation 6 can be integrated numerically by 
expressing it in the form of Eq. 7. The integrals 
are replaced with summations and the partial 
derivative is replaced by vi, which is the shear 

Section 0-0 

( c )  

section. 

component of a unit load applied at midspan. 
The shear modulus, Gij, is placed inside the 
summations so it can vary along the length 
and depth of the beam. E* is removed from 
inside the summations because it is constant 
across the beam length and depth. Additional 
details on the model derivation are given in 
Skaggs (1992). 

ncuty 

where: 

6 , "  = shear deflection at point x, 
Ax = width of intervals along the x-axis, 
Ay = width of intervals along the y-axis, 
b, = actual width of the jth lamination, 

E, = transformed modulus of elasticity, 
Eik = modulus of elasticity of the kth lam- 

ination at i, 
Gij = shear modulus of the jth lamination 

at i, 
I ,  = moment of inertia of the transformed 

cross section at i, 
ncutx = number of intervals along the x-axis, 
ncuty = number of intervals along the y-axis, 

Qk = first moment of the area of the kth 
lamination, 
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vi = shear force at i due to unit load at x 
and 

Vi = shear force at i. 

Assumptions 

1. The shear force on the beam acts parallel 
to the shear stresses. 

2. The shear stresses act uniformly across the 
width of the beam. 

3. The material is linearly elastic and is only 
subjected to small displacements. 

4. Deformations are about the plane of bend- 
ing (i.e., no lateral-torsional buckling). 

Limitations 

The shear stress formula (Eq. 5) is limited 
to beams that are deeper than they are wide. 
When beam width equals depth, true maxi- 
mum shear stresses can be significantly larger 
(13% for a homogeneous beam) than what is 
predicted by Eq. 5 (Gere and Timoshenko 
1984). This underprediction of shear stress also 
would cause an error in the amount of shear 
deflection predicted by Eq. 7 for a composite 
beam. 

MODEL VERIFICATION AND VALIDATION 

The shear deflection model (Eq. 7) was ver- 
ified by comparing it to an exact theoretical 
solution for homogeneous beams. The shear 
deflection model was validated using test data 
on full-sized glulam beams and the constituent 
lumber. Lumber data were used as input to the 
deflection model, and by setting the predicted 
deflection equal to the value predicted by the 
bending deflection equation, glulam beam ap- 
parent E was calculated. The results were com- 
pared to actual glulam beam E's measured in 
the laboratory. 

Experimental procedure 

Hernandez's (1 99 1) and Hernandez et al.'s 
(1992) work on a probabilistic glulam beam 
model (called PROLAM) was conducted con- 
currently with an extensive glulam beam test 
program undertaken by the American Institute 
of Timber Construction (AITC). Before the 

beams were fabricated, the laminating stock 
was run through a CLT stress-grading machine 
to obtain continuous E-profiles for each piece 
of lumber. These pieces then were stamped 
with an identification number so they could 
be identified in the glulam beam after fabri- 
cation. 

A group of thirty 16-lamination 24F-V4 
Douglas-fir glulam beams was tested. The 6 1 - 
cm (24-in.)-deep beams were manufactured to 
a length of 12.2 m (40 ft) using nominal 5-cm 
by 15-cm (2-in. by 6-in.) Douglas-fir laminat- 
ing lumber. After fabrication, the beams were 
planed to a final width of 1 3.0 cm (5.125 in.). 
The beams were destructively tested under 
symmetric two-point loading at a total span of 
11.6 m (38 ft) and 2.4 m (8 ft) between the 
load points. The beams were restrained from 
buckling out of plane and the apparent E was 
measured for each beam. 

The E profiles were averaged for each 61 - 
cm (2-ft) lumber segment. Beam maps were 
constructed using the 6 1 -cm (2-ft) average EcLT. 
Cross-sectional profiles were then taken at 30.5- 
cm (I-ft) intervals, and the resulting values 
were recorded in data files. The dimension of 
the matrices were 39 by 16, representing 39 
30.5-cm (1-ft) intervals and 16 laminations. 
One beam map could not be constructed due 
to a data collection problem; therefore, the fi- 
nal sample size was 29. 

Adjustment of lumber E values 

A FORTRAN program was written to trans- 
form the array of ECLT values to the corre- 
sponding static bending modulus of elasticity 
(E,) values using the following regression equa- 
tion developed at the time the lumber was 
sampled: 

where 

E, = static flatwise bending E and 
E,,, = raw CLT-E values averaged over a 

6 1 -cm (2-ft) segment. 

The total deflections of the beams were cal- 
culated using the first term of Eq. l (numerical 



334 WOOD AND FTBER SCIENCE, JULY 1995, V. 27(3) 

TABLE 1 .  Comparison of actual and predicted apparent beam E. 

Apparent beam E 
Sample 

Prediction method size Average Average error? COV* COV errort 

......... GPa (Mpsi) 0lo 

Actual test data 29 14.20 (2.06) 4.09 
Predicted (E/G = 16) 29 14.48 (2.10) +1.64 3.62 -11.4 
Predicted (E/G varies$) 29 13.93 (2.02) -1.98 3.52 -14.0 

* Coefficient of variation. 
t 100(Aclual - Predicted)/Actual. 
SE/G = 30 for L3 and 20 for all other lumber grades. 

integration) and Eq. 7. After the deflections 
were found, the apparent beam E's were cal- 
culated using the classic deflection (bending 
deflection only) equation for symmetric two- 
point loading. 

Test results and discussion 

Predictions of apparent E were made under 
two assumptions of E/G ratios: 1) E/G equal 
to 16 (USDA 1987), and 2) E/G equal to 30 
for the lumber in the core (grade L3) and 20 
for all other lumber grades (Chui 199 1). Sum- 
mary statistics for the actual test data and two 
prediction assumptions are given in Table 1. 
Average predicted beam E's bracketed the ac- 
tual test value with less than 2% error. Pre- 
dicted coefficients of variation (COV) were 
slightly less than the actual test value. This 
could be explained by the 4-ft span used within 
the CLT stress rating machine. This span would 
tend to smooth out some of the localized vari- 
ability in lumber E. 

Prediction errors for individual beams 
ranged from - 3.1 to 10.2% for E/G equal to 
16, and -6.4 to 6.2% when E/G varied (30 
for L3 and 20 for other grades). Empirical cu- 
mulative distributions functions (CDFs) were 
plotted for the actual test data and the two 
prediction methods as shown in Fig. 3. Again 
the two predicted CDFs bracketed the actual 
CDF, indicating good agreement. The as- 
sumption of E/G varying from 20 to 30 gave 
the more conservative prediction of apparent 
beam E. Research is needed to better charac- 

MODEL IMPLEMENTATION 

Overview 

The shear deflection model (Eq. 7) was im- 
plemented into a probabilistic glulam beam 
model developed by Hernandez et al. (1992), 
called PROLAM. PROLAM is a stochastic 
model that simulates glulam beam fabrication 
and generates random values of E and tensile 
strength (T) for each 6 1 -cm (2-ft) lumber seg- 
ment in the beam. These E and T values are 
spatially correlated along the lengths of the in- 
dividual pieces of lumber. The simulated piec- 
es of lumber are joined together with finger 
joints that also are assigned random E and T 
values. This model is used to predict statistical 
distributions of glulam beam strength and ap- 
parent E. 

1 0  

Predicted 

0,8. EIG vanes (20 to 30) '\. + 

Modulus of Elasticity (GPa) 

terize G and its relationship to E as a function FIG. 3. Comparison of actual and predicted empirical 
of lumber grade. cumulative distribution functions (sample size equals 29). 
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PROLAM uses a subroutine to perform the 
transformed-section analyses at specified in- 
crements, Ax, and then it repeats the analyses 
at each finger joint location in the tension zone 
of the beam. Due to the calculation require- 
ments of the composite shear deflection model 
presented here, it was placed in a separate sub- 
routine within PROLAM. Another addition to 
PROLAM was allowing the E/G ratio to vary 
for the different lumber grades across the cross 
section instead of being held constant. 

Sensitivity analyses 

Parameter sensitivity analyses were con- 
ducted using PROLAM with the composite 
shear deflection model. Parameters included 
numerical integration step size, E/G ratio, and 
span-to-depth ratio (L/d). The glulam beam 
type and size studied were the same as the 
validation beams previously discussed. All 
PROLAM input data were identical to those 
given by Hernandez et al. (1 992). 

Efect of numerical integration step size 

The effect of numerical integration step size 
on predicted apparent beam E was studied over 
a wide range of values. Numbers of increments 
along the 11.6-m (38-ft) beam span were cho- 
sen to be 500, 250, 100, 50, 38, and 25 re- 
sulting in increment sizes of 2.32, 4.63, 1 1.58, 
23.16, 30.48, and 46.33 cm (0.91, 1.82, 4.56, 
9.12, 12.00, and 18.24 in.). A total of 1,000 
beams were simulated with the same random 
number seed for the six computer runs (as a 
means of statistical blocking). 

Since the accuracy of numerical integration 
increases as the number of increments be- 
comes larger (for a fixed beam length), the sce- 
nario with 500 increments (ncutx equal to 500) 
was used as a benchmark for comparisons. The 
maximum prediction error observed was 0.56% 
for the case where Ax equalled 46.33 cm (1 8.24 
in.). All other errors were less than one-fourth 
of 1°/o, indicating that E is fairly insensitive to 
the integration step size. It is recommended 
that Ax not exceed the lumber property cell 
size (cell size is 61 cm in PROLAM). An in- 

crement of Ax = 30.48 cm (12 in.) was selected 
for all other sensitivity analyses. 

A similar sensitivity analysis was performed 
for the number of increments in the y-direc- 
tion. The number of intervals, ncuty, was set 
at 160, 48, and 16 resulting in increment sizes 
of 0.38, 1.27, and 3.81 cm (0.15, 0.50, and 
1.50 in.). There was no effect on the average 
apparent E for the 1,000 simulated beams from 
the number of increments in the y-direction; 
therefore, it is recommended to use ncuty equal 
to the number of laminations. 

Efect of E/G ratio 

The effect of the E/G ratio on predicted ap- 
parent beam E was studied next. Three cases 
were investigated: 1) E/G ratio equal to 16, 2) 
E/G ratio equal to 20 for all lumber grades 
except L3 which had an E/G ratio of 30 and 
3) no shear deflection allowed. One thousand 
beams were simulated for each case using the 
same initial random seed value. 

Predicted probability density functions (pdf) 
of apparent beam E are shown in Fig. 4. As 
expected, the case with no shear gave the low- 
est deflection predictions, resulting in the high- 
est apparent E. The average apparent E for this 
case was 17.13 GPa (2.484 Mpsi). By adding 
shear deflection, total predicted deflections in- 
creased, resulting in lower values of apparent 
E (Fig. 4). Average apparent E values for Cases 
1 and 2 were 16.09 and 15.40 GPa (2.333 and 
2.234 Mpsi), respectively. In all cases, the co- 
efficients of variation of apparent E were 4.0%. 

The ratios of apparent E with and without 
shear deflection included were 0.94 (Case 1) 
and 0.90 (Case 2). These values are similar to 
the empirically derived 0.95 shear correction 
factor found in ASTM D3737 (ASTM 199 1 b). 

Eflect of L/d ratio 

The effect of span-to-depth ratio (Wd) was 
studied using PROLAM for three different 
loading cases: 1) two-point loading (with dis- 
tance between load points equal to 20% of total 
span), 2) uniform loading, and 3) single-point 
loading at the midspan. These simulations were 
performed with an E/G ratio of 16 and then 
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E./G varies , E/G = 16 

Apparent Beam E (GPa) 

FIG. 4. Predicted probability density functions of ap- 
parent beam E for three E/G assumptions. 

repeated with an E/G ratio of 20 for all lumber 
grades except L3 which had E/G of 30. One 
thousand beams were simulated for each case 
using the same initial random seed value. 

The average apparent E predicted by PRO- 
LAM at an L/d ratio of 20 was assumed to be 
the design value of E. This design E was sub- 
stituted into common beam deflection equa- 
tions that do not include shear to predict de- 
flections for the three different loading cases 
and the two E/G assumptions over a range of 
L/d ratios. Corresponding "true" deflections 
were predicted using PROLAM over the same 
range of L/d ratios. 

"v -40 5 10 15 20 25 30 35 

Lld Ratio 

FIG. 6 .  Error in predicted deflections for glulam beam 
with uniform loading. 

Figures 5, 6, and 7 illustrate the errors in the 
predicted deflections for the various L/d ratios, 
loading conditions, and E/G ratios. All three 
graphs depict similar trends. For relatively long 
spans (L/d greater than 20), the simple bending 
equations slightly overpredicted deflections 
that could be considered conservative errors. 
Conversely, for wood beams :vith L/d ratios 
less than 20, the simple bending equations sig- 
nificantly underpredicted deflection, resulting 
in unconservative errors. Beam deflection 
equations (without shear) are usually consid- 
ered sufficiently accurate for solid-sawn wood 
in the L/d range of 15 to 25 (Hoyle and Woeste 

CENTER-POINT LOADING 

EIG varies (20 to 30) 
-30 

5 10 15 20 25 30 35 4 Ib 15 20 25 30 35 
4 

Lid Ratio Lld Ratio 

FIG. 5. Error in predicted deflections for glulam beam FIG. 7. Error in predicted deflections for glulam beam 
with two-point loading. with center-point loading. 
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1989). However, the results shown in Figs. 5, 
6, and 7 for a composite beam indicate errors 
of approximately 10% for L/d of 15, which 
may not be acceptable. 

SUMMARY AND CONCLUSIONS 

Beam deflection is comprised of two com- 
ponents: 1) bending, and 2) shear deflection. 
Shear deflection is not included in design cal- 
culations for many structural materials. How- 
ever, shear deflection for wood beams can ex- 
ceed the bending deflection under certain sit- 
uations due to the relatively low shear mod- 
ulus ofwood, and it should be considered. This 
problem is reasonably straightforward for sol- 
id-sawn wood beams; however, it becomes 
more complex for composite beams such as 
glued-laminated timber beams and wood 
I-beams. 

An equation was developed for predicting 
shear deflection in composite beams using the 
transformed-section method of analysis. This 
equation is similar to other published deflec- 
tion equations (based on energy methods); 
however, it was derived to be more general to 
facilitate studies of localized variability of shear 
modulus and modulus of elasticity. The com- 
posite shear deflection model was validated 
using data from full-sized glued-laminated 
beam tests. The difference between average ac- 
tual and predicted beam E was less than 2%. 
During development of the shear deflection 
model, an intermediate step was the devel- 
opment of an equation that characterized the 
shear stress distribution for composite beams. 
A possible application of the shear stress equa- 
tion would be to use it in a probabilistic model 
to predict shear strength of composite beams. 

The composite shear deflection model was 
incorporated into an existing glulam beam 
model and sensitivity studies were performed. 
It was found that the number of increments 
along the length and depth for the numerical 
integration had little effect on the apparent 
beam E predictions. It is recommended to use 
values of Ax = 30.48 cm (12 in.) and Ay equal 
to the lamination thickness. The ratio of mod- 
ulus of elasticity to shear modulus (E/G) had 

a significant effect on predictions of beam de- 
flection. Conflicting data on G appear in the 
literature, suggesting the need for additional 
research on G and its relationship with E, es- 
pecially as a function of lumber quality. As 
expected, span-to-depth ratio (L/d) had the 
most significant effect on beam deflection. The 
common engineering design practice of not in- 
cluding shear deflection for solid-sawn wood 
beams with L/d ratios between 15 to 25 could 
lead to significant errors for composite wood 
beams. An unconservative error of approxi- 
mately 10% was observed for a glulam beam 
at an L/d ratio of 15. 
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