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ABSTRACT 

Ckneral theoretical aspects of a contilll111111 ~ilathematical model for predicting the 
~nrchanical 1)ehavior of fiber networks are prcsentetl. The theory is developed for an 
idealized two-ditncnsional elastic ~ ~ e t w o r k  subjected to static 1oa.ding. It is intended that 
thc theory be employed to strldy the elastic stress-strain behavior of paper sheets or other 
I~onded fibrous materials. 

Additional keyword.r: hlatl~ematical ~nodels, continuut~l theory, paper elasticity, paper, non- 
wovens, analysis. 

It is thc purpose of this work to describc 
thc general theoretical aspects of a con- 
tinuum mathematical niodcl for predicting 
the) mechanical response of fibcr rlttworks 
that arc, subjceted to c.xtcrna1 loading as 
\\ic,ll as thcrmal and moisture expansion. 
The work is devoted priliiarily to the theo- 
retical dcvclopn~ent of an ideal plane nct- 
work model that behaves c~la~ticnlly and 
that is assumed to bc in a state of static 
cquilibriunl. 

It is recognized that thr ideal two- 
dinic~nsional network modc~l is not adequate 
quantitatively to predict cvcry a\pcct of 
thr ~nech~inical behavior of papei sheets, 
howevc,r, it serves to provide. a foundation 
for the developilient of such ,I theory. From 
the theoretical point of view, it is not 
particularly difficult to c,utrnd the, present 
work to iilcorporatc dynamic cffects and 
nonelastic behavior as well as certain 
aspccts of nonplanar response of the fiber 
clement,. These features have purposely 
11c(,n postponed for thc prcsent in the in- 
tcrcst of emphasizing the critical aspects 
of tl1c proposed thvory that are essential 
to the tle\ic4opment of a rational theory of 
the fiber network. 

' He\enlc11 ~ e p o ~ t e d  in thi\ papc.1 was \upported 
1)). t11r National Science Fo~~ndat ion under grant 
(:K-3810. 

Th t~  prvdictcd mechanical behavior of a 
paper sheet can be synthesized fronl a 
model system consisting of an essc.nti,~lly 
two-dimensional network of fiber cl(m~cnts. 
The fiber elements are taken to be portlons 
of \vood fibers located between bonds in 
thc network. 

In order to describe realistically the prop- 
c,rtics of the ~~etwork,  it is necessary to 
provide the structural elements, i.e., the 
fiber elements and bonds, with degrees of 
freedom of their own that may differ locally 
from those of the average response of the 
network. At any arbitrary point in the net- 
work, thc fiber segment locatcd therc may 
deform much differently from that which 
onc would anticipate from a knowledgr- of 
the gross strain and displacement fields of 
the network. For example, consider a fiber 
segment oriented in the direction of a imi- 
axidlly applied tcnsile stress for an isotropic 
ncltwork. The network can be expectccl to 
elongate in the direction of appliccl stress 
and contract in the direction normal to the 
direction of applied stress. The above- 
mentioned fibcr segmcnt, howcver, rnay 
elongate or not or it may deform by bend- 
ing. Local deviations in deformation from 
those of the gross network deform a t '  lon are 
caused by the nonhornogcncity of thc net- 
work system. Accounting for this aspect 
of thc system behavior is an essential part 
of thc solution of the network problern. 



\II.CIIASIC.AI. HESI'OSSb: OF FIBER UET\Z'OI<KS 27 

I'I(.. 1. Kinematic nleasurca for a typical fiber 
\egmcnt located between bond\ X,, a ~ l d  XI. 

From the mathematical mod(,ling point 
of- view, it is greatly advantag(,ous to be 
ctblc to describe the nc~t\vork bcliavior with 
,I continuun~ rnodt.1. If on(, were, to atteillpt 
to synthesize, shcet behavior from a inodel 
consisting of a tliscrcte numbc,r of fiber 
clcwents, a11 immensely difficult problem 
'1ri4c.s because the nunlbcr of c,cl~~dtions that 
~iiust 11c solvccl sinlultanc~ously is propor- 
tion'tl to the nunibcr ot discreto elcinents. 
It is obvious that such a11 approach \vould 
l~ecome conlputationally uninan,~geablc for 
any realistic model of a papcr sheet. In 
the follo\ving, it is sho\vii how a continuum 
theory with local degrees ot frccdoin can 
be cmployecl to 1nodc~l t h ~  elastic behavior 
of a network model system. Thc presently 
clc,scribcd theory is an application of cer- 
tain aspccts of scvc,ral so-called micro- 
stnictural continuuin theories that havc 
rc~ccritly been proposed for predicting the 
~~lechanical behavior of nonhomogcncous 
nledia. See, for examplp, Klemnl and 
W6zniah ( 1970), h4indlin ( 1964), W6zniak 
( 1967), Eringcn and SuLrl~bi ( 1964). 

TIIEORY OF AN IDEAL TWO-DIMENSIONAL 
NETWORK 

Cetternl nssu tnptions 

Thr nct\vorL is comprised of a set of 
fiber segments, the ends of which ;ire joined 
or "bonded" to each other. Thr fiber seg- 
nicnts are presumecl to bc in thc form of 
flattened stlips. Thc fibcr segment nlaterial 
is assumed in general to bc an anisotropic 
elastic material. The segments are presumed 
to transmit a resultant axial (compressive 
or tcnsile) load, and as wcll, shear and 
bending moment resultants. In general 
typical fiber segments inay be asuined to 
cuperic,nce axial shortening or elongation 
shear, and bending deformation. The bond 
matc~ial associated with the joining of fiber 
segments is assumed also to behave elas- 
tically and therefor(, to deform as a result 
of the loads transmitted through the bonds 
by thc fiber segments. 

Kinematic descriptiott 
The gco~nc~trical and kineinatic mcsasurcs 

of network constitution and deformation 
arc. illustrated in Fig. 1. The planc of the 
network is re~rclsented by the uy-plane. 
The location9 of bonds in the undcfornled 
network are provided by the vc,ctors Xo, 
XI, XP, . . . . Thc bonds arc 1ocatt.d rc>lative 
to one anothvr by the set of vectors Lo,, Lo, 
. . . , LIZ, Ll {, . . . . Thc vectors L,,1, LA02, . . . 
havc orientations 002, . . . \ ~ ~ t h  the 
positive x-axis. Thc ccntcrline of tile fiber 
segment joining bond Xo with bond XI is 
denoted by the etc. As a rosult of 
loading and deformation of thc nextwork, 
thc bonds originally located at Xo, Y1, . . . 
move to locations xn, xl, . . . , the rvlative 
bond position vectors Lol, L"2, . . . 1)cconie 
lol, loz, . . . and the fiber scgmcsnt end 
orientation unit vectors Aol, Aon, . . . l~econie 
unit vectors hol, ho2, . . . . The ends of the 
fiber segment located between bonds Xo 
and X I  rotate by the amounts +,,I = arc cos 
A,, . hol, = arc cos Ale. hlo. The bond 
displacement uo of the Xn bond can be 
represented in terms of rectangular com- 
ponents uo, vo in the x, y - directions or 
in terms of the to,, Tor components measured 
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along and perpendicular to a lint, joining 
I1onds XI,, XI.  

Strrripl energy of cr fiilite nct~rork 
The filler segnient joining bonds Xi, and 

X I  experienccas an axial deformation eel = 
< I ( ,  - to,, :I lateral displacement of onc vnd 
relative to thc other c~nd Slll  = rllo - ~ O I ,  

and rotations of the cmds +I , ,  and I t  
is assumcd that the fiber scgment transmits 
a resultailt axial load N,,l, a resultant shear 
load VOI, and l~mding  momcnt resultants 
hll,, and hll,,. The rc>lationships between 
loading and deformation of the fiber scg- 
111c'ilt b~t\vecm X,, and XI are assumcd to 
be of the form 

MIO = K24601+ K344)01 + 

K44910 - H4 A~ , 

whcrc. the coekficicmts KI1, KZ2, Kj,:, . . . . . 
depcnd upon thc matcrial properties, di- 
mcnsions, and curvature of thc fiber seg- 
mc>nt. In general, the coefficient\ are de- 
~wndcnt  upon the d~stance I~ctwecn bonds 
I,,,,, thc oric,ntation of thc wgnlcmt fl,,,, and 
the, location Xo of thc fiber segment refcr- 
c~ncc, 1)ond in the p1'1nc. of the network. 
Thc coc,fficient\ R, ,  Rz, R 4 ,  B, represent 
thc tIiorm,~l eupan~ion or moisture shrink- 
age effect, whilc AT ieprc,\c-nts either a 
ehdnge in tc.mpernturc or a change in 
moisture, content from \onw 1efelcnc.e value. 

Thc ~ ~ l ~ ~ s t i c  energy W,," stored in a fiber 
segmclnt betwecm bonds X, and X, can bc 
eupic~ssetl a\  

1: 1 8 1 W.. = - K c.. + 7 K.,,6!. i 
IJ 2 11 IJ .! -- IJ  

The elastic enr,rgy associated with dcforma- 
tion of the bond at XI, Win can be written 
as 

where N, represents the number of bonds 
neighboring bond X,, and lK,kU represents 
the moment pt'r unit bond deform a t ' ion 
lneasured by the diffcrcnce ( +,k - +,, ) at 
bond X, oriented between the fiber seg- 
ments extending to bond X, and bond XI,. 
Thcn. if 

Ni 1: 
lvil: := C w..  (4) 

j= l  ' J  

rrpre\ents thc strain energy storcd in the 
f-iber scgments emanating from bond XI 
and if M reprcvnts the total nuinbvr of 
bonds i11 the network, the total elastic 
energy stored in the dcformcd nc.t\vork, 
U. is 

Connections between inicroscopic and 
nzczcro.scopic network deformation 

If the networ'k consists of a finite number 
of bonds M and fiber segments joining the 
bonds, the total cnergy storcd in thc system 
can be calculated for a given distribution 
of bonds XI,, X-,, . . . . . Since the numbcr 
of ele~nents in ;.I practical situation is very 
largc, it is expedient to attempt to describe 
the deformatioi-I of the network as though 
it werc a continuum. In order to accom- 
plish this, it is necessary to estal~lish a 
conncction between the deformation of in- 
dividual fiber segments ( the microscopic 
levcl ) and thc continuum dcscription of 
the deforn~ation of the network ( the m;\c.ro- 
scopic level). This may be carried out in 
a variety of different ways. Three possiblc 
connections are proposed in this paper. 

Let us refer t o  the microscopic displace- 
ments of a typical fiber segment having 
ends initially at  X,,, XI by the quantities 



u,,', v,,', and u,', vlf.  The nlacroscopic dis- 
placements of the continuum at point Xo 
wc assume are given by the functions 
u(x,y), \,(x,y). The axial deformation of thc 
fibor segnlcnt is given by thr expression 

orientation of the typical fiber segment 
located between Xo and XI and L(d,x,y) 
represents the length of the fiber segment 
of orientation H at position x,y in thv net- 
work. 

whcrc) 111 = cos n =I sin H(,l and the 
relative clcflcction is given by the expression 

In gcncral, wc propose) that the niicro- 
displacements u l f ,  vl', LI,,', v,,' arcx functions 
of tho continuu~n displacements u, at  X,, 
and various gradients of the displaccmcmt 
functions. Thus, wc, write," 

Likc,wisc, the microscopic measures of rota- 
tion of the ends of the filler segment with 
c,nds at X,, and XI arc, tlcnotetl and 

If +(H,x,y) represc>nts a continuuni 
rotation function, which generally depends 
on orientation 6' and position s,y, we write 

C ONNECTIOV 2II:THOU I 

Thr  most straightforward and th t  easiest 
computational method for providing a 
conncvtion between the macrowopic and 
~i~ic~oscopic Icvc,1\ is to pick 

where nl = cos H, n = sin 8 represent the 

Method I1 enlploys the same functions 
f , ,  g,, h, to cletcrniinc~ thc nlicroscopic 
quantities u,', vlf and An entirely dif- 
ferent proccdurc, however, is employed to 
determine f,,, g,, and ho. A network connec- 
tion clcmcnt consisting of a typical bond, 
assumed to be located at Xo, and thc fiber 
seglncnts cnlanating fro111 the bond is con- 
sidered. The displacements and rotations 
of the fiber :sc>gment ends away fro~n thca 
bond arc3 prrwrib(~c1 by the functions t',, g l ,  
hl, f z ,  gz, 112, ctc. The displacements uo, \I,, 
and for tach fiber segment Init!, thcn 
be calculatcd in tcrins of the functions f l ,  
g l ,  h l ,  ctc.; hence in terms of u,v,u,.u,.,\r,, 
v,.,+> +,,+, . 'The computational c:ffort re- 
quired in this ~ncthod is consitlc~rably 
grcatc,r than that of the preceding 111ethod 
and f ro~n  a practical viewpoint is fctitsiblc 
only if thr  connection network elerlient is 
relatively simple. For example, the connec- 
tion clcrncnt that consists of t\vo straight 
fiber scgmcnts attached at their ~nidpoints 
rnay prove to be a suitable one. If, in fact, 
the nct\vork \i7c~rc to I)() comprised of a 
repctitivc array of fiber scg~ncmts, this 
nlethod ~7oulcl bc highly acceptable as 
shown by Klemni and FV6zniak ( 1970). 

CONNECTION METHOI) 111 

Method I11 incorporate~additiollal dc- 
grccs of frc,c.dom in thc ~liatheniatical model, 
\vhich permits less restrictive assumptions 
to be nlade concerning the relationship bc- 
twccn the ~nicroscopic and macroscopic 
levels of deformation. It is assumed that 
the displacement of a, fiber scg~nc.nt end 
at XI can 1 ~ .  expressed in the for111 

2 stlbscripts x, \, for fllnctions I,, ", @ denote where sf,y' represent the location of ;a point 
partial derivatives. Eq., 11, = r711/ax, rtc. at tho n~icroscopic level with the ~nicro- 



scopic level origin selcctcd at a macroscopic 
point ~ , y .  In a similar fashion the rotation 
+,,,' of the XI cmd of thc fibcr segment 
situated 11c.twecn XI, and XI coultl be vx- 
pr(>ssc~(l as 

In :~tldition to thc previously dcfiricd ficld 
functions +, u, v, we have no\\; introduced 
the ne\t7 ticxld functions +,, $2 ,  (Dl ,  Q. Onc 
spceiali7cd interpretation of these, functions 
\vould I)(, to sc'lect 

a,, ax  a,, ay  ~ - - - + - - ,  1 - a x a x a  a y a x l  
a,. ax  a, a,. , - - - + A -  t - a x  al l  a y  as1 * 

(13) 
a4  ax  + - -  a$ a y  , 

@ l = ~ a s '  a y a x l  
a$ a  a4 a  $, --A+- '  

2 -  a x  ay '  a y  a,' 
Cc~ncrally, the gladicnts d\ d l '  cLtc. would 

l)(, assuillcd to bc, functions of position 
\,y. When the special cast, d u / i ~ ~ '  = 1, 
dy dy' = 1, du dy'= 0, dy Id\' = 0 prevails, 
thc thcory that results from method I11 
would rcduc*c, to that ol)taincd from method 
I tlircctly. 

Field equutiorw f o ~  a nctzrork in elastic 
rquili11riun1-connectiorz rnetlrod I 

Thc fivld ecluatio~~s for cle.terniining the. 
n~acroscopic rc,sponsc, of t h ~  continuum arc 
obtdincd t~oill thc principle of virtual work. 
That is, the changc in elastic strain energy 
stored in the, nctworl\ is ecju'll to the, virtual 
\vor1\ of the forces that act on the) I~oundary 
of th(> nc,t\vork for an arbitrary set of virtual 
displacc,rnc~nts of thv ficld cjuantities. Thc 
'~plxopriatr methodology and c,cluations are 
lxovided tor thrl caw of connection method 
I. (:onnc>ctioi~ methods I1 and 111 requirc, 
a slightly altcxrrd proccdurc, howc~vrr, the 
1)asic ~ncthodology is the scImc, for all con- 
nc~ction ~nethods. 

T11~ strain cnrargy W1'xl,, of the fiber 

segment situated between points Xo, X is 
givcn by 

.! K : { ; ; @ 2 + ;  ti,, ~ @ + @ ~ ~ , l l l + ~ , ~ ~ l l ~ ~ ~ ~  

and \vhc.rcx in gc~neral the fiber segment 
length L and the coefficients KI1, KI2,  . . . , 
are functions of orientation anglc 8 and 
position x,y. 

Thc fiber scgments and bonds that coin- 
prise thc network arc prescribed ill terms 
of- thc fiber distribution function D+(H,u,y) 
and thr bond distribution function lll,(x,y). 
The cluantity Drd8 represents the ~iumbcr 
ot fibcr segmcmts lying bctwcen H .lnd 
H+dH per bond. The quantity D1:tl~dy 
reprcscnts thc number of bonds in the nct- 
work betwccn u, x+dx and y, y+cly. 

The elastic energy stored in a bond lo- 
cated at point ( s , y )  is assu~iled to bc given 
11). the function 

\vherc G, thc bond energy storage f~incttion 
associated with fiber segments of orictnta- 
tion 8, is a func~tion of segment orientation 
and po5ition in the net\vork, and depends 
upon the bond deformation. In general, G 
may d e p ~ n d  upon +, v'~rious order drr~va-  
tivec of + with respelct to 8, and posslbly 
mdp 1)c concteivcd to dc~pend upon wc,ightcad 
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integrals of + over the interval ( 0 , 2 ~ ) .  In 
the following, it will be assunlccl that G 
tlepends on H,s,y,+ ant1 $0. 

The elastic energy storcd in the fiber 
segnlc,nts at a bond located at point x,y is 
given by 

Thc total strain energy U stoled in the 
nctivork can be exprc~sscd as 

length are prescribed functions. Also, along 
the bouildary B, the moment per unit angle 
0 per unit of boundary length denoted m* 
is a prescribed function. 

Thc variational condition must be, true 
for arbitrary variations 89, 8u, Sv in the 
displacement and rotation functions, which 
must require that 

where, 3 1 : ~ ~  81:@, a ~ : ~ ~  
- 0 

I3 l @ - ~ - a \ - T -  

x1 (19) 
at all points x, j 7  in thc plane of the, net- 

rr~prewnts the strain c,nc,rgy per unit net- \vork and that 

work arcs. Alternatt~ly, thr strain energy 
1 1 T U {nay Iw expressed as r C" 1 

I : l , x , l ~ i  us+ lL ~ : , , ~ < i e i  us = T~ , 

I, =//'" I;(~,X,?..@.".."~.@,..  
.\ 0 (20) Ita ~ - r x L I O I  v,+ J/IT~:l.ydoI Us = 71.s, (24) 

I ' s v I J y , \ ' ~ , \ ' s  ) d B d x d ~ ,  (1 

1s ,I function that c~uplieitl> depc~nds on the 
~ndcpc>ndent variables 8, \,y ancl the ficld 
displaccnient and rotation functions u,v,+ 
.~ntl on thv first partial derivatives u,, u,, 
\ ,, v,, +,, +,, + H  of the tield functions. 

Thr principle of birtual w o ~ k  can be 
rittcw as tht, rol ;L t '  1011 

on boundary A of thc network. The (pan -  
tities v,, v, rc,present the direction cosines 
of thc unit vector v, \vhich is an out\vardly 
directed vector normal to the boundary. 
In vicw of the form of the bountlaly con- 
ditions [24], one may define thv "stress" 
component5 t,,, t,,, t,,, t,, as 

\\!here t h ~  symbol 6 rcprc,jents the process t )  =L2"l.,) do  . 
of determining the first variation of the 
elpression follo\ving it. The arca A of the The cluantitic.5 Fm, = m,, and Fa, InVz 
nvtwork is limited by a boundmy R along represent physical couples per unit lrngth 
which thc fo~ces in the x-direction T, and '1s can be observed from the last boundary 
ill thr v-direction T, 1x.r unit boundary condition. 
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instc,atl. The resulting theory will then 
again IIC of the general for111 of Askar and 
Cakmak's (1968); however, now the bonds 
can 1,c considered to have a t1ogrc.e of flrxi- 
1)ility of thcir own. 

The behavior of t11~ paper network can 
I)( )  synthcsizc.d as a distribution of laycrs 
of ropctitivc~ arrays of fiber srgmc1nts. This 
mcthotl may be referrcd to as thc laminate 
mc.thot1 sincc. the composite, beh;tvior may 
I)(% thought of as a set of individual 2- 
dimc~nsional filler nct\\~orks 1)ondcd together 
to form a sort of laminate. This approach 
is aplx,aling from a computational point of 
\ r i c t \ v  since the solution of cquntion [26] 
for a repetitive array dcgcncratcs to an 
algc,braic ccluation when ?ach lajicr is prc- 
sunrcd to charactc,rizc~tl by a homogc- 
nrous tlr.fornlatioi1. From a physical point 
of \ icw also, this mcthod has considerablc 
merit since, it pcrmits the shcct to b ( ~  nlade 
up of laninatrs whose bchavior varies with 
position through thc tllickilcss of thc sheet. 
(:onntxtio~~ nrcthod I1 is thc logical choice 
for this nlcthod. 

Thc, us(, of connection nlethod I11 in the 
fonn of [13] necessitatc.~ the dctc~rniination 
of the unknown functions dx,/duf, dx,/dy', 
dy, 'dx', dpidy' in addition to thv field func- 
tions u, v, and 4. The, theory that rc,sults 
may 1)o comparc~cl with that of Klemm and 
\Irhzniak ( 1970), who introduced arbitrary 
par:uncters in thr,ir strain energy function 
to account for "distortion" of th(s plane of 
thc network. Mayc ( 1970) also theorized 
tho nc,cc~ssity for incorporating functions of 
this type in ordcr to provitlc for i.easonable 
frclcclon~ l)et\vccm thc microscopic and mac- 
roscopic deformation levels. Maye further 
posttu1atc.d that thc cluantities a~/dx', etc. 
shoultl he constant unlcss thc clastic prop- 

crtics of thc medium are assumed not be 
hon~ogeneous. I t  may further be suggested 
that the constant valucs of dx/dxf, etc. 
should be selrcted in such a way :is to 
cmsurc that the n~acroscopic elastic sym- 
nletrv has thv desired form. Thus. if for 
the inper  network onc selects the distribu- 
tion functions L, D13, Dl,. on the basis of 
cxpcrii11cntal observation of paper sheets, 
then the quantities ax/ax', etc. could bc 
partly determined from thc condition that 
the sheet exhibit orthotropic clastic sym- 
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