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ABSTRACT 

A critical fillet hoop stress (CFHS) model has been used to develop an expression for predicting the 
failure loads of beams with notches on the tension side between the supports. The effects of notch 
location and loading condition are described well by a single parameter, V/M, the ratio of resultant 
shear to resultant moment at the section containing the critical notch fillet. Effects of notch depth, 
fillet radius, and beam depth are treated explicitly in the model. Computer modeling and mechanical 
testing showed negligible effects of notch length and beam span. The model has been verified with 
notched beam tests of eight wood materials, three notch locations, and twenty-one filleted notch 
geometries. The closed-form strength equation, with a single material parameter ( K ) ,  accurately de- 
scribed the observed trends in experimental notched beam critical loads with respect to notch and 
beam geometry, notch location, and loading geometry. 

Keywords: Beam, fillet, finite element modeling, notch, strength measurement, strength prediction. 

INTRODUCTION 

Notches on the tension face generally cause 
a major reduction in the bending strength of 
wood beams (Stieda 1966; Gerhardt 1984a). 
Interior notches (i.e., located between the sup- 
ports) are found in roof rafters and floor joists 
used in building construction (Anderson 1975), 
either by design or by on-site modification. 
The most common planned use of notched 
beams, however, is in wood pallet stringers. 
Over 300 million notched wood stringer pal- 
lets were made in the United States in 1989, 
nearly all of which used notches with filleted 
(rounded) corners (Stern 1990). Accurate es- 
timates of the load capacity and reliability of 
these structures require accurate estimates of 
the strength-reducing effect of tension face in- 
terior notches. 
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The complexities of the stress distributions 
around notches, combined with difficulties in 
defining and measuring material properties 
governing notched beam fracture, have hin- 
dered the development of an accurate, general 
method for estimating the capacity of notched 
wood beams. Previous investigations have cal- 
culated stresses or stress intensity factors in 
notched orthotropic bodies and used a com- 
bined-stress or mixed-mode failure criterion 
to predict the onset of cracking. Classical stress- 
based computations and experiments have 
been conducted by Green (1942), Green and 
Taylor (1 945), Stieda (1 964, 1966), and Abou- 
Ghaida and Gopu (1984). Numerous workers 
have employed linear elastic fracture mechan- 
ics (LEFM) to analyze notched beams (e.g., 
Porter 1964; Leicester a d  Pojnter 1979; Mur- 
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FIG. 1. a) FE mesh for off-center-notched beam. D = 1.75 in., R = 0.75 in., L = 3 in., h = 3.5 in. b) Sign convention 
for resultant moment (M) and shear (V). Positive moment and shear give rise to tensile fillet hoop stress, u,. c) Hybrid 
fillet element, showing direction of fillet hoop stress, CJ,,~, at fillet angle 8. 

phy 1979, 1986; Mall et al. 1983; Gustafsson 
1988). Although LEFM theory is well devel- 
oped for sharp-cornered notches, its practical 
application is impeded by the difficulty of ob- 
taining reliable measurements of the necessary 
fracture toughnesses and elastic parameters. 

Design guidance for interior-notched beams 
is quite limited. The Wood Handbook (USDA 
1987) gives an equation, based on the analysis 
of Murphy (1979), that predicts crack initia- 
tion loads for sharp-cornered notches under 
combined shear and moment. The material 
parameters are fixed at values ". . . conserva- 
tive for most species." Since it neglects ma- 
terial-dependent strength differences and the 
benefits of rounding notch corners (Gerhardt 
1984a), that equation is likely to be overcon- 
servative in many cases. Tension face interior 
notches are also within the purview of the Aus- 
tralian Timber Engineering Code AS 1720.1 - 
1988 (Standards Assoc. of Australia 1 988). Like 
Murphy's equation, the Australian method was 
derived using LEFM and treats only sharp- 
cornered notches. Notch depth has essentially 
no influence on the calculation except for its 
effect on nominal net section stresses. This is 
at odds with Gerhardt's (1984a) finding that 

stress concentrations are strongly related to 
notch depth. 

In a study of notch geometries of importance 
for pallet stringers, Gerhardt (1 984a) found that 
the moment capacity of notched green red oak 
beams could be predicted from a simple equa- 
tion involving notch depth and a single ma- 
terial parameter. His finite element (FE) anal- 
ysis used a hybrid plane stress orthotropic 
element to model the fillet region (Gerhardt 
1984b). This element computes fillet hoop 
stress (a,,), i.e., the stress tangent to the free 
surface of the rounded notch corner (Fig. 1). 
Maximum fillet hoop stress (a,,,) was found 
to occur within a small range of angles along 
the fillet for all of the 252 beams modeled. 
This indicates a fairly consistent ratio of lon- 
gitudinal to transverse tensile stresses at the 
location of a,,,,. From his FE results, Ger- 
hardt derived a closed-form expression for cal- 
culating a,,,,,. The functional relationship be- 
tween maximum hoop stress and notch depth, 
which was independent of assumed elastic 
properties, was found to fit the experimental 
failure data very well. This implies that frac- 
ture initiates at a critical value of ah. This ob- 
servation allowed failure predictions to be 
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made without resorting to a combined stress 
failure criterion. 

Starting from Gerhardt's critical fillet hoop 
stress (CFHS) hypothesis, we: 1) verified the 
applicability of the CFHS hypothesis to a wide 
variety of wood materials; 2) developed a 
model to include the effects of fillet radius, 
notch length, beam depth, and beam span in 
addition to notch depth and loading condi- 
tions; 3) established relationships between 
notched beam strength and readily available 
wood property data; and 4) tested extensions 
of the model to treat sharp-cornered notches. 
This paper describes the first three phases of 
the work. 

PROJECT OVERVIEW 

Finite element modeling was performed to 
calculate maximum fillet hoop stress, a,,,,,, in 
879 beams with interior notches on the tension 
face. Relationships were sought between a,,,,, 
and notch geometry (depth, fillet radius, 
length), loading condition, elastic parameters, 
and beam depth and span. These relationships 
were used to derive a closed-form expression 
to approximate a,,,,, from the geometric in- 
puts and a single material parameter. This ex- 
pression was rearranged to allow its applica- 
tion to notched beam test data. Tests of 837 
notched beams were used to evaluate the ma- 
terial parameter for eight wood materials and 
to verify the geometry dependencies predicted 
by the closed-form expression. Regression re- 
lationships were established between the 
notched beam strength parameter and stan- 
dard wood properties. Strength predictions 
from the resulting model were compared with 
those of previous models. Details of the ex- 
perimental designs, procedures, and results are 
described by Zalph (1 989). 

FINITE ELEMENT MODELING 

The finite element (FE) method was used to 
calculate stresses, strains, and displacements 
in notched beams. The analyses employed the 
FE program developed by Gerhardt (1984a) 
using a single hybrid fillet element (Gerhardt 
1984b) at each notch fillet and cubic isopara- 

metric displacement-based elements (Ger- 
hardt 1983) elsewhere in the mesh. All input 
data were prepared by a mesh generator pro- 
gram (Zalph 1989). A typical mesh is shown 
in Fig. 1 a. 

Plane stress conditions were assumed. An 
orthotropic, linear-elastic formulation was used 
with material axes coinciding with the beam 
axes (i.e., no slope of grain). The hybrid fillet 
element satisfies all governing differential 
equations of anisotropic elasticity within the 
element and models exactly the shape and 
stress-free condition of the circular fillet sur- 
face. This obviates the need for a fine element 
mesh in the region of the discontinuity. 

We performed three sets of FE calculations. 
The main study considered the effects of notch 
geometry, notch location, loading condition, 
and elastic parameters on maximum fillet hoop 
stress, a,,,,,, at a constant beam depth, h = 

3.5 in. The two substudies focused on the effect 
of beam depth over the range 3.5 in. i h 5 

10.5 in. The FE investigations were designed 
to test the generality of Gerhardt's formulation 
(1984a) and to facilitate the derivation of al- 
gebraic equations to approximate the effects of 
the independent variables on a,,,,,. All notch- 
es studied were rectangular with rounded cor- 
ners, i.e., each notch fillet was a 90" arc (Fig. 
1). Notches were characterized by their depth, 
D, length, L, and fillet radius, R. All notches 
had D 1 R and L 2 2R; the limiting case of 
D = R and L = 2R describes a semicircular 
notch. 

The main FE study included 675 compu- 
tations of a,,,,,. The fifteen notch geometries 
included 0.5 in. i D 5 2.5 in., 0.2 in. 5 R 5 

0.5 in., and 1 in. 5 L r 9 in., as shown in 
Table 1. The levels of D, R, and L were chosen 
according to a central composite design (CCD) 
(Myers 197 1). The CCD allows a sample space 
with several independent variables to be probed 
efficiently when terms up to second order may 
be present and the levels of the independent 
variables can be precisely controlled by the 
experimenter. Five orthotropic property sets, 
shown in Table 2, were used to cover the range 
of common wood properties. The orthotropy 
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TABLE 1 .  Notch geometries in main FE study. 

D, in. R, in. L, in. 

ratios Ex/Gxy and Ex/Ey influence the maxi- 
mum hoop stress by affecting the ratios of lon- 
gitudinal to transverse tensile stress and tensile 
to shear stress (Gerhardt 1984a). Poisson's ra- 
tio, vxy, was set to 0.40 in all cases as this pa- 
rameter was found to exert minimal influence 
on the computed results (Gerhardt 1984a). For 
each notch geometry, three notch locations 
(centered and with the top of the inside fillet 
10 in. and 20 in. from the nearest support) and 
three loading conditions (center-point, quar- 
ter-point, and uniformly distributed loads) were 
used. 

Finite element substudy A involved beam 
depth and span in addition to notch geometry, 
loading type, and material properties. It used 
the G32-El2 elastic parameter (EP) set with 
independent variables 4 = Dlh, R, L, h, and 
span, s. Finite element substudy B used the 
G8-El2 EP set with independent variables 4, 
R, L, and h. (Span was dropped from substudy 

TABLE 2. Elastic parameter (EP) sets for FE computations. 

B as it had no impact in substudy A. See "Re- 
sults and Discussion.") Dimensionless notch 
depth, 4, was substituted for D to allow more 
straightforward interpretation of any beam 
depth effect. Forty-three notch geometries were 
included in substudy A and 25 in substudy B. 

For substudies A and B, a single off-center 
notch geometry was used with the three load- 
ing conditions described above. This resulted 
in three a,,,,, values for each beam. Levels of 
R were similar to those in the main study. 
Beam depths of 3.5-10.5 in. were used in both 
substudies. Substudy A also included span over 
the range 44-88 in. A fixed span of 44 in. was 
used in substudy B. 

Formulation of a closed-form expression 

The critical fillet hoop stress hypothesis is 
that notched beams crack when a,,,,, exceeds 
a critical value. The purpose of the closed-form 
expression is to estimate a,,,, without resort- 
ing to the FE model. Gerhardt (1 984a) found 
that: 

where: 

f, = dimensionless apparent stress concen- 
tration factor for resultant moment; 

f2 = dimensionless apparent stress concen- 
tration factor for resultant shear; 

M = resultant moment at the cross section 
containing the top of the critical fillet; 

V = resultant shear at the cross section con- 
taining the top of the critical fillet. 

It was helpful to rearrange Eq. (1) into the 
form: 

Ex 
Designation lo6 psi lo6 psi "XY EJE, E./G., E , .  LO6 PSI G.7 
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separation of the material-dependent terms 
MCF ?%.!!!% - - f~ + f2. - .h (2) (u,,,,~, p,, pV) from the geometric terms 

(g) (3 (F,, F,, h, V/M). If p, = p, = p, then: 

6M - ah,max - - -. 1 

"Moment Concentration Factor" (MCF) is the th2 p V 
(5) 

F, + F2.h.- maximum hoop stress normalized by the nom- M 
inal bending stress in an unnotched beam of 
the same gross section, at the location of the 
critical section. For the shear-free case, Eq. (2) 
reduces to MCF = f,. The quantity (V/M) re- 
lates to loading condition and notch location: 
it is easily calculated from shear and moment 
diagrams (Byars and Snyder 1975). For a notch 
in a shear-free region, e.g., between quarter- 
point loads, V/M = 0. For beams in center- 
point bending with notches away from mid- 
span, the notch fillet under higher moment is 
also under positive shear (Fig. lb), while the 
fillet experiencing lower moment is under neg- 
ative shear. The sign convention for moment 
and shear, originated by Gerhardt (1 984a), as- 
signs the positive sense to forces resulting in 
tensile fillet hoop stress, a,. The fillet closer to 
midspan has V/M > 0 and experiences higher 
a,,,,,, whereas the fillet closer to the support 
has V/M < 0 and experiences lower a,,,,,. 
Thus, the fillet closer to midspan is the critical 
fillet. For this loading condition, the top of the 
critical fillet is located l/(V/M) from the near- 
est support. 

The stress concentration factors f, and f, in 
Eq. (1) are functions of notch geometry and 
elastic parameters. For engineering use, it is 
helpful to separate the geometry dependence 
from the material dependence. A simple ap- 
proach is to assume material constants, p, and 
pV, and material-independent stress concen- 
tration factors, F, and F,, such that: 

f, = P,F, and f, = h F 2  (3) 

Then, Eq. (1) can be rewritten: 

Unfortunately, this does not allow algebraic 

The validity of this simplification is discussed 
in "Results and Discussion: Finite Element 
Modeling" below. 

The CFHS hypothesis is that cracking occurs 
when ah,,ax 2 a , , ,  where a ,,,, the fillet hoop 
stress at crack initiation, is a material param- 
eter. Defining K, = a,, /p allows Eq. (5) to be 
rewritten: 

where: 

Mi = resultant moment at the critical fillet at 
crack initiation; and 

K~ = notched beam strength parameter for 
crack initiation. 

K~ is the only material-dependent term and, as 
such, K~ should be independent of notch, beam, 
and loading geometry. Equation (6) predicts 
notched beam capacity. Functions F, and F,, 
once determined, reduce to known constants 
for a given notch geometry. The ratio V/M is 
known for any given loading geometry. 

MECHANICAL AND PHYSICAL TESTING 

The experimental work served four primary 
purposes: 1) to test the validity of the CFHS 
model for a variety of notched beams; 2) to 
evaluate the material constant, K; 3) to find a 
relationship between K and other wood prop- 
erties; and 4) to estimate the variability of 
notched beam strength. Satisfying these objec- 
tives involved tests of notched and unnotched 
beams and small, clear specimens of several 
wood materials. 

Notched beam tests 

The notched beam tests were performed in 
three studies, denoted 1, 2, and 3 in chrono- 
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logical order. Study 1 provided an initial as- 
sessment of the theoretical model applied to 
materials other than green red oak, the only 
material tested by Gerhardt (1984a). Results 
were used to select the ranges of R and L ex- 
plored in the subsequent studies. Study 2 was 
the principal effort (77 1 beams) to validate the 
theoretical model for eight wood materials. 
Study 3, discussed elsewhere (Zalph 1989), ex- 
plored extensions to the model to handle sharp- 
cornered notches and very short notches (i.e., 
slit notches). 

Study 1 was a full factorial experiment with 
two levels each of D and L and 3 levels of R. 
Two levels of D were included to check for 
interactions between D and R or L. Three lev- 
els of R (0, 0.25, and 0.375 inch) were used to 
probe the transition from filleted to unfilleted 
notch behavior (Zalph 1989). L z 0.75 in. and 
L % 9.0 in., and D z 0.6 in. (4 % 0.17) and 
D z 2.0 in. (4 z 0.57), were chosen as rea- 
sonable extremes. 

Dry (MC % 9%) red oak and dry true fir 
(Abies spp.) were used to represent very dif- 
ferent anatomical and mechanical properties. 
One loading case, V/M = 0 (pure bending 
throughout the notch region), was used to eval- 
uate K and allow preliminary verification of F,. 
Generally, two beams were tested per cell. 

In study 2, quarter-point and center-point 
bending tests were conducted using 3 notch 
locations, 15 notch geometries, and 8 different 
wood materials. (Green and kiln-dried groups 
of the same species were treated as separate 
materials. See Table 3.) Notch location and 
loading geometry were treated through the ra- 
tio V/M. Quarter-point loading of center- 
notched beams gave V/M = 0. Center-point 
loading of beams notched off center provided 
V/M ratios of 0.05 in.-' and 0.10 in.-', as in 
the FE modeling. 

TABLE 3. Experimental design - main notched beam study 
(2). 

Levels" 

Beam dimensions, in.: h - 3.5, t - 1.5, s = 44 (1) 

Notch dimensions: 

Notch depth, D, in.: 0.75, 1.1, 1.45, 1.8, 2.15 (5) 
Fillet radius, R, in.: 0.25, 0.5, 0.75 (3) 

V/M, in.-': 0, 0.05, 0.10 (3) 

Material: Douglas-fir, dry; southern yellow pine, (8) 
dry and green; spruce, dry; hard maple, 
green; red oak, dry; yellow-poplar, dry 
and green 

Replications: 2 per cell, plus a third "center run" 
(D = 1.45 in., R = 0.5 in.), i.e., 31 
tests per level of V/M for each ma- 
terial. 

Total tests: 3 1 x 3 x 8 = 744, + 24 additional for 
SYP sub-study, + 3  extra replica- 
tions = 771. 

a Number of levels of the given factor. 

the red oak with MC of 5-6%. (The red oak 
of study 2 was from a different source and dried 
differently than that of study I.) The test ma- 
terials span the ranges of density, anatomical 
structure, and moisture content representative 
of commercial North American woods. 

All filleted notches were machined using a 
router and custom templates. All notches were 
essentially smooth in the corner region that 
governs crack initiation. Bending tests were 
performed at a fixed crosshead rate of 0.10 in./ 
min. A deflection yoke equipped with a linear 
variable differential transformer (LVDT) was 
used to measure transverse deflection at mid- 
span. Applied deflection and corresponding 
load were continuously recorded. The notch 
region was visually observed for crack initia- 
tion, which commonly coincided with an iden- 
tifiable event on the load-deflection trace. 

Notch length was fixed at 1.5 in. as study 1 
showed no significant effect of L over the range Clear wood tests 

1-9 in. This finding was supported by the FE Small, clear specimens were cut from each 
results reported below. Average moisture con- broken beam for measurements of moisture 
tent (MC) for all green beams exceeded 29%. content (MC) and dry-basis density (G). Ad- 
The MC for each dry material group was about ditional specimens were taken from one third 
10°/o, with little variation; the exception was of the beams (230 of each material) for de- 
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termination of shear and perpendicular-to- 
grain tensile strengths (S and T,, respectively) 
using the procedures of ASTM D- 143 (Amer. 
Soc. for Testing and Materials 1986). Speci- 
men thickness was limited to the beam thick- 
ness of about 1.5 in., rather than the ASTM 
specification of 2.0 in. The differences due to 
this change in specimen thickness have been 
shown to be small (Bendtsen and Porter 1978; 
Barrett 1974). Thirty unnotched beams 
matched to each material group were loaded 
in quarter-point bending to establish modulus 
of elasticity (MOE) and modulus of rupture 
(MOR) values for each group. 

RESULTS AND DISCUSSION 

Finite element modeling 

Equation (2) posits a linear relationship be- 
tween normalized maximum fillet hoop stress 
(MCF) and V/M. Linear regressions of MCF 
versus (h.V/M) were used to evaluate f, and 
f2 for each combination of notch geometry and 
elastic parameters in the three FE studies. All 
75 regressions from the main study (h = 3.5 
in.) were very highly significant (P 5 0.0001) 
with coefficients of determination r2 1 0.93; 
in 56 of 75 cases (75O/o), r2 2 0.98. All regres- 
sions in substudies A and B yielded r2 2 0.96, 
and in 57 of the 68 cases (84Oo), r2 2 0.99. 
This validates the decomposition of fillet hoop 
stress into a shear-related term and a moment- 
related term. These results suggest that the ef- 
fects of notch location and loading condition 
are fully described by a single term, V/M, as 
suggested by Eqs. (2) and (4x6).  

The angular location (Om,,) of a,,,, along 
the critical fillet is important for two reasons. 
First, it can be compared with experimental 
observations as a rough test of the hypothesis 
that cracking initiates at the point of maximum 
fillet hoop stress. Second, it is unlikely that a 
single critical hoop stress value would char- 
acterize failure of notched beams of a given 
material if Omax varied widely from case to case, 
because large variations in Om,, would imply 
widely different combinations of longitudinal 
and transverse stresses at the critical section. 

For all notches modeled, Omax was 1.5"-8" from 
the notch root. This is consistent with the find- 
ings of Gerhardt (1984a). Our notched beam 
tests generally confirmed that cracking initi- 
ates slightly away from the notch root. 

The influence of elastic parameters on MCF 
was evaluated from the results of the main 
study using Eqs. (3H5). F, and F, are hy- 
pothesized to be material-invariant functions 
of notch and beam geometry, and the material 
parameter p should be independent of geom- 
etry. We set p = 1 for the G17-El7 EP set, 
making this the baseline against which the ef- 
fect of elastic properties was calibrated. For 
the G 17-E 17 results, F, and F2 are equivalent 
to f, and f,. From the regressions described 
above, f, and f2 were calculated for each of the 
7 5 combinations of notch geometry and elastic 
parameters. The proposed material parameter 
p was derived for each EP set using two sep- 
arate linear regressions; one allowed a non- 
zero intercept while the other did not: 

where subscript k indicates the kth EP set. 
Equation (7) always gave a nonsignificant 

intercept, i.e., a = 0. All regressions were un- 
questionably significant (P << 0.000 1) and the 
resulting values of p are given in Table 4. Sev- 
eral features are noteworthy. The low standard 
error of p, across levels of V/M and notch ge- 
ometry, is striking. This supports the validity 
of the one-constant formulation of Eq. (5). The 
results shown in Table 4 justify the assumption 
pM = pV = p. For each EP set, pM = p within 
0.4%, although pv differs from p by up to 25%. 
(They agree, by definition, at the baseline EP 
set.) The approximation pM = pv = p is ac- 
ceptably accurate due to the relatively small 
contribution of the shear term (f2.V/M.h) to 
MCF in comparison with that of the moment 
term (f,). Over the 13 5 cases, the moment term 
(f,) is always at least 8.7 times larger than the 
shear term (f2 . V/M . h); ratios 2 20 are typical. 
Thus, any error in the prediction of MCF from 
using p from Eq. (8) is negligible. 
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In Eqs. (3)-(6), Fl and F, are dimensionless 
functions of notch and beam geometry. Upon 
determining p, numerical values of F, and F, 
were computed for each geometry in the FE 
studies. Closed-form representations were de- 
rived to approximate Fl and F, for any com- 
bination of D, R, L, h, and s within the range 
of the study. For application to diverse sizes 
of notched beams, notch geometry is conve- 
niently expressed in terms of dimensionless 
variables. Several such nondimensional pa- 
rameters were investigated. Numerous linear 
and nonlinear functions of the notch and beam 
dimensions (or nondimensional parameters) 
were fit to the 83 values of F, and F, resulting 
from the three FE studies. The relative per- 
formance of the various models was essentially 
constant across data sets-that is, the best 
models for Fl and F, in the G8-El2 substudy 
(B) were also those most appropriate for the 
G32-El2 substudy (A) and the main study. Fl 
and F, were fit well by the expressions: 

where @ = D/h, 6 = R/D, and p = R/h. 
Both equations include dimensionless notch 

depth, @, and a fillet radius term (p or 6). Beam 
span, s, does not appear since substudy A 
showed essentially no influence of s or span : 
depth ratio, s/h, on MCF. The notch length 
effect was negligible for L 2 1.5 in., so L was 
dropped from the expressions. 

Both substudies showed beam depth effects 
similar to those reported by Leicester (1 969), 
Murphy (1 986), Gustafsson (1 988), and Ma- 
suda (1 988)- that is, deep beams yielded high- 
er stresses than did shallower ones with iden- 
tical notch dimensions @ and R. Note that this 
effect is distinct from any probabilistic strength- 
size relationship, which is expected to be small 
for notched beams (Gustafsson 1988; Masuda 
1988). The h effect on Fl was described well 
by Eq. (9) without an explicit h term. This is 
because varying h changes the value of 6 when 

@ and R are held constant. The 6 term was 
found to account for both the R effect at h = 

constant and the h effect at R = constant. An 
explicit h term was needed to account for the 
beam depth effect on F,. Since the beam depth 
exponent was not evaluated for the baseline 
EP set, Eq. (10) includes the exponent 0.164 
derived from the G8-El2 substudy. The G32- 
El2 data yielded an exponent ~ 0 ,  i.e., a neg- 
ligible beam depth effect on F,. Thus, a beam 
depth exponent of 0.164 should give conser- 
vative results (high values of F, and MCF) for 
beams with h 2 3.5 in. for all EP sets in this 
work. 

Substituting Eqs. (3), (9), and (10) into Eq. 
(2) gives an algebraic expression that closely 
approximates the FE results: 

MCF 

Equation (1 1) fits the FE-computed MCF 
values very well. In the worst case, at the great- 
est notch depth (@ = 0.7 l), Eq. (1 1) overpre- 
dicts MCF (i.e., is conservative) by about 13%. 
For the shortest notches, L = 1 in., the pre- 
dictions are about 13% low (unconse~ative). 
Aside from these two extreme geometries, the 
simplified model provides estimates nearly in- 
distinguishable from the actual MCF. 

Mechanical test results 

Two critical loads, recorded during the test- 
ing of each notched beam, were chosen for 
analysis using the CFHS model. These were 
load at crack initiation (Pi) and load imme- 
diately prior to the first significant drop (22O/o) 
in load (P,,). The FE computations apply only 
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TABLE 4. FE material constant r deJined in Eqs. (3)-(5). 

p ( n =  135Y fib( (n = 1 5)b P, (n = 
EP set' 

Estimate SEd Estimate SEd Estimate SEd 

" n = Number of observations in the regression = (1 5 notch geometries)-(3 notch locations).(3 loadlng conditions). 
n = Number of observations in the regression = 15 notch geometries. 

'Elastic properly set; see Table 2. 
' Standard error of the estimate. 

prior to crack initiation; the local geometry 
and stress distribution are altered greatly by .-- 

the presence of a crack. For crack extension 
some small distance from the critical fillet, where g = l/(Fl + F2.h.V/M) and the sub- 

however, the resultant loading and notch depth script "crit" refers to either of the two critical 

(or net section) are about the same as for the loads. The quantity g reduces to a known con- 

uncracked fillet. Thus, the crack extension load stant for each test beam. A linear regression, 

in this region is roughly proportional to the with no intercept term, was performed to find 

crack initiation load, and the model is useful the best value of K for each material at each 

somewhat beyond crack initiation. Among the critical point. This technique also provided a 

readily identified points on the load-displace- measure of the significance of the predictive 

ment graph, P,, was the highest load at which model. 

the model was generally useful. As expected, The results of study 1 were analyzed first on 

the ultimate load was quite variable and only the basis of M* = 6M/th2 instead of K, because 

modestly correlated with Pi. S = p = 0 and L = 0.75 in. are not within the 

Defining K~ = a h , i / p ,  Eq. (1 1) is rearranged: range of the simplified model and Eq. (1 2) may 
not be valid. Analyses of variance (ANOVA) 

where Mi is the resultant moment, at the crit- 
ical fillet, at crack initiation. 

Equation (1 2) can be rearranged and used to 
evaluate K~ from notched beam test data, where 
Mi and V/M are known. Conversely, for known 
K ~ ,  Eq. (1 2) predicts moment capacity. The first 
2 2% drop in load can be predicted by defining 
M,, and K ~ ~ ~ ,  analogous to Mi and K ~ ,  respec- 
tively, and substituting them for Mi and K~ in 
Eq. (1 2). Equation (1 2) can be written: 

showed that notch depth, D, was very highly 
significant (P 5 0.0001) and accounted for 
290% of the variability in Mi* and M2,* for 
both oak and fir. The ANOVA models were 
all very highly significant (P 5 0.0001). Con- 
versely, all terms involving R or L were non- 
significant (P 2 0.05). Based on the lack of 
difference between R = 0 and R = 0.25 in. 
results and the difficulty of notching beams 
with 0 < R < 0.25 in., no beams with radii 
(0.25 in. were included in the later experi- 
mental work. Results of the R = 0 tests ,and 
discussion of an extension of the CFHS model 
to treat unfilleted notches are given elsewhere 
(Zalph 1989). 

Results from beams with R > 0 (study 2 and 
-2/3 of study 1) were analyzed using Eq. (13) 
as well as regressions including a constant term 
to test the hypothesis of a non-zero intercept. 



Zalph and McLain-STRENGTH OF INTERIOR-NOTCHED BEAMS 213 

TABLE 5. Regression results of Eq. (13) for studies I and 2 (R > 0). 

R,.. = 0.5 in.= Unadjustedc 
Critical 

Material" loadb x ,  psi SEd x, psi SEd 

Red oak (study A), dry 
(n = 16)' 

Fir (study A), dry 
(n = 17) 

Douglas-fir, dry 
(n = 93) 

Spruce, dry 
(n = 93) 

Southern yellow pine, dry 
(n = 107) 

Southern yellow pine, green 
(n = 106) 

Hard maple, green 
(n = 93) 

Red oak, dry 
(n = 93) 

Yellow-poplar, dry 
(n = 94) 

Yellow-poplar, green 
(n = 93) 

(all R < 0.5 in.) 

(all R < 0.5 in.) 

a From study 2, except as noted. 
i = at crack initiation; 2% = at first drop In load 22%. 
' R,., = 0.5 in.: computed using R = 0.5 in. for any observations in which R > 0.5 in. Unadjusted: no substitution made. See text. 

SE: standard error of the parameter estimate. 
Number of specimens. 

In all cases the model with no intercept was 
more highly significant, with much lower stan- 
dard errors of K. Each regression was highly 
significant (P 5 0.0001). Regression results are 
given in Table 5. The high significance and 
low standard errors are evidence that the mod- 
el correctly describes the general features of 
notched beam failure for all ten materials at 
both critical loads. 

Table 5 includes two columns of K results, 
calculated with and without the incorporation 
of an upper-limit fillet radius Rmax into the 
calculation. Rmax is the hypothetical fillet ra- 
dius above which any increase in R no longer 
affects notched beam strength. Gerhardt 
(1 984a) found that increasing R beyond 0.5 in. 
(with h = 3.75 in.) resulted in no increase in 
beam strength, despite FE results to the con- 
trary. To set Rma, = 0.5 in., F, and F, were 
calculated using 6 and p corresponding to R = 
0.5 in. whenever R 2 0.5 in. occurred in the 

experimental data. The regressions were more 
significant (higher F-statistics) and had slightly 
lower standard errors of K when computed us- 
ing RmaX = 0.5 in. We concluded that R,,, = 

0.5 in. is appropriate for all of the materials 
tested. 

Figure 2 shows the predicted versus actual 
crack initiation loads (Pi) for the eight species 
tested in study 2. The predictions are based on 
the K values computed using RmaX = 0.5 in. The 
plot demonstrates the goodness of fit indicated 
by the very high significance and low standard 
errors of the Eq. (1 3) regression results (Table 
5). Similar results were obtained by plotting 
predicted versus actual P,, values, with only 
slightly more scatter about the line of equality. 
The regression residuals were not systemati- 
cally related to any of the geometric variables 
(4, 6, p, and V/M). We conclude that the the- 
oretically derived term, g, closely approxi- 
mates the geometry dependence of notched 
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3000 - . Douglas-flr, dry 

.. * Spruce, dry 
with no intercept terms. (K and T, are given 

.. . SYP, dry in psi.) Each model was very highly significant 
-- SYP, green 

2500 -- o nard Maple, green (P  5 0.0001). T, and G were found to be - -  
X Red Oek, dry 

. A Yellow-Poplar, dry essentially independent, with r2 = 0.33 and no 

.I - ye l low-PO~IO~,  green A discernible relationship on an X-y plot. The 
strong relationship between K and the material 
properties T, and G is clear evidence that K is 
essentially a material constant. 

SUMMARY OF PRINCIPAL FINDINGS 

A simplified model of notched beam 
strength, Eq. (12), gives good predictions of 
critical loads. Crack initiation load is predicted 
particularly well. Ultimate load was found to 

Actual crock Initiation Load. I ~ S .  be the most variable and least well-described 
FIG. 2. Predicted versus actual crack initiation loads, 

study 2. Eight species. R,,, = 0.5 in. 
by the model. The first major drop in load (i.e., 
P,,) may be used as a conservative estimate 

beam failure loads, and that K is essentially 
geometry independent. This is a key validation 
of the model. 

Results of the unnotched bending and small, 
clear specimen tests are summarized in Table 
6 .  Linear models were constructed relating 
group mean K~ and K,, to the group means of 
S, T,, MOR, and 6. Since eight materials were 
tested, each regression model had eight total 
degrees of freedom. The best models were: 

and 

of ultimate capacity. 
Predicting notched beam failure loads using 

a geometry factor and a material factor was 
validated. This formulation is applicable to 
hardwoods and softwoods over a wide range 
ofdensity and properties. The material param- 
eter, K ,  used in the model is estimated well by 
a linear combination of perpendicular-to-grain 
tensile strength and density. This allows 
strength predictions to be made for species for 
which K has not been determined directly. Like 
all wood properties, K is variable. Reliability- 
based design procedures or safety factors must 
be used to account for this variability in struc- 
tural design and evaluation. 

Notch fillet radius affects beam strength for 

TABLE 6. Results of unnotched bending and small, clear specimen tests. n = 30 except as noted. 

Material 
Shear T l 8  Gb MOW ~ l d  ~ 2 % "  

(psi) (PSI) Wcm') (psi) (psi) (psi) 

Douglas-fir, dry 1,755 
Spruce, dry 990 
SYP, dry 1,255 
SYP, green 835 
Maple, green 1,440 
Red oak, dry 2,260 
Yellow-poplar, dry 1,780 
Yellow-poplar, green 890 

' Perpendicular-to-grain tensile strength. 
Dry-basls density. 

' Modulus of  rupture. 
X ,  and x,, calculated using R,,, = 0.50 in. (Table 5); n = 93. 
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R 5 0.5 in., above which strength remains green oak pallet stringers. Res. Paper FPL 452. USDA - 
essentially constant. 

The CFHS approach is uniquely general in 
its applicability. It is the only closed-form 
method available for treating the effects of fillet 
radius and beam depth in addition to those of 
notch depth and loading condition. Its single 
material parameter, K, can be determined from 
a relatively simple mechanical test or can be 
estimated from existing values of density and 
cross-grain tensile strength. The predictive 
equation has the attributes of simplicity, ac- 
curacy, and generality necessary for wide use 
as in designing and evaluating interior-notched 
wood beams. 
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