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ABSTRACT

General theoretical aspects of a continuum mathematical model for predicting the

mechanical behavior of fiber networks are presented.

The theory is developed for an

idealized two-dimensional elastic network subjected to static loading. It is intended that
the theory be employed to study the elastic stress-strain behavior of paper sheets or other

bonded fibrous materials.

Additional keywords: Mathematical models, continuum theory, paper elasticity, paper, non-

wovens, analysis.

INTRODUCTION

It is the purpose of this work to describe
the general theoretical aspects of a con-
tinuum mathematical model for predicting
the mechanical response of fiber networks
that are subjected to external loading as
well as thermal and moisture expansion.
The work is devoted primarily to the theo-
retical development of an ideal plane net-
work model that behaves clastically and
that is assumed to be in a state of static
equilibrium.

It is recognized that the ideal two-
dimensional network model is not adequate
quantitatively to predict every aspect of
the mechanical behavior of paper sheets;
however, it serves to provide a foundation
for the development of such a theory. From
the theoretical point of view, it is not
particularly difficult to extend the present
work to incorporate dynamic effects and
nonelastic behavior as well as certain
aspects of nonplanar response of the fiber
clements. These features have purposely
been postponed for the present in the in-
terest of emphasizing the critical aspects
of the proposed theory that are essential
to the development of a rational theory of
the fiber network.

! Research reported in this paper was supported
by the National Science Foundation under grant
GK-3810.

WOOD AND FIBER

The predicted mechanical behavior of a
paper sheet can be synthesized from a
model system consisting of an essentially
two-dimensional network of fiber elements.
The fiber elements are taken to be portions
of wood fibers located between bonds in
the network.

In order to describe realistically the prop-
erties of the network, it is necessary to
provide the structural elements, i.e., the
fiber elements and bonds, with degrees of
freedom of their own that may differ locally
from those of the average response of the
network. At any arbitrary point in the net-
work, the fiber segment located there may
deform much differently from that which
one would anticipate from a knowledge of
the gross strain and displacement fields of
the network. For example, consider a fiber
segment oriented in the direction of a uni-
axially applicd tensile stress for an isotropic
network. The network can be expected to
clongate in the direction of applied stress
and contract in the direction normal to the
direction of applied stress. The above-
mentioned fiber scgment, however, may
elongate or not, or it may deform by bend-
ing. Local deviations in deformation from
those of the gross network deformation are
caused by the nonhomogeneity of the net-
work system. Accounting for this aspect
of the system behavior is an essential part
of the solution of the network problem.
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Fic. 1. Kinematic measures for a typical fiber
segment located between bonds X, and Xi.

From the mathematical modeling point
of view, it is greatly advantagcous to be
able to describe the network behavior with
a continuum model. If one were to attempt
to synthesize sheet behavior from a model
consisting of a discrete number of fiber
clements, an immensely difficult problem
arises because the number of cquations that
must be solved simultancously is propor-
tional to the number of discrete clements.
It is obvious that such an approach would
become computationally unmanageable for
any rcalistic model of a paper sheet. In
the following, it is shown how a continuum
theory with local degrees of freedom can
be employed to model the elastic behavior
of a network model system. The presently
described theory is an application of cer-
tain aspects of several so-called micro-
structural continuum theories that have
recently been proposed for predicting the
mechanical behavior of nonhomogencous
media.  See, for example, Klemm and
Wézniak (1970), Mindlin (1964), Wézniak
(1967), Eringen and Sukubi (1964).

THEORY OF AN IDEAL TWO-DIMENSIONAL
NETWORK

General assumptions

The network is comprised of a set of
fiber segments, the ends of which are joined
or “bonded” to cach other. The fiber seg-
ments are presumed to be in the form of
flattened strips. The fiber segment material
is assumed in general to be an anisotropic
elastic material. The segments are presumed
to transmit a resultant axial (compressive
or tensile) load, and as well, shear and
bending moment resultants. In general
typical fiber segments may be assumed to
cxperience axial shortening or clongation,
shear, and bending deformation. The bond
material associated with the joining of fiber
segments is assumed also to behave elas-
tically and therefore to deform as a result
of the loads transmitted through the bonds
by the fiber segments.

Kinematic description

The geometrical and kinematic measures
of nectwork constitution and deformation
are illustrated in Fig. 1. The planc of the
network is represented by the xy-plane.
The locations of bonds in the undeformed
network are provided by the vectors X,
X1, X, . ... The bonds are located relative
to one another by the set of vectors Lgy, Ly,
..., Lis, Lis, . ... The vectors Ly, Lo, . . .
have orientations 6y, 6,2, with the
positive x-axis. The centerline of the fiber
segment joining bond X, with bond X, is
denoted by the Agy, cte. As a result of
loading and deformation of the network,
the bonds originally located at X,, Xy, . . .
move to locations x,, x;, . . . , the relative
bond position vectors Lo, Los, . . . become
Loi, loa, and the fiber segment end
orientation unit vectors Agi, Aos, . . - become
unit vectors Ao1, hog, - . . . The ends of the
fiber segment located between bonds X,
and X, rotate by the amounts ¢4, = arc cos
A()1 . )\01, ¢10 — arc cos A10 . 7\10. The bOIld
displacement u, of the Xy bond can be
represented in terms of rectangular com-
ponents uy, vy in the x, y - directions or
in terms of the &1, 59y components measured
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along and perpendicular to a line joining
bonds X, X;.

Strain energy of a finite neticork

The fiber segment joining bonds X, and
X, experiences an axial deformation €, =
&10 = €01, @ lateral displacement of one end
relative to the other end 8y = 310 =701,
and rotations of the ends ¢y and ¢qo. It
is assumed that the fiber segment transmits
a resultant axial load Ny, a resultant shear
load Vg, and bending moment resultants
My and My, The relationships between
loading and deformation of the fiber seg-
ment between X, and X are assumed to
be of the form

Nyp = Kyjepp - BjAT

Vo = Kgodgy + Kogdgy +
Kog#10™ B2AT

Mgy = Kogdgy + Kgyégr+ (D)

K34910- B3t
My = Kogdg1+ Kgqdqy +
K44910- B4oT

where the coefficients Ky, Koo, Ky, o L.
depend upon the material properties, di-
mensions, and curvature of the fiber seg-
ment. In gencral, the coefficients are de-
pendent upon the distance between bonds
L, the orientation of the segment 64, and
the location X, of the fiber scgment refer-
ence bond in the plane of the network.
The coefficients By, By, Ba, By represent
the thermal expansion or moisture shrink-
age cffect, while AT represents either a
change in temperature or a change in
moisture content from some reference value.

The clastic energy Wii¥ stored in a fiber
segment between bonds X; and X; can be
expressed as
I

i

w
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The elastic energy associated with deforma-
tion of the bond at X;, W* can be written
as

Ni Nj .
B ] B 2
W, =Y ¥ 1 Kile,.-¢::]" (3
PO ke 4 iMjkl®ik ~Pij

where N; represents the number of bonds
neighboring bond X, and Kj® represents
the moment per unit bond deformation
measured by the difference (i — ;) at
bond X, oriented between the fiber seg-
ments extending to bond X; and bond X,.
Then, if

L N F
W, =% W.. 4)

=1 Y
represents the strain energy stored in the
fiber segments emanating from bond X;
and if M represents the total number of
bonds in the network, the ftotal elastic
energy stored in the deformed network,

U, is
Y .M
L Bt B
vt=-s whis w, (5)
) DL

Connections between microscopic and
macroscopic network deformation

If the network consists of a finite number
of bonds M and fiber segments joining the
bonds, the total cnergy stored in the system
can be calculated for a given distribution
of bonds X,, X;, Since the number
of elements in a practical situation is very
large, it is expedient to attempt to describe
the deformation of the network as though
it werc a continuum. In order to accom-
plish this, it is necessary to establish a
conneetion between the deformation of in-
dividual fiber segments (the microscopic
level) and the continuum description of
the deformation of the network (the macro-
scopic level). This may be carried out in
a variety of different ways. Three possible
connections are proposed in this paper.

Let us refer to the microscopic displace-
ments of a typical fiber segment having
ends initially at X,, X; by the quantities
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uy’, vy, and uy’, vi’. The macroscopic dis-
placements of the continuum at point X,
we assume are given by the functions
u(x,y), v(x,y). The axial deformation of the
tiber segment is given by the expression

—_ o .t .
€y =m (u] u,) + n(vi-vy) . (6)
where m = cos 6y, n = sin 6, and the
relative deflection is given by the expression
8. = —1 —u! vy -
m 1(ul u())-thl \())‘ (7)
In gencral, we propose that the micro-
displacements uy’, v’, uy/, v,/ arc functions
of the continuum displacements u, v at X,
and various gradients of the displacement
functions. Thus, we write?

u(‘) — f()(u,v. Ux.Vx o),
ui — fl (uv uxvy. (8)

)
v = g()(u.v, Ux.Vyx ...),
)

,
|

1= (WV UV o).

Likewise, the microscopic measures of rota-
tion of the ends of the fiber segment with
ends at X, and X, arc denoted ¢¢,” and
¢’ IF ¢(6,x,y) represents a continuum
rotation function, which generally depends
on orientation ¢ and position x,v. we write

9

CONNECTION METHOD 1

The most straightforward and the casiest
computational method for providing a
connection between the macroscopic and
microscopic levels is to pick

fy=u g, = v fi=u+

uxlLm+uyln

g = v+ vxl.m + vyLn,

a0
h() = ¢, h] =¢p+oxlm+
¢\,Lm,

where m = cos 6, n = sin § represent the

2 Subscripts x, y for functions u, v, ¢ denote
partial derivatives. Eq., u. = du/dx, ete.

orientation of the typical fiber scgment
located between X, and X; and L{6,xy)
represents the length of the fiber segment
of orientation # at position x,y in the net-
work,

CONNECTION METHOD 11

Method II employs the same functions
fi, g, hy to determine the microscopic
quantities u,’, vy’ and ¢:¢’. An entirely dif-
ferent procedure, however, is employed to
determine f,,, g and hy. A network connec-
tion clement consisting of a typical bond,
assumed to be located at X,, and the fiber
segments emanating from the bond is con-
sidered. The displacements and rotations
of the fiber scgment ends away fromn the
bond are prescribed by the tunctions £, gi,
hy, f2, ga, hs, cte. The displacements uy, vy
and ¢4 for cach fiber segment may then
be calculated in terms of the functions fy,
gi, hy, cte.; hence in terms of u,v,u.uy,vy,
Vi,d, ¢y The computational effort re-
quired in this method is considerably
greater than that of the preceding method
and from a practical viewpoint is fcasible
only if the connection network element is
relatively simple. For example, the connec-
tion clement that consists of two straight
fiber segments attached at their midpoints
may prove to be a suitable one. 1f, in fact,
the network were to be comprised of a
repetitive array of fiber segments, this
method would be highly acceptable as
shown by Klemm and Woézniak (1970).

CONNECTION METHOD III

Method III incorporates additional de-
grees of freedom in the mathematical model,
which permits less restrictive assumptions
to be made concerning the relationship be-
tween the microscopic and macroscopic
levels of deformation. It is assumed that
the displacement of a fiber segment end
at X, can be expressed in the form

u, (x,v)+ 1//1 (x,y)x]

Vi =V (x,v) + l//z (X,‘V)y'l ,

u, =
! )

where x"y’ represent the location of a point
at the microscopic level with the inicro-
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scopic level origin selected at a macroscopic
point x,y. In a similar fashion the rotation
$10” of the X, end of the fiber segment
situated between X, and X, could be ex-
pressed as

P19 =9, (8,x,v) +&71 (B.X¥ )x‘1 +

(bz(ﬁ.X,)'))'ll . (12)
In addition to the previously defined field
functions ¢, u, v, we have now introduced
the new ficld functions ¢, ya, ¥, ®s. One
specialized interpretation of these functions
would be to select

_dudx,dudy
wl T Ox ax * dv Ox'
v s vy
¢2 T 3x 5},"+ dy Ay
363 3 3 (13)
- 9¢0ox 0@ 2oy
P1= 3k ox 3y ox
b2 20 2x 200y
27 3x 3y dy 3y .

Generally, the gradients dx/9x” ete. would
be assumed to be functions of position
x,v. When the special case dx/ox’ = 1,
ay/oy’ = 1, ax,/9y'= 0, dy/ax" = O prevails,
the theory that results from method I
would reduce to that obtained from method
[ directly.

Field equations for a network in elastic
equilibrium-connection method I

The ficld equations for determining the
macroscopic response of the continuum are
obtained from the principle of virtual work.
That is, the change in elastic strain energy
stored in the network is equal to the virtual
work of the forces that act on the boundary
of the network for an arbitrary sct of virtual
displacements of the field quantities. The
appropriate methodology and equations are
provided for the case of connection method
I. Conncction methods IT and IIT require
a slightly altered procedure; however, the
basic methodology is the same for all con-
nection methods.

The strain cnergy WY o of the fiber
o

segment situated between points Xy, X is
given by
1

N T 1 L2
Wxx TR x tuRalxx
Ky

. 2
';;d>2 + l) Ky, (¢+¢xl‘m+¢4‘.Lm)“+

1 j—

K23¢5xnx+ Koj(@+pdm+gy I‘m)[SXUX + (14

Ky #(@+ogbmsoglm) —BlA'l‘GXOX -

B._,AT(SXOX ~ByAT¢- B AT (¢p+p Lm+
¢yLm),

where

GXOX =L (m? Uy +mzvy +

mn (uy +vx)),
(15)
uy *

(5XOX =L(m2 vy -m?

mn (vy-uyx)).

and where in general the fiber segment
length L and the cocfficients Ky, Kia, . . .,
are functions of orientation angle ¢ and
position x,y.

The fiber scgments and bonds that com-
prise the network are prescribed in terms
of the fiber distribution function D(f.x,y)
and the bond distribution function D(x,y).
The quantity Ddé represents the number
of fiber segments lying between 6 and
6+ds per bond. The quantity Dpdxdy
represents the number of bonds in the net-
work between x, x+dx and y, y+dy.

The elastic energy stored in a bond lo-
cated at point (x,y) is assumed to be given
by the function

2
B _ .
“X —4 DyGdo

(16)

where G, the bond energy storage function
associated with fiber scgments of orienta-
tion 4, is a function of segment orientation
and position in the network, and depends
upon the bond deformation. In general, G
may depend upon ¢, various order deriva-
tives of ¢ with respect to 6, and possibly
may be conceived to depend upon weighted



MECHANICAL RESPONSE OF FIBER NETWORKS

integrals of ¢ over the interval (0,27). In
the following, it will be assumed that G
depends on 6,x,y,¢ and .

The elastic encrgy stored in the fiber
segments at a bond located at point x,y is

given by
¥ 27
W :/
X 0

The total strain energy U stored in the
network can be expressed as

U :/ W dA (18)
A
where
. 1 F B
“X = I)B 12 \\X + “XJ (19)

represents the strain encrgy per unit net-
work arca. Alternately, the strain energy
U may be expressed as

] //ZWI(
= (O.X.v. 0.0y b Dy
A0 N

20
Ux: Uy, Vx,Vy ) dodxdy, (20)
where
F=toppe wE o Kpe2l @
=3B Wy x " Kpg,

is a function that explicitly depends on the
independent variables 6, x,y and the field
displacement and rotation functions u,v,¢
and on the first partial derivatives uy, ug,
Vi, Vi, ¢y by, do of the field functions.

The principle of virtual work can be
written as the relation

[Txu +

2
6// I d6dA =§
A0 r B 2

2
Tyv +/ medg|ds,
: 0

where the symbol § represents the process
of determining the first variation of the
expression following it. The arca A of the
network is limited by a boundary B along
which the forces in the x-direction T, and
in the v-direction T, per unit boundary
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length are prescribed functions. Also, along
the boundary B, the moment per unit angle
6 per unit of boundary length denoted m”
is a prescribed function.

The variational condition must be true
for arbitrary variations 8¢, Su, v in the
displacement and rotation functions, which
must require that

Oy, OFy,
3« + 3 =0
OFy, OFy,
™~ +—a‘~— =0 (23
BFW BFQDx BF¢)
1:¢~—a—9———at— 3 =0

at all points x, y in the plane of the net-

work and that
[ f2r [
l/ l:u d()\ vt [ *u de’v\ =
0 X ¥
Vot ‘/ ‘V (10

i
2
\/ ’rrv dé
0 X
=m

Fd’x".\' +

X

vy =Ty, (24)

Fqb vy

on boundary B of the network. The quan-
tities vy, v, represent the direction cosines
of the unit vector », which is an outwardly
directed vector normal to the boundary.
In view of the form of the boundary con-
ditions [24], one may define the “stress”
components tyy, ty, by, tyy as

txx /
)

(

T udé.

tYX = U Vdg ,
0 :

2

2

2y
o

» (25)

)

Ixy = by 46,
0 ’

o]
:/‘”Fvydo,

0

The quantities Fo_ and Fo, = m,,
represent physical couples per unit length
as can be observed from the last boundary
condition.

tyy

:m
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DISCUSSION

In the general case when connection
method T or Il is emploved, the displace-
ment functions u, v are functions of posi-
tion x, y, and the rotation function ¢ is a
function of position x, y and orientation 6.
The equilibrium equations [23] along with
the boundary conditions [24] or suitable
conditions involving u, v, and ¢ on the
boundary must be solved to determine the
ficld functions u, v, and ¢. In gencral, the
problem is of the isoperimetric type since
the strain energy must be made to assume
an cxtreme value, while the conditions of
specified stress on the boundary result in
constraining relations of the rotation func-
tion ¢ of integral type. When the boundary
conditions involve only the displacements
u, v and the function &, the variational
problem is no longer isoperimetric.

The relations [25] are expressions be-
tween the stress components ty,, ty,, tyy, tyy
and the displacement gradients uy, uy, vy, v,
at a point. These relations are analogous
to the stress-strain relations of conventional
elasticity theory. In clasticity theory, one
possible solution to the field equations re-
sults when the stresses and  strains  are
homogencous, i.c., when the stresses and
strains arc constant throughout the body.
This type of situation may be used then to
determine  experimentally  the elastic co-
efficients. Tt is not nccessarily true that
homogencous solutions cxist for arbitrary
specification of the distribution functions
I, Dy, and D,. Nonetheless, one would
presume that there are some distribution
functions for which the homogeneous case
prevails. Furthermore, this situation is of
considerable interest in achieving an ex-
perimental verification of the theory.

Once homogeneous solution case of in-
terest is that of the “rigid” bond. Then the
rotation function ¢ is a function of position
x. v but is independent of orientation 6.
The “stress-strain” equations may then be
obtained from equations [25], and it is
presumed that cquations [23] are satisfied
because all of the quantities F, . F, ecte
It can be

arc independent of position.

shown that the stress-strain relations so ob-
tained are of the general form of those
proposcd by Askar and Cakmak (1968).
As noted by these authors, the theory is of
the same format as Eringen’s (1966) linear
theory of micropolar elasticity. 1f the net-
work were assumed to be a repetitive array
of straight beam elements, the theory em-
ploying connection method I would be
analogous with Askar and Cakmak’s (1968).
However, if conncction method IT were
cmployed and the network were a repeti-
tive array, the resulting theory would be
analogous to that of Klemm and Wozniak
(1970), which again is of the general form
of the micropolar elasticity.

A case of considerable interest with re-
gard to the study of the stress-strain be-
havior of paper networks is the assumed
homogeneous solution that permits varia-
tion of rotation function ¢ with oricentation
6. In this situation the displacement gra-
dients and the rotation function arc inde-
pendent of position. Thus, the equilibrium
equations [23] reduce to

19 i dl g
dé
along with the first two of the boundary
conditions [24]. The boundary conditions
an be used to express the displacement
gradients in terms of an integral cxpression
for the rotation function ¢, which can be
used in [26] to obtain a single equation
for the rotation function ¢. The resulting
equation is in general an integro-ditferential
equation with variable coefficients. This
class of problems is analogous to Stern-
stein’s  (1971) isoperimetric variational

problems of fiber networks.

When the bond energy function G s
assumed to have a very special form cor-
responding to having each fiber segment
pin connected at its end to a rigid member,
but clastically restrained from free rotation
with respect to the rigid member, the cqui-
librium cquation [26] reduces to an alge-
braic form. In this casc, the rotation func-
tion ¢ can be eliminated from the cquations
it the rotation of the rigid member is used

=0 (26)
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instead. The resulting theory will then
again be of the general form of Askar and
Cakmak’s (1968); however, now the bonds
can be considered to have a degree of flexi-
bility of their own.

The behavior of the paper network can
be synthesized as a distribution of layers
of repetitive arrays of fiber segments. This
method may be referred to as the laminate
method since the composite behavior may
be thought of as a set of individual 2-
dimensional fiber networks bonded together
to form a sort of laminate. This approach
is appealing from a computational point of
view since the solution of cquation [26]
for a repetitive array degenerates to an
algebraic equation when each laver is pre-
sumed to be characterized by a homoge-
neous deformation. From a physical point
of view also, this method has cousiderable
merit since it permits the sheet to be made
up of laminates whose behavior varies with
position through the thickness of the sheet.
Conncction method 1T is the logical choice
for this method.

The use of connection method I in the
form of [13] necessitates the determination
of the unknown functions ax/dx’, 9x,/0y’,
dy/ax’, dy/dy’ in addition to the ficld func-
tions u, v, and ¢. The theory that results
may be compared with that of Klemm and
Woézniak (1970), who introduced arbitrary
parameters in their strain energy function
to account for “distortion” of the plane of
the network. Maye (1970) also theorized
the necessity for incorporating functions of
this type in order to provide for reasonable
freedom between the microscopic and mac-
roscopic deformation levels. Maye further
postulated that the quantities ax/dx’, etc.
should be constant unless the clastic prop-

ertics of the medium are assumed not be
homogeneous. It may further be suggested
that the constant values of dx/9x’, ete.
should be selected in such a way as to
ensurce that the macroscopic elastic sym-
metry has the desired form. Thus, if for
the paper network one selects the distribu-
tion functions L, Dy, D). on the basis of
experimental observation of paper sheets,
then the quantities 9x/9x”, ete. could be
partly determined from the condition that
the sheet exhibit orthotropic clastic sym-
metry.
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