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Abstract. Rapid, accurate determination of wood moisture content is paramount for the wood industry,
infrastructure maintenance, studies of plant physiology, and forest management. Near-IR reflectance
spectroscopy (NIRS) is a widely used nondestructive technique for analyzing the properties of materials,
including MC. Small, portable, handheld NIR spectrometers represent an emerging technology with strong
potential for rapidly, affordably estimating materials properties. Here, we used a SCiOTM miniature hand-
held NIR spectrometer and a partial least squares regression model to predict wood MC. The model was
developed using spectra (740-1070 nm) collected from increment borer wood samples from 41 representa-
tive softwood and hardwood trees, calibrated against gravimetric wood MC determined by oven-drying.
The calibration and prediction datasets contained 2/3rd and 1/3rd of all data, respectively. We explored the
effects of different spectral preprocessing algorithms (ie first and second-order derivatives and standard
normal variate transformations) on model performance. First-order derivative spectra with five latent vari-
ables yielded the most robust model (R2: 0.72, RMSEP: 0.32, the ratio of performance to deviation: 2.2).
Broadly, we demonstrated that relatively low-cost miniature handheld NIR spectrometers such as the
SCiOTM can rapidly estimate percent MC in the wood of various species.

Keywords: Biometry, moisture content, near-IR spectroscopy, rapid measurement, wood.

INTRODUCTION

Moisture content is an important wood quality var-
iable (Leblon et al 2013), influencing its weight,
volume, elasticity, tensile and compression
strength, milling properties, and thermal yield dur-
ing combustion (Mitchell 1961). Determining MC
gravimetrically (by weighing a sample before and
after oven-drying) is time-consuming. It requires
destructive sampling, while passive methods such
as Fourier transform IR spectroscopy and X-ray
tomography require bulky, costly, and specialized
laboratory equipment with limited portability
(Leblon et al 2013; Pu et al 2021). Compact, low-
cost (�USD 800 in 2024), portable handheld near-
IR (NIR) spectrometers represent an emerging

technology for affordable, rapid determination of
MC in wood in the field, mill, or laboratory.

NIR spectroscopy measures light (400-2500 nm)
reflected from a material surface to reveal the
chemical bonds associated with various functional
groups (eg OH, CH, NH) within the material (Ma
et al 2019). The electrons in the O-H bonds of
moisture (water) interact specifically with photons
corresponding to the following NIR bands: 760,
970, 1190, 1450, and 1940 nm. Broadband or
narrow-band spectra can be calibrated against
gravimetrically determined MC in reference sam-
ples using a multidimensional regression model,
which can be used subsequently to predict the
MC in samples with similar physicochemical
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properties (Kelley et al 2004; Via 2004; Leblon
et al 2013; Sundaram et al 2015; Liang et al
2019). In addition to benchtop NIR spectroscopy
instruments, many miniature NIR spectrometers
have been developed (Li et al 2018; Wiedemair
et al 2019; Cazzaniga et al 2022). Compared with
the broad spectral range (400-2500 nm) and higher
resolution data acquired by benchtop NIR spectro-
meters, these miniature devices typically acquire
narrower band spectra with lower resolution (Pillo-
nel et al 2007; Digman et al 2021; Nkouaya
Mbanjo et al 2022; Cazzaniga et al 2022). One
example is the handheld SCiOTM spectrometer
(Consumer Physics Inc., Tel Aviv, Israel) that can
acquire a spectrum ranging from 740 to 1070 nm
(wavelength resolution ,10 cm21, sampling fre-
quency: 1 nm). Multiple studies have demonstrated
the feasibility of using miniature NIR spectro-
meters to determine physiochemical properties,
such as the proportion of solids, moisture, sugar,
and protein in agricultural commodities (eg cheese,
hay, corn, apple, kiwifruit, and feijoa [Li et al
2018; Digman et al 2021; Cherney et al 2023]).

Collecting NIR spectral data in the field can be
challenging due to variable and suboptimal envi-
ronmental conditions (eg temperature, humidity),
which can potentially decrease measurement pre-
cision, accuracy, and resolution. To maximize
reliability, the devices should be trained (cali-
brated) to generate accurate predictions from rela-
tively wide NIR spectral bands acquired under
the anticipated range of operating environmental
conditions. Because of methodological innova-
tions in machine learning algorithms, increasing
affordability and accessibility of computational
processing, and affordable data storage, machine
learning has become a valuable method to process
complex data rapidly and accurately on a large
scale, with minimal human intervention. Spectral
pretreatments, such as standard normal variates
(SNV), first-order derivatives (FD), and second-
order derivatives (SD) can increase the reliability
of quantitative measurements predicted from NIR
spectra and be readily performed on recent ver-
sions of personal computing devices such as
smartphones. SNV reduces the multiplicative
interference present in spectral data (Cazzaniga

et al 2022). FD enhances the peaks of the spectral
data or reduces the effect of additive baselines,
and SD can reduce the effect of multiplicative
baseline scattering (Ferrara et al 2022b).

Partial least squares (PLS) regression is a com-
mon and effective machine learning algorithm for
generating predictive models by calibrating pre-
processed NIR spectra against quantitative mea-
surements determined by a secondary method (Li
et al 2018; Wiedemair et al 2019; Cazzaniga et al
2022; Ferrara et al 2022a, b; Nkouaya Mbanjo
et al 2022). PLS regression utilizes a combination
of principal component analysis and multivariate
linear regression models involving two sets of
data: calibration (training) data and prediction
data (Geladi and Kowalski 1986). Calibration
model fit and predictive accuracy are iteratively
optimized by cross-validation using different
subsets of the data (eg 2/3rd of the dataset for cal-
ibration and 1/3rd of the dataset for assessing pre-
diction quality). The data quality metrics, namely
coefficient of determination (R2), root mean
square error (RMSE), and the ratio of perfor-
mance to deviation (RPD) are internal validation
parameters used to assess calibration model per-
formance (Cazzaniga et al 2022; Ferrara et al
2022a, b; Haruna et al 2022). R2 (range 0-1) is a
variant of the R2 adapted to n-dimensional space,
and as with its 2-dimensional counterpart, a value
closer to unity indicates a better calibration model
fit. RMSE quantifies the calibration precision,
representing the standard deviation of calibration
errors. RPD measures the predictive power and
accuracy of the calibration model, with higher
RPD values (generally .3) being desirable
(Rubert-Nason et al 2013; Cazzaniga et al 2022;
Ferrara et al 2022a, b; Haruna et al 2022).

In this study, we calibrated and validated a model
for predicting the MC of green wood in live forest
trees using a low-cost, compact, handheld NIR
spectrometer. We hypothesized that a predictive
model developed using machine learning would
enable the determination of MC in wood from
the relatively low-resolution, narrow-band NIR
spectra provided by this type of instrument. The
influence of various spectral preprocessing com-
binations on the power of PLS regression for MC
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prediction was compared in terms of R2, RMSE,
and RPD.

MATERIAL AND METHODS

Study Site and Data Collection Tools

Wood increment cores (7-10 cm long) for model
development and testing were collected from hard-
wood and softwood trees of merchantable size (41
total, diameter at breast height circa 10-20 cm,
core length: 7-10 cm) within the Fournier Biologi-
cal Park at the University of Maine at Fort Kent
(47.246910N, 268.592626W). We developed a
single calibration model for estimating MC in
wood of the following taxa that are commonly
found in northern mixed forests of North America:
Poplar (Populus spp.), Balsam fir (Abies balsa-
mea), Birch (Betula spp.), Black ash (Fraxinus
nigra), Spruce (Picea spp.), Cedar (Thuja occiden-
talis), Red pine (Pinus resinosa), Pin cherry (Pru-
nus pensylvanica), and Maple (Acer spp.) (Sibley
2009). The numbers of each species represented in
the calibration set represented the approximately
uniform abundances of these different species in
the sampling site, permitting the development of a
single calibration model optimized for determining
wood MC in northern mixed forests.

Within 10 min of collection, cores were scanned
at a single location near the center along the radial
edge with a handheld NIR spectrometer (SCiOTM,
v 1.2; Consumer Physics Inc.), and the data were
stored in the Cloud provided by the vendor. Core
samples were promptly placed inside labeled
paper envelopes, bundled together, and trans-
ported inside plastic bags within a cooler box to
prevent moisture loss.

Spectral Data Collection and
Mathematical Treatment

Spectral acquisition. Reflectance spectra (six
scans per sample spanning 740-1070 nm) were
collected for each of the wood cores, by scanning
against a white background (Fig 1). The wood
samples were weighed when wet, dried in an
oven to constant weight at 60�C, and weighed
again to determine gravimetric wood MC. Wood

MC was calculated and reported as a percentage
of dry wood weight.

Spectral preprocessing. We evaluated the
effects of using broadband (740-1070 nm) and
narrow-band spectra (760 and 950-970 nm) and
the following spectral pretreatments on PLS model
performance: SNV, FD, and SD. These transfor-
mations were tested alone and in combinations to
evaluate their impacts on the prediction power and
identify the combination with optimal accuracy.
For optimizing the selection of preprocessing
transformations (Fig 1), we followed a similar
approach to Ferrara et al (2022a, b).

PLS Regression Models

We subjected spectral data under various prepro-
cessing combinations to PLS regression to create
and select the optimal model for predicting wood
MC. The dependent variable was the gravimetric
MC (% w/w) of the wood samples and the inde-
pendent variable was the reflectance of light
across the entire 740-1070 nm band. The data set
was divided into calibration (training) and valida-
tion (test) subsets using the Kennard-Stone
sampling method (Kennard and Stone 1969). Cal-
ibration data comprised two-thirds of the total
samples and prediction data comprised one-third
of the total samples.

Spectral preprocessing and PLS regression were
computed using Origin Pro (version 2023b; Origi-
nLab Corporation, Northampton, MA). The RPD
was calculated using the method of Pillonel et al
(2007). The calibration model was cross-validated
using 10-fold cross-validation. Following this method,
once a calibration model was built based on a sub-
set of the data (calibration dataset), the remaining
subset (prediction dataset) was subjected to the
model for prediction of MC, and the model was
iteratively refined. In this way, the performance of
the calibration model was evaluated by the optimal
number of latent variables, R2, RMSE%, and RPD.

RESULTS

Wood spectra varied concerning MC, particu-
larly in the moisture-absorbing bands (760 and
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950-970 nm), and spectral preprocessing influ-
enced the magnitude of features associated with
variations in MC (Fig 2). The relative standard
deviation (RSD) of the six NIR spectra scanned
for each tree sample, averaged across all 41 sam-
ples, varied by wavelength from 0.043 to 0.074
(as a proportion of average spectral amplitude at a
given wavelength). Within any particular sample,
the RSD ranged from 0.0003 to 0.254 (Fig S1).
Strategic selection of preprocessing treatments (ie
normalization SNV, FD, and SD) was essential to
maximizing spectral differences relating to MC

(Fig 2) and the predictive power of the resultant
calibration (Table 1).

Selection of broadband vs narrow-band spectra
(focused on moisture-absorbing wavelengths) had
minimal impact on PLSR calibration model
fit (evidenced by R2(C) and RMSE(C)); but the
predictive power of PLSR models based on
broadband spectra was superior (evidenced by
R2(P), RMSE(P), and RPD) (Fig 3; Fig S2). The
choice of spectral preprocessing methods also
substantially influenced the performance of PLSR

Figure 1. Process flow for data acquisition, calibration model development, and validation for determining wood MC by nar-
row band near-IR spectrometry showing a theoretical plot of predicted vs actual MC. FD, first-order derivative; SD, second-
order derivative; SNV, standard normal variate; PLSR, partial least squares regression.
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calibration models. Collectively, R2(C), R2(P),
RMSE(C), RMSE(P), RPD (Table 1), and the
correspondence between predicted and actual
(secondary) validation measurements of wood
MC (Fig 3) revealed that the optimal calibration
was obtained with first-derivative pretreatment of
broadband spectra (Table 1). Other pretreatment
permutations involving first derivative and SNV
transformations also produced potentially useable,

albeit less accurate calibrations. Some calibration
models fit the training dataset well (ie spectra
with SNV1FD pretreatment), but predicted MC
less reliably (RPD: 2.0).

DISCUSSION

Our study reveals that miniature, narrow band-
width NIR spectrometers such as the SCiOTM can

Figure 2. Influence of spectral preprocessing on the visual distinction between low (#25%), medium (26-65%), and high
($65%) wood moisture levels. (a) Raw reflectance data for reference; (b-h) effects of different spectral preprocessing method
combinations on features associated with differences in wood MC. FD, first-order derivative; SD, second-order derivative;
SNV, standard normal variate.
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provide rapid and cost-effective estimates of
MC in the wood of northern temperate forest
trees. Our best calibration against gravimetrically
determined reference values, obtained by PLS
regression with first-derivative broadband spectra
as is common in quantitative NIR (Vibhute et al
2018), met validation criteria (R2

C: 0.86, R
2
P: 0.72,

RMSE: 0.32, and RPD: 2.2) that are generally

regarded as acceptable for meaningful predictions
(R2 . 0.70, RMSE: small [Rubert-Nason et al
2013; Li et al 2018]). Nevertheless, an RPD
of 2.2 was less than the preferred threshold of
3.0 and indicated that predictions were of limited
precision. Relative to larger, more costly spectro-
meters such as the Foss NIRSystem 5000 (1100-
2498 nm bandwidth) (Yang et al 2024), spectra

Table 1. Quality criteria for partial least squares regression models fitted to reference wood MC and broadband spectra
under different spectral pretreatments.

Spectral preprocessing combination LV R2(C) RMSE(C) R2(P) RMSE(P) RPD

Raw, FD 5 0.86 0.60 0.72 0.32 2.20
Raw, FD, SNV 7 0.80 0.76 0.72 0.68 1.03
Raw, SD 7 0.97 0.36 0.74 0.39 1.80
Raw, SD, SNV 1 0.48 0.85 0.55 0.32 2.19
Raw, SNV 8 0.80 0.75 0.80 0.48 1.46
Raw, SNV, FD 8 0.88 0.74 0.58 0.35 2.00
Raw, SNV, FD, SD Calculation was terminated due to model overfitting

LV, latent variables; R2, coefficient of determination; RMSE(C), root mean square error of calibration; RMSE(P), root mean
square error of prediction; RPD, ratio of performance to deviation; FD, first-order derivative; SD, second-order derivative; SNV,
standard normal variate.

Figure 3. Predicted vs actual wood MC by partial least square regression models fitted with spectra subjected to different pre-
processing treatments. (a-f) Effects of different spectral preprocessing method combinations on wood moisture prediction. FD,
first-order derivative; SD, second-order derivative; SNV, standard normal variate.
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acquired with the SCiOTM were of comparatively
lower resolution. The quality of the PLS model fit
for moisture determination with the miniature
NIR device (R2: 0.8) was also correspondingly
lower than that of the benchtop NIR sensor (R2:
0.92) (Kaur et al 2017).

The selection of spectral pretreatments is vital to
optimizing the predictive power of the PLS
model, as evidenced by large variations in the
PLS model predictive power in response to the
different pretreatment combinations that we
explored (Table 1). Selecting a specific preproces-
sing method is a trial-error process and cannot be
addressed prescriptively (Agelet and Hurburgh
2010). Optimizing model fit based on different
permutations of common pretreatments (ie SNV,
FD, SD) adjusts the baseline and scales the spec-
tra to enhance the weighting of moisture effects
(SNV), delineate moisture-related peaks (FD),
and reveal more nuanced spectral qualities associ-
ated with MC (SD). It is essential to optimize
combinations of spectral pretreatments for both
model fitting and model predictions because some
combinations may produce a strong model fit but
less reliable model predictions (as we observed
with SD1SNV spectra), and to avoid too many
spectral pretreatments as they can lead to model
overfitting (ie SNV1FD1SD).

Although the predictive power of miniature NIR
spectrometers is limited by hardware characteris-
tics such as narrower bandwidths and lower sen-
sor resolutions compared with larger benchtop
devices, it may be possible to increase their pre-
dictive power by strategic calibration model
selection and diversification of training data sets.
While PLS is a common approach to instrument
calibration (Li et al 2018; Wiedemair et al 2019;
Cazzaniga et al 2022; Ferrara et al 2022b;
Nkouaya Mbanjo et al 2022), alternatives such as
modified PLS (Rubert-Nason et al 2013), princi-
pal component regression (Vigneau et al 1997),
and neural network analysis (Wu et al 1996) have
occasionally been used and merit further exploration.
While developing calibrations for moisture determi-
nation using only the two specific, strong spectral
maxima for water (760 and 950-970 nm [Kasim et al
2021]) within the SCiOTM spectrometer’s operating

range (740-1070 nm) would be desirable to increase
method specificity and decrease potentially interfer-
ing covariances, this action resulted in calibrations
with less predictive power. We speculate that the
detrimental effect of restricting our spectra to
specific narrow bands may be a consequence of
insufficient spectral data—attributed to the lower
resolution of our instrument.

Multiple authors have examined how the diversity
of training sample sets impacts the quality of cali-
bration model fits and predictions. The general
trend for PLS calibrations is that prediction power
decreases as the diversity of the training sample
set increases. For example, the inclusion of a
broader range of tree species and ages is associ-
ated with lower R2 values in some calibrations
(Schimleck et al 2018). In the case of the
SCiOTM, Ma et al (2019) compared the effects of
various permutations of spectral preprocessing
and regression approaches (eg PLS discriminant
analysis, interval PLS, and multiple linear regres-
sion with forward and backward selection), and
found that the use of the instrument’s full band-
width (740-1070 nm) and PLS regression maxi-
mized predictive power for casein (R2: 0.45-0.56,
RMSE: 1.28-1.42, RPD: 1.4-1.5) and total protein
(R2: 0.7-0.77, RMSE: 0.53-0.62, RPD: 1.8-2.1),
but that predictive power (RPD) was less than the
desired 3.0. Because factors such as spectral band
selection, preprocessing, plant species, plant age,
and sample set size can impact the accuracy of
quantitative NIR predictions, it is likely possible
to obtain more accurate estimations of wood MC
with miniature NIR spectrometers by using a
larger training dataset and a calibration routine
that statistically accounts for these different fac-
tors. Specifically, we suggest that our calibration
could be improved by using a larger sample set
and a modeling algorithm that incorporates tree
taxon and classification of wood samples by age
and position within the tree (sapwood/heartwood).

CONCLUSION

Miniature NIR spectrometers with limited band-
width (ie 740-1040 nm), such as the SCiOTM, can
provide rapid, cost-effective estimates of wood
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MC in field environments when calibrated against
gravimetrically determined reference values by
PLS regression. However, tools like the SCiOTM

appear to be less accurate, presumably due to their
lower resolution compared with larger, costlier
benchtop and backpack-type NIR spectrometers.
Selection of spectral preprocessing routines is key,
with our best-performing calibration (R2: 0.72,
RMSEP: 0.32, RPD: 2.2) obtained using first deri-
vatives of spectra. Further studies should aim to
improve the predictive power of these miniature
instruments, by expansion of training datasets to
include a greater diversity of tree species, ages,
and sampling locations.
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