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ABSTRACT 

Great strides have been made in sawmill automation since the first Best Opening Face (BOF) models 
were proposed in the 1970s. For example, curve sawing techniques have demonstrated strong potential 
in maximizing the value recovery from sawmills. This paper concerns an important step in maximizing 
lumber yield in a sawmill, namely log rotution. Rotating the logs to be in the horns up or horns down 
position just before the sawing process has been shown to have a positive effect on maximizing the 
lumber yield. We present an efficient algorithm that, upon being fed the appropriate scan data for a 
log in an arbitrary position, determines the necessary angle of rotation for the log to be oriented (in 
real-time) in the horns up or horns down position. 
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SOME HISTORY AND MOTIVATION fective only when the log classes did not dem- 

In light of society's continued dependence 
on wood and forest products, it is imperative 
that sawmills and other forest products com- 
panies process the available forest resources in 
the most efficient manner. Consequently, op- 
timization techniques are continually being 
improved so that the loss of value recovery 
from sawmills is minimized. Computer auto- 
mation plays a pivotal role in this important 
endeavor. During the days when sawing opti- 
mization systems were just beginning to de- 
velop, the focus was primarily on log diame- 
ter, length, and taper in the determination of 
the ideal log opening face position (see Hal- 
lock and Lewis 1971; Harpole and Hallock 
1977; Lewis 1985; and Shi et al. 1990). In 
other words, important considerations like log 
sweep and crook were not yet being consid- 
ered. This is not to say that sawing accuracy 
was not an issue (see Stern et al. 1979). As a 
result, such optimization models were most ef- 

onstrate these other characteristics (log sweep 
and crook). The most well known of these 
models, the Best Opening Face (BOF) (Lewis 
1985) was originally developed to study the 
effect of these factors on lumber yield; but it 
is now widely used in management planning, 
engineering and design, automated control 
systems, and evaluating operating efficiency. 
The BOF model is a simulation of the actual 
sawing process. A log scanner determines the 
diameter, taper, and length of a log that is fed 
to the BOF model. The model first determines 
the initial opening face that will produce the 
smallest acceptable piece from that log, and 
then successive cuts are made from which the 
yield for the log can be determined. The pro- 
cess is repeated by moving the opening face 
toward the center of the log. This continues 
until all reasonable possibilities have been 
considered, after which the Best Opening Face 
is chosen to maximize yield. 

Although the BOF model has been greatly 
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simplified by Steele et al. (1987) under these 
assumptions, there is still the problem of how 
to best simulate the complex profiles of real 
logs and study the effects of various factors 
on yield. In light of this issue, it has been dem- 
onstrated (Wang et al. 1992) that in addition 
to the log characteristics stated above, sweep, 
cant-size selection, and log rotation are also 
significantly correlated with lumber recovery. 

Although there are many methods for deal- 
ing with log sweep (see Maness and Donald 
1994), the most cutting-edge procedure utiliz- 
es curve sawing (Hasenwinkle et al. 1987; 
Lindstrom 1979) wherein, a two-sided cant 
that follows the curve in the log is cut. This 
is accomplished by turning the log to the 
horns up or horns down (more often, it is 
horns down) position upon which the cant is 
sawn with a variable curve linebar. It should 
be noted that these days, this operation is car- 
ried out by circular gang saws. While it is in- 
tuitively clear that imprecise manual log ro- 
tation has a negative effect on the lumber re- 
covery, the authors in Wang et al. (1992) use 
a regression approach to predict the percent- 
age drop-off in lumber recovery from manual 
log rotation. As a matter of fact, even in the 
early days of sawing optimization, it was rec- 
ognized by Richards et al. (1980) that the most 
important decision made by the sawyer is the 
rotational position of the log on the carriage 
for the first cut. With the aid of advanced scan- 
ners and other automation equipment, the gap 
between theorized solutions and practical im- 
plementability should draw closer. As is com- 
monly acknowledged, full shape, three-dimen- 
sional scanning has the potential for affecting 
a marked improvement on value recovery. 
However, our algorithm uses only the data 
concerning the x- and y-coordinates of the cen- 
ter points, which are calculated from the scan 
data. Specifically, the data used in this paper 
were procured from a Hermarya (model 
HDS-050) 2-axis scanner. 

Furthermore, in this paper, we focus on an 
important step in straight (or conventional) 
sawing, wherein the log is first rotated to the 
horns up or horns down position, before a 

straight saw obtains a cant that is parallel to 
the plane of the cutter blades. The reason for 
trying to achieve a horns up or horns down 
position in straight sawing is so that most of 
the sweep is contained in a plane parallel to 
the axis of the conveyor, which results in high- 
er yield when followed by a curved saw. On 
the other hand, if a log is a perfect right cyl- 
inder, then one would not require any rotation. 
However, our project involved a random sam- 
ple of logs that belong to the southern yellow 
pine species. As is well-known, these are soft- 
wood species that are noted for sweepy chiu- 
acteristics. Consequently, for straight sawing, 
a horns up or horns down orientation (before 
sawing) is greatly desired. Essentially, by do- 
ing so, one forces the sweep to be contained 
in the plane of the cutter blades and hence the 
yield is higher. While many existing software 
programs already perform this task, we present 
an extremely efficient, real-time algorithm that 
will rotate a log from an arbitrary position on 
the conveyor, to being horns up or horns 
down. 

CHANGE O F  COORDINATES UNDER ROTATION 

In their quest to align a log in the horns up 
or horns down position, the rollers rotate the 
log about an axis that is parallel to the con- 
veyor and passing through a "pivot" point 
P,,,,. In other words, the log is rotated about 
the point P,,, . In practice, the point P,,,, is cho- 
sen as one of the cross-sectional centers ob- 
tained from the scan data. The stability of the 
operation is a crucial consideration when 
choosing the location of the pivoting point 
PI),,. In fact, we have studied the effect (on the 
accuracy of the rotation) produced by varying 
the location of the pivot point along the length 
of the log. Furthermore, it is important to note 
that unless a typical point P,,,,, (on the log) lies 
on the axis of rotation, turning the log through 
an angle a would move P,,,, to a new point 
P,,,. This section is devoted to understanding 
the mathematics of rotation so that we may 
determine the coordinates of the new point 
P,,,,. We will use a classical technique from 
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FIG. 1. Change of coordinates under rotation 

polar coordinate geometry (see Thomas 1960) 
to determine the new coordinates. 

First, we establish some notation. Through- 
out this paper, P ,,,, (x ,,,, y,,,,) will denote the piv- 
ot point for the rotation, P ,,,,, (x ,,,,,, y ,,,,) the 
point befc~re rotation, P , ,  (x ,,,, y ,,, ), the point 
after rotation, and a the measure of the angle 
of rotation in the counter clockwise direction 
as the log is faced head-on. We observe that 
a convenient way to understand the effect of 
rotation on the coordinates of a point is to 
move the origin from the location (0, 0) to the 
point PI,,,. Essentially, we are translating the 
original coordinate axes (denoted by xy in Fig. 
1) to new coordinate axes (denoted by x*y* in 
Fig. 1) so that the origin of the x*y* coordi- 
nate system is the point PI,,, , and the horizontal 
and vertical axes, respectively, of the two co- 
ordinate systems remain parallel. As shown in 
Fig. 1, let 0 be the angle between the positive 
r-axis and the line segment joining the points 
P ,,,, and P ,,,,,. Furthermore let a denote the 
length of the segment joining P,,, and P ,,,. 

It is easy to see that under the x*y* coor- 
dinate system, the point P,,,,, may be repre- 
sented as the point Poll,(x,r,s - xi,,,, Yor,, - Y,,,). 
Similarly, the point P,,,, may be represented as 
the point P,,,r(x,,,, - XI,,,? y,, - Y,,,,). Note that 
the points P ,,,,, and P ,,,, lie on a circle C (see 
Fig. 1) centered at the point PI,,,. By repre- 
senting the points P,,,,, and Pro, using polar co- 
ordinates, we have the following equations: 

x ,,,,, - X, ,,,. = a cos 0 ( 1 )  

yro, - Y,,;~ = a sin(0 + a). (4) 

Using the sum formulae for the sine and co- 
sine functions in Eqs. (3) and (4), respectively, 
we have 

x ,,, - xi ,,,. = (a cos 0)cos a 

- (a sin 0)sin a ( 5 )  

ymr - yPn = (a cos 0)sin a 

+ (a sin 0)cos a .  (6) 

Substituting Eqs. (1) and (2) in (5) and (6), 
respectively, yields the following coordinates 
for the point P,,,: 

and 

Note that the change of coordinates equations 
are independent of the angle 0. 

THE ALGORITHM FOR LOG ROTATION 

The data available from a scanner like the 
Hermarym (model HDS-050) 2-axis scanner 
used in this study provide the log diameters 
x, ,,,,, and y ,,,,,,, i = 1 . . . n in the x and y 
directions, respectively, where n is the number 
of slices of data. Slices are typically located 
about three inches apart. The location of the 
left edge of the slice, x ,,,,,, and the bottom 
edge y,,,,, are also provided. From these data, 
one can estimate the slice center using the 
equations x,,,,, , = x,,,,, 1 + (x,,,,,, ,)I2 and Y, ,,, 1 = 
y,,,, , + (y ,,,,,,, )/2. A three-dimensional model 
of the log may be interpolated from the above 
data; however, our approach is much simpler. 
The basic idea of the algorithm is to rotate the 
centers of each slice by an angle at which the 
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new locations of the centers are closest (in the 
x-direction) to the imaginary axis that the log 
rotates about. Intuitively speaking, we are try- 
ing to look down on the log as it lies on the 
conveyor (the xz plane, where the z-axis runs 
along the length of the log) and rotate it so 
that it best lines up with the axis of rotation. 
Thus, the rotated centers x ,,,, and y ,,,, (for a 
specified a and pivot point P,,,,) are obtained 
by substituting x,,,, , for x,,,,, and Y,,,, 1 for Y,,,, 
in Eqs. (7) and (8), respectively above. 

It should be noted that the location of the 
pivot point along the length of the log does 
affect the criterion discussed below. This is 
discussed in detail in a future paper. Further, 
note that the y-coordinate of a slice center, 
y,,,,, ,, is not relevant in determining how close 
a slice is to the rotation axis. However, the y- 
coordinate does influence the x-coordinate of 
a point upon rotation (refer to Eq. (7)). By 
rotating the log to the horns up (or horns 
down) position, we are forcing the sweep to 
be contained in the y direction (as much as 
possible), and thus some deviation in the y di- 
rection should be expected. With this as our 
motivation, we choose to measure the close- 
ness of the rotated slices to the pivot point, as 
the sum of absolute deviations, SAD = C;=, 
IX co,,, - x,,,l. The quantity SAD minimized 
over cr. is used as the criterion to select an an- 
gle a* that minimizes the SAD. A number of 
other criteria are possible, such as the classi- 
cal, sum of squared deviations; however the 
SAD has intuitive appeal and worked best in 
preliminary testing. 

We consider a discrete approximation to this 
problem by iterating over an angle a, a = 0°, 
. . . , 179" at one-degree increments. It is not 
required that rotation be done for the full 360 
degrees because under the assumptions of the 
preceding section, there is symmetry in the ro- 
tation with respect to the SAD criterion. Thus, 
the log will be either horns up or horns down. 
Also, one-degree increments were chosen be- 
cause this is well within the degree of accu- 
racy with which a log can be physically rotat- 
ed. The algorithm is as follows: 

1. Compute slice centers (x,.,,,,, v,.,,,,,~). 
2. Choose a pivot point xlJi,., y [,,,.. 
3. Loop over a = 0°, lo, . . . , 179". 

3a. Compute rotated centers, x,,,,,, y,,,,, 
i = 1, . . . ,  n. 

3b. Compute SAD. 
4. Choose a that minimizes SAD. This is 

the desired value a*. 

The advantage of this approach over a more 
complicated, value recovery approach is that 
the algorithm is O(n) and thus can be executed 
extremely quickly on a computer. 

EXAMPLES 

In practice, if all the centers of the cross 
sections obtained from the scan data are con- 
tained in a line, then for straight sawing, one 
would not require any rotation. So, without 
loss of generality, assume that the slice centers 
are not collinear. We now classify logs into 
two categories: planar and non-planar. A log 
is said to be planar if all its n slice centers 
(obtained from the scanner) denoted by the tri- 
ples (x ,,,,, ,, y ,,,,, , z,,,, ,), i = 1, . . . , n, are cc~n- 
tained in a plane T in 3-space; otherwise, the 
log is said to be non-planar. 

Observation: For any log, min,{SAD) = 0 
if and only if the log is planar. Furthermore, 
a* is equal to the angle between the plane, T 
containing the centers of the log, and the plane 
given by the equation x = x,,,,. 

Proof of Observation: First assume that for 
a given log, min,{SAD) = 0 and let a* denote 
a value of a that results in SAD = 0. In other 
words, when a = a*, 

This implies that for each i = 1, . . . , n, 

Hence for each i = 1, . . . , n, x ,,,,, , = xl >,,. Since 
x,,, is fixed for each log, it follows that the log 
is planar and the plane T is given by the equa- 
tion x = x,,,,. 

Conversely, assume that the given log is 
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planar and let T denote the plane containing 
all the slice centers. Let 13" (counterclockwise) 
denote the angle between the planes T and x 
= x,~ , , .  When the log is rotated by an angle a" 
(counterclockwise), the plane T is parallel to 
the plane x = x ,,,,. Hence x ,,,,, , = x ,,,, Vi  = 1, 
. . . , n. This implies that for the angle a", SAD 
= 0. Finally, since SAD r 0, it is clear that 
the algorithm, which seeks the angle that min- 
imizes the value of SAD would attempt to se- 
lect a *  = a" as the opti~nal angle. 

Although, in theory, one can determine an 
exact value of a that results in SAD being zero 
(in the planar case), the algorithm outputs only 
discrete values of a*. Consequently, in prac- 
tice, even for planar logs it is possible that 
min,,{SAD) # 0. Below are two examples of 
planar logs and an example of a non-planar 
log. The resulting output by implementing the 
algorithm is also provided. The center points 
are represented in a coordinate system wherein 
the x-axis is horizontal, the y-axis is vertical, 
and the positive z-axis is directed into the 
plane of the paper. 

Planar Example 1.-Consider the slice cen- 
ters given by the coordinates (2,2,1), (2,2,2), 
(3,3,3), (2,2,4), and (3,:3,5), where the pivot 
point for the rotation is the second slice center 
(2,2,2). Note that the equation of the plane T 
may be represented as x = y. Hence the op- 
timal rotation is clearly 45", counterclockwise. 
For this initial position, SAD = 2. By using a 
= 45" in Eqs. (7) and (8 ), it is easy to see that 
the original points have been rotated to the 
points (2,2,1), (2,2,1), (2,3.4,3), (2,2,4), and 
(2,3.4,5), respectively. Now, SAD = 0 and 
hence a *  = 45" (counterclockwise). In this 
case, the rotated slice centers lie on the plane 
x = 2. 

Planar Example 2.- Next consider the slice 
centers given by the points (3,1,1), (2,2,2), 
(1,3,3), (2,2,4), and (3,1,5); again, the pivot 
point for the rotation is the second slice center 
(2,2,2). Note that the pliane T in this case is 
given by the equation x + y = 4. Hence the 
algorithm would yield a *  = 45" clockwise (or 
equivalently, 135" counterclockwise). In this 

case, the rotated slice centers lie on the plane 
x = 2. 

Non-Planar Example.- It is safe to assume 
that real logs are non-planar. Thus, in light of 
the observation at the beginning of this sec- 
tion, it follows that the algorithm cannot re- 
duce SAD to zero. As an example of a non- 
planar log, consider the log segment deter- 
mined by the following slice centers: (4,4,1), 
(4,4,2), (5,5,3), (4,3,4), and (4,4,5). The orig- 
inal value of SAD is one. The algorithm de- 
termines that the minimum SAD is 0.71 ob- 
tained by rotating the log by an angle of 45" 
counterclockwise. The rotated log is still non- 
planar, but there has been some straightening 
of the log. 

Next, we consider data obtained from eight 
real logs of the southern yellow pine species. 
The pivot point P,,,, for rotation is chosen so 
that, x,,. is three feet into the log, or the 12th 
slice where slices are approximately three 
inches apart. Figure 2a and Fig. 2b show the 
projection of the the slice centers for each log 
on the xz plane (the dimensions of both axes 
are in inches). The circles indicate the original 
location of the slice centers, and the squares 
show the slice centers rotated by an angle a* 
(in the xy plane), which minimizes the SAD. 
The horizontal line in the figures represents 
the centerline of the conveyor. In addition, Ta- 
ble 1 ("cw" stands for clockwise and "ccw" 
stands for counterclockwise) shows the per- 
centage reduction in the SAD by rotating each 
log by an angle a*. The percentage reduction 
in SAD is clearly a function of the scan data. 
If the log is in a horns up or horns down po- 
sition initially, then one would expect the per- 
centage reduction in SAD to be small. On the 
other hand, if the percentage reduction in SAD 
is large, then this indicates that prior to rota- 
tion by an angle a*, the log was far from be- 
ing in the horns up or horns down position. 
Consequently, a visual comparison of the log 
before and after rotation (see Fig. 2a and Fig. 
2b), coupled with a record of the percentage 
reduction in SAD are good indicators of the 
effectiveness of the algorithm. For logs 2,3,4, 
(see Fig. 2a) and 6 (see Fig. 2b), the algorithm 
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TAHI t 1 .  Percentage reduction in SAD under a*. 

LOG mi S/r Reduct~on ~n SAD 

tends to line up the center of the log with the 
axis of rotation and the percentage reduction 
in SAD ranges from 56% to 67%. 

SUMMARY 

It is well known that the southern yellow 
pine species have strong sweepy characteris- 
tics and consequently for straight sawing, ro- 
tating a log (if necessary) to the horns up or 
horns down position produces significantly 
higher yield. The simplicity, and consequently, 
the efficiency (O(n)) are two of the most sa- 
lient features of the algorithm presented in this 
paper. Preliminary results indicate that the ap- 
proach employed in this paper goes a long 
way in struightening a log from an arbitrary 
position on the conveyor to being horns up or 
horns down. It is our hope that by approaching 
the important problem of optimizing lumber 
yield in sawmills via elementary, yet, effective 
mathematical techniques, better results may be 
obtained. Regarding the specific problem of 
log orientation in the log breakdown process 
that we have considered in this paper, a more 
intricate approach involving multiple regres- 
sion is being considered, also. We believe that 
further testing is required in order to determine 
exactly how effective this and other approach- 
es are by correlating their performance with 
increased value recovery. 
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