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Abstract. Previous studies on computer vision wood identification (CVWID) have assumed or implied
that the quality of sanding or knifing preparation of the transverse surface of wood specimens could influ-
ence model performance, but its impact is unknown and largely unexplored. This study investigates how
variations in surface preparation quality of test specimens could affect the predictive accuracy of a previously
published 24-class XyloTron CVWID model for Peruvian timbers. The model was trained on images of
Peruvian wood specimens prepared at 1500 sanding grit and tested on images of independent specimens (not
used in training) prepared across a series of progressively coarser sanding grits (1500, 800, 600, 400, 240,
180, and 80) and high-quality knife cuts. The results show that while there was a drop in performance at the
lowest sanding grit of 80, most of the higher grits and knife cuts did not exhibit statistically significant differ-
ences in predictive accuracy. These results lay the groundwork for a future larger-scale investigation into
how the quality of surface preparation in both training and testing data will impact CVWID model accuracy.

Keywords: XyloTron, computer vision wood identification, machine learning, deep learning, surface
preparation.

INTRODUCTION

The implementation and enforcement of sustain-
able, legal, and monetizable forest products value
chains require access to wood identification
expertise (Gasson 2011; Johnson and Laestadius
2011; Lowe et al 2016; UNODC 2016). This
expertise, using traditional laboratory methods, is

currently restricted to a handful of wood identifi-
cation experts and centers and is difficult to scale
up to meet global needs (Wiedenhoeft et al 2019).
Multiple technologies for automated wood identi-
fication have been researched to help address this
dearth of wood identification experts (Schmitz
et al 2020). Powered by advances in machine

177Ravindran et al—MACROSCOPIC COMPUTER VISION WOOD IDENTIFICATION

mailto:rs26@msstate.edu
mailto:acwieden@wisc.edu


learning, democratized access to macroscopic
imaging tools such as the XyloTron and Xylo-
Phone (Ravindran et al 2020; Wiedenhoeft 2020),
and cloud-based processing platforms, computer
vision wood identification (CVWID, Khalid et al
2008; Hwang and Sugiyama 2021) has been dem-
onstrated to be an effective and affordable tech-
nology for automated wood identification at
country and continental scales for field screening
purposes (Ravindran et al 2018, 2019, 2020,
2022a, 2022b; de Geus et al 2020; Ar�evalo et al
2021).

In traditional macroscopic wood identification
(Panshin and de Zeeuw 1980; Hoadley 1990;
Wheeler and Baas 1998; Ruffinatto et al 2015),
experts with extensive training view anatomical
features on the transverse, and often radial and/or
tangential surface(s), and make taxonomical
determinations based on the size, frequency, com-
binations, and/or patterns of features they observe
(Miller et al 2002; Wiedenhoeft 2011; Ar�evalo
et al 2020; Ar�evalo and Wiedenhoeft 2022). In
CVWID, images with relevant wood anatomical
features are processed by a model to make an
identification (Khalid et al 2008; Esteban et al
2009; Filho et al 2014; Kwon et al 2017, 2019;
Rosa da Silva et al 2017; Barmpoutis et al 2018;
Figueroa-Mata et al 2018; Tang et al 2018;
Damayanti et al 2019; de Andrade et al 2020; He
et al 2020; Lens et al 2020; Souza et al 2020;
Fabija�nska et al 2021; Wu et al 2021). While a
taxonomic determination can be based on micro-
scopic or macroscopic features in the wood speci-
men, the focus of this study is macroscopic wood
identification, and CVWID will refer to image-
based macroscopic wood identification.

In both methods, since it is presumed that disparate
taxa can be identified based on visual differences
in anatomy, surface preparation is commonly
employed to make anatomical features visible (or
more visible). For traditional macroscopic wood
identification, a specimen’s transverse surface is
typically cut cleanly with a hand-held utility knife
(Hoadley 1990; Wiedenhoeft 2011), whereas both
knife cuts and sanding have been used for speci-
men surface preparation in prior CVWID works

(Cerre 2016; Barbosa et al 2021; Hwang and Sugi-
yama 2021).

While previous CVWID studies have assumed or
implied that the quality of surface preparation
could influence model performance, its impact is
unknown and largely unexplored (Wang et al
2013; Tang et al 2018; Damayanti et al 2019; de
Andrade et al 2020). Hwang and Sugiyama
(2021) suggest that effective models can be devel-
oped only by using images that show species-
specific anatomical features and posit that surface
preparation with a knife or sandpaper is necessary
to clearly reveal those characteristics. Ravindran
and Wiedenhoeft (2022) also argue that surface
preparation must be sufficient to reveal anatomical
characteristics relevant for identification. To the
authors’ knowledge, no study to date has attempted
to evaluate the impact of surface preparation on
CVWID model performance, especially when
there is a difference in sample preparation between
images of the training and testing specimens.

Ravindran et al (2021) presented the first national
scale, anatomically informed 24-class CVWID
model for Peruvian woods. They evaluated model
predictive accuracies using a novel surrogate field
testing methodology whereby mutually exclusive
training and testing specimens were procured
from separate xylaria—a practice that has been
shown to be critical for evaluating model general-
izability (Ravindran and Wiedenhoeft 2022). The
specimens in both the training dataset and the test-
ing dataset were polished to a sanding grit of
1500. As this Peruvian CVWID field model is
ready for deployment, there is an urgent need to
determine the approximate minimum surface qual-
ity needed for test specimens to maintain high pre-
dictive accuracy in real-life implementation.

This study evaluates the predictive accuracy of
Ravindran et al’s (2021) 24-class Peruvian
CVWID model, trained on images of specimens
prepared at 1500 sanding grit, with new testing
images of the prior test specimens prepared across
a series of progressively coarser sanding grits
(1500, 800, 600, 400, 240, 180, and 80) and high-
quality knife cuts to determine if the reduction in
surface quality leads to any reduction in model
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performance. Results of this initial study are
expected to inform future investigations into the
impact of surface preparation quality (of training
and testing data) on CVWID models. It should be
noted that the Peruvian CVWID model is evalu-
ated as previously published, with no subsequent
training or fine-tuning of the model weight
parameters.

MATERIALS AND METHODS

Datasets

Image datasets for model testing were captured
using 167 specimens from the David A. Kribs
Wood Collection (PACw) and teaching collec-
tions at Mississippi State University. One hundred
fifteen specimens used in field model testing in
Ravindran et al (2021) were included and supple-
mented with 52 correctly identified and validated
specimens from the teaching wood collection.
Four specimens used for model testing in Ravin-
dran et al (2021) were not included in this study
due to size and geometry constraints regarding
the effects of repeated sanding on specimen
longevity.

The transverse surfaces of the 167 specimens were
sanded by hand on a benchtop disc sander at des-
cending grits in the following order: 1500, 800,
600, 400, 240, 180, and 80. The sander was
equipped with an adjustable worktable to ensure
that the transverse surface remained perpendicular
to the longitudinal axis of each specimen during
preparation. After sanding, each sample was inspected
for burn marks and atypical sanding artifacts. If
any were found, they were gently resanded at the
same grit to remove them. Up to five images of the
prepared surfaces were collected using the Xylo-
Tron from each specimen after every grit setting.

A subset (75/167) of the sanded specimens
were cut cleanly with a hand-held utility knife
(Wiedenhoeft 2011) on their transverse surface.
After cutting, each sample was inspected with a
hand lens to ensure that the surface condition left
by the 80-grit preparation had been removed. The
specimens were imaged to yield up to five images
per specimen.

For the knife-cut dataset, it was not possible to
prepare specimens in PACw from two of the clas-
ses (Poulsenia and Schizolobium) due to reduced
specimen size from repeated sanding. Ten speci-
mens of each of these missing classes were pre-
pared and imaged from the reference collection
housed at the Universidad Nacional Agraria La
Molina (UNALM) in Peru. This resulted in seven
multigrit, 24-class image datasets using 167 speci-
mens and one knife-cut image dataset from 95
specimens.

Dataset details are summarized in Table 1. As in
Ravindran et al (2021), when referring to a

Table 1. Specimen counts for the test image datasets.

Class label
Sanded

(specimen counts)
Knife-cuta

(specimen counts)

Amburana 2 1
Aniba 2 1
Aspidosperma 5 2
BrosimumA 9 4
BrosimumU 2 2
Calycophyllum 7 2
Cariniana 8 4
Cedrela 20 7
Cedrelinga 6 6
Chorisia 5 4
Copaifera 3 3
Dipteryx 5 4
Eucalyptus 28 11
Guazuma 5 1
Hura 4 3
Maquira 2 1
Myroxylon 6 3
Ormosia 6 1
Pinus 2 1
Poulsenia 1 –

Pouteria 4 3
Schizolobium 3 –

Swietenia 15 8
Virola 17 3
Total 167 75

aFor the knife-cut dataset, images from the Poulsenia and
Schizolobium classes were not possible to source from the
PACw and Mississippi State University teaching collections
due to reduced size from repeated sanding. Ten additional
images for each of those missing classes were sourced from
the UNALM collection; however, those 20 images were not
used in the main comparison with the data from the sanding
grits due to statistical constraints, though, for completeness,
they are mentioned in Appendix A.
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CVWID class we use the class name without ita-
lics, but when referring to the same woods as
botanical entities, we use italicization (eg the class
Schizolobium vs the genus Schizolobium). Exem-
plar images from one specimen of Cariniana sp.
were compiled to show the differences in visual
surface quality at each grit (Fig 1).

Model Evaluation at Each Surface Quality

The XyloTron field model presented in Ravindran
et al (2021) was trained with transfer learning
(Pan and Yang 2010) using transverse surface
images from 1300 specimens (housed in the
USDA Forest Products Laboratory’s MADw and
SJRw collections) and prepared at exactly one

Figure 1. Exemplar images from the same specimen of Cariniana sp. showing the gradual decline in visual quality by des-
cending grit number. With coarser grits (smaller number), a gradual decline in feature visibility/clarity and gradual increase in
sandpaper artifacts can be observed. Each image shows 3.174mm3 1.587mm of tissue.
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sanding grit: 1500. The published weights for the
24-class convolutional neural network (CNN,
LeCun et al 1989; Goodfellow et al 2016), using
the ResNet50 (He et al 2015, 2016) backbone,
were used as-is with no further model training or
finetuning to generate specimen-level class pre-
dictions for the eight image datasets. The model
prediction pipeline was implemented using
PyTorch (Paszke et al 2019) and Scikit-learn
(Pedregosa et al 2011).

For each sample preparation condition, the top-1
and top-2 specimen-level prediction accuracies
were generated using image predictions from up
to five images contributed by the specimen. The
majority vote, with equal weighting, of the top-k
image-level predictions was taken as the corre-
sponding top-k specimen-level prediction for the
specimen contributing the images. A specimen is
correctly classified if its true label is in the k pre-
dicted labels.

Statistical Analyses

Differences in field model predictive accuracy
values (percent of specimens correctly identified)
among the eight sanding/knife preparation groups
were evaluated for statistical significance by
Cochran’s Q using IBM SPSS Statistics 28. Mul-
tiple comparisons were made by the method pro-
posed in Dunn (1964). p-Values were adjusted
using a Bonferroni correction to ensure an
experiment-wise error rate of 0.05. p-Values are
summarized in the main text. All test statistics
and p-values for individual multiple comparisons
are provided in Appendix A. Additionally, since
the statistical tests require that all data come from
the same specimens (N575), the data from the
20 UNALM specimens were not used for com-
parison with the sanding data, but, for the sake of
completeness, have been included as a separate
analysis (where N595) in Appendix A.

RESULTS AND DISCUSSION

The exemplar images of Cariniana sp. show a
gradual decline in surface quality and visibility of
anatomical features as the grit number decreases
and the coarseness of the surface increases

(Fig 1). While the decline is barely perceptible in
the higher grits, a noticeable decrease in feature
clarity and an increase in sanding artifacts can be
observed at around 240 grit. The knife-cut image
is perhaps most comparable to the sanding quality
at 400 grit.

For the specimens listed by class in Table 1, con-
fusion matrices for the top-1 specimen-level
predictions of the ResNet50-based model are pro-
vided to indicate visually where and how fre-
quently inaccurate predictions occurred (Fig 2).
The more inaccurate the performance, the more
off-diagonal cells appear darkened. A quick visual
comparison of the matrices reveals that the
80-grit matrix in the lower left exhibits the most
off-diagonal cells. The individual confusion
matrices in Fig 2, along with cell values and
annotations, are presented in Appendix A.

As the sample size for the knife-cut group (N 5
75) was smaller than those of the sanding grit
groups (N5 167), the results are presented in two
ways. When comparing the predictive accuracies
(percentages of correctly identified specimens) by
sanding grit group only, where N 5 167, there
was no statistically significant difference (p .
0.05) among the percentages of correctly identi-
fied specimens for 1500 (89.2%), 800 (95.2%),
600 (94.6%), 400 (93.4%), and 240 (88.6%)
(Fig 3). Grit 180 (84.4%) was significantly differ-
ent (p , 0.05) from 800 (95.2%), 600 (94.6%),
and 80 (62.9%) only. Grit 80 (62.9%) showed a
statistically significant difference from all other
grits.

When comparing the predictive accuracies by
sanding grit and knife-cut groups, where N 5 75,
there was no statistically significant difference
(p . 0.05) among the percentages of correctly
identified specimens for grits 1500 (93.3%), 800
(94.7%), 600 (96.0%), 400 (92.0%), 240 (92.0%),
180 (85.3%), and knife cuts (90.7%) (Fig 4). Grit
80 (69.3%) showed a statistically significant dif-
ference between all other grit and knife-cut
groups (p, 0.05).

The results of this investigation suggest that, for
these datasets, the CVWID model’s predictive
accuracy is robust to differences in surface
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Figure 2. Confusion matrices for top-1 specimen-level predictions of the ResNet50-based model. The sample preparation set-
tings, in raster order, are sanding at grits 1500, 800, 600, 400, 240, 180, 80, and knife cuts. The individual confusion matrices
in this figure, along with annotations, are presented in Appendix A.
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preparation among the knife cut and sanding grits
from 240 upward. At 80 grit, a sharp reduction in
predictive accuracy can be observed, which might
be due to the decline in feature visibility/clarity
(pore boundaries, rays, etc.) and an increase in
sandpaper artifacts of the kind exemplified by
Fig 1. This suggests that there is a point at which
the obscuring of anatomical detail and/or the
increase in surface preparation artifacts results in
reduced model performance, though this point
could vary by species due to differences in speci-
fic gravity, hardness, and/or other properties. As
variation in surface quality is a practical concern
for field deployment, the impact of obscured ana-
tomical features and sanding/knifing artifacts mer-
its further investigation to ensure that predictive
accuracy is not unnecessarily reduced by insuffi-
cient specimen preparation.

The deployment of CVWID systems can be
impacted by covariate shifts (between training
and deployment data), which can occur due to
wood anatomy variations (eg natural forest grown
vs plantation grown, changes due to environmen-
tal stresses) or operating condition variations (eg
sample preparation methods, imaging parameter
settings, operator skill). The focus of this study
was to evaluate the predictive accuracy of a
CVWID model with respect to one potential
source of operator-induced covariate shift—
explicit sample preparation differences between
training and testing stages. Our results show that
a model trained on a 1500-grit dataset has predic-
tive accuracies that are acceptable for field screen-
ing, on images from surfaces sanded at grits
coarser than 1500. Even though the predictive
accuracy drops sharply for the 80-grit dataset, a
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Figure 3. Comparison of Peru field model predictive accuracy (top-1) by sanding grit only (N 5 167). The percentages of
specimens correctly identified among the sanding grits were compared using Cochran’s Q with post hoc multiple comparisons
per Dunn (1964) with an experiment-wise error of 0.05. Multiple comparisons showed that there were no significant differences
(p . 0.05) among the groups with the following exceptions. * There was a statistically significant difference (p , 0.05)
between 180 grit and 800, 600, and 80, respectively. ** There was a statistically significant difference (p , 0.05) between
80 grit and all other grits, respectively.
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surface coarseness where the complete range of
anatomical features may not be reliably discerned,
the obtained accuracy of 62.9% is still consider-
ably better than random guessing (ie for a model
with 24 classes, an accuracy of �4% would be
expected). This suggests that the model gener-
alizes acceptably in the presence of sanding grit
differences between training and deployment data
when the surrogate field-testing approach is
employed for datasets from specimens from mul-
tiple xylaria.

It has been shown that there are biases inherent in
surrogate field testing (Ravindran and Wiedenhoeft
2022). It should be noted that the question of

optimal sample preparation during the training and
testing phases is still unknown and unexplored.
The results of this study suggest that for field
implementation of a model trained on high-grit
images with a human-in-the-loop modality (eg
in the xyloinf software for the XyloTron platform,
as distributed in Ravindran et al 2020), the predic-
tions are highly reliable at grits as low as 240.
Field polishing of a specimen from 80 to 240 grit
with a cordless drill and an appropriate sanding
pad requires only about 20 s (Wiedenhoeft, per-
sonal observation). Field polishing requires
significantly less skill and training than making
high-quality utility knife cuts but has a higher
hardware burden (cordless drill, batteries, chargers,
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Figure 4. Comparison of Peru field model predictive accuracy (top-1) by sanding grit (solid bars) and knife-cut (patterned
bar) groups (N 5 75). The percentages of specimens correctly identified among all the groups were compared using Cochran’s
Q with post hoc multiple comparisons per Dunn (1964) with an experiment-wise error of 0.05. Multiple comparisons showed
that there were no significant differences (p . 0.05) among the groups with the following exceptions. ** There was a statisti-
cally significant difference (p, 0.05) between 80 grit and all other grit and knife cut groups, respectively.
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access to power to recharge, the need to carry abra-
sives, etc.), and so may well not be practical in
some field contexts.

A comprehensive investigation of the effect sur-
face preparation has on the predictive accuracy of
CVWID models would necessitate examining the
effects each surface quality has on both training
and testing. As specimen preparation for the type
of imaging performed in this study is both labor
and time intensive, the authors elected to examine
first how varying the surface quality of the test
specimens might affect predictive accuracy when
the model was trained on images prepared at the
highest quality (1500 grit) as that directly impacts
the timely release of the Peruvian CVWID field
model. Results showing both statistically signifi-
cant and practical differences in performance
among various surface preparations in testing
justify a much greater investment of time and
resources introducing a second variable of train-
ing specimen preparation quality. As the training
specimens from the MADw and SJRw collections
outnumber the testing specimens in the PACw
collection by approximately eight times, repeating
this study with two variables would require many
more person-hours.

Prior works in CVWID have used sanding or
knife cuts for sample preparation before imaging
the prepared surfaces. Both these methods have
their pros and cons. The knife-cut method is
“quick” and field deployment friendly but making
consistent and safe knife cuts to produce a clean
surface on which the anatomical features are read-
ily observable is a skill that is practice-intensive.
In addition, manipulating the knife, hand, and
wrist to cleanly cut the ends of flush and tightly
packed bundled lumber in situ without first
extracting a small subsample may prove difficult
or impossible. On the other hand, sanding pro-
duces consistent surfaces and is well-suited for
collecting large image datasets, thus a method of
choice heretofore. One way to leverage the posi-
tives of the two approaches would be to employ
sanding for training image datasets and using
good, clean, and skillful utility knife cuts in the
field, but, as noted above, this requires operator
training and skill and may not be logistically

feasible in some field contexts. Another advan-
tage of constructing training datasets from finely
sanded surfaces is that they can be used for the
creation of digital archives of reference images
which can be used for educational purposes. It is
also easier to apply software-based image degra-
dation approaches for data augmentation during
the training procedure to improve model general-
izability if one begins with high-quality images
showing anatomical detail—there is no known
method to enhance a low-quality dataset to
include anatomical features not already observ-
able. While our results suggest that the approach
of using data from sanded surfaces for training
and using utility knife cuts during deployment
may be feasible for the creation of operational,
field-deployable CVWID systems, the question of
the optimal sanding grit for the training dataset is
still open.

In principle, a path to robust models would be to
train models by pooling datasets from different
studies thus capturing a wide range of botanically
and operationally induced covariate shifts. Until
efforts for sharing and pooling multiple CVWID
datasets gain traction, and workers publish the
spatial scale of the images they collect (which is
often not done), the method of using finely sanded
specimens for training models and employing a
quicker method of sample preparation (clean
knife cuts or coarser grit sanding) in the field may
be a reasonable pathway to operational, field-
deployable CVWID systems.

CONCLUSIONS

This evaluation of a previously published 24-class
CVWID model, trained on images of Peruvian
specimens prepared at 1500 sanding grit, with
new testing images of the prior test specimens
prepared across a series of progressively coarser
sanding grits (1500, 800, 600, 400, 240, 180, and
80) showed a robustness of predictive accuracy
at grits 240 and higher and a reduction in perfor-
mance at 180 grit and 80 grit. Moreover, it
indicated that the predictive accuracy on the spe-
cimens prepared with utility knife cuts was not
statistically different from that of the images
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prepared at 180 grit and above. These results sug-
gest that there is a point at which the obscuring of
anatomical detail and/or the increase in surface
preparation artifacts on test specimens result in
reduced model performance, but minor differ-
ences at higher levels of surface preparation qual-
ity have little to no practical effect. As variation
in surface preparation quality is a pragmatic con-
cern for field deployment, the impact it has on
predictive accuracy merits further investigation.
These results lay the groundwork for a future
larger-scale investigation into how the quality of
surface preparation in both training and testing
data will impact CVWID model accuracy. Mod-
els will be trained at progressively coarser grits
and tested, for each grit, against the images of
each testing grit used in this study.
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APPENDIX A

Table A1. Cochran’s Q test for Fig 3.

Total N 167
Test statistic 152.437
Degree of freedom 6
Asymptotic sig. (2-sided test) 0.000

Table A2. Pairwise comparisons for Fig 3.

Sample 1-Sample 2 Test statistic Std. error Std. test statistic Sig. Adj. sig.a

Grit80-Grit180 0.216 0.032 6.815 ,0.001 0.000
Grit80-Grit240 0.257 0.032 8.140 ,0.001 0.000
Grit80-Grit1500 0.263 0.032 8.329 0.000 0.000
Grit80-Grit400 0.305 0.032 9.655 0.000 0.000
Grit80-Grit600 0.317 0.032 10.033 0.000 0.000
Grit80-Grit800 0.323 0.032 10.222 0.000 0.000
Grit180-Grit240 0.042 0.032 1.325 0.185 1.000
Grit180-Grit1500 0.048 0.032 1.514 0.130 1.000
Grit180-Grit400 0.090 0.032 2.840 0.005 0.095
Grit180-Grit600 0.102 0.032 3.218 0.001 0.027
Grit180-Grit800 0.108 0.032 3.407 ,0.001 0.014
Grit240-Grit1500 0.006 0.032 0.189 0.850 1.000
Grit240-Grit400 0.048 0.032 1.514 0.130 1.000
Grit240-Grit600 0.060 0.032 1.893 0.058 1.000
Grit240-Grit800 0.066 0.032 2.082 0.037 0.784
Grit1500-Grit400 20.042 0.032 21.325 0.185 1.000
Grit1500-Grit600 20.054 0.032 21.704 0.088 1.000
Grit1500-Grit800 20.060 0.032 21.893 0.058 1.000
Grit400-Grit600 0.012 0.032 0.379 0.705 1.000
Grit400-Grit800 0.018 0.032 0.568 0.570 1.000
Grit600-Grit800 0.006 0.032 0.189 0.850 1.000

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. Asymptotic significances (2-sided
tests) are displayed. The significance level is 0.05.

aSignificance values have been adjusted by the Bonferroni correction for multiple tests.

Table A3. Cochran’s Q test for Fig 4.

Total N 75
Test statistic 56.751
Degree of freedom 7
Asymptotic sig. (2-sided test) ,0.001
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Table A4. Pairwise comparisons for Fig 4.

Sample 1-Sample 2 Test statistic Std. error Std. test statistic Sig. Adj. sig.a

Grit80-Grit180 0.160 0.043 3.735 ,0.001 0.005
Grit80-Knife 20.213 0.043 24.980 ,0.001 0.000
Grit80-Grit400 0.227 0.043 5.292 ,0.001 0.000
Grit80-Grit240 0.227 0.043 5.292 ,0.001 0.000
Grit80-Grit1500 0.240 0.043 5.603 ,0.001 0.000
Grit80-Grit800 0.253 0.043 5.914 ,0.001 0.000
Grit80-Grit600 0.267 0.043 6.225 ,0.001 0.000
Grit180-Knife 20.053 0.043 21.245 0.213 1.000
Grit180-Grit400 0.067 0.043 1.556 0.120 1.000
Grit180-Grit240 0.067 0.043 1.556 0.120 1.000
Grit180-Grit1500 0.080 0.043 1.868 0.062 1.000
Grit180-Grit800 0.093 0.043 2.179 0.029 0.822
Grit180-Grit600 0.107 0.043 2.490 0.013 0.358
Knife-Grit400 0.013 0.043 0.311 0.756 1.000
Knife-Grit240 0.013 0.043 0.311 0.756 1.000
Knife-Grit1500 0.027 0.043 0.623 0.534 1.000
Knife-Grit800 0.040 0.043 0.934 0.350 1.000
Knife-Grit600 0.053 0.043 1.245 0.213 1.000
Grit400-Grit1500 0.013 0.043 0.311 0.756 1.000
Grit240-Grit1500 0.013 0.043 0.311 0.756 1.000
Grit400-Grit800 0.027 0.043 0.623 0.534 1.000
Grit240-Grit800 0.027 0.043 0.623 0.534 1.000
Grit400-Grit600 0.040 0.043 0.934 0.350 1.000
Grit240-Grit600 0.040 0.043 0.934 0.350 1.000
Grit400-Grit240 0.000 0.043 0.000 1.000 1.000
Grit1500-Grit800 20.013 0.043 20.311 0.756 1.000
Grit1500-Grit600 20.027 0.043 20.623 0.534 1.000
Grit800-Grit600 20.013 0.043 20.311 0.756 1.000

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. Asymptotic significances (2-sided
tests) are displayed. The significance level is 0.05.

aSignificance values have been adjusted by the Bonferroni correction for multiple tests.
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Figure A1. Predictive accuracy for knife-cut dataset including 10 additional specimens of Poulsenia and 10 additional speci-
mens of Schizolobium, all from the UNALM collection (N5 95).
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Figure A2. Comparison of Peru field model predictive accuracy (top-2) by sanding grit only (N 5 167). The percentages of
specimens correctly identified among all the groups were compared using Cochran’s Q with post hoc multiple comparisons per
Dunn (1964) with an experiment-wise error of 0.05. Multiple comparisons showed that there were no significant differences
(p . 0.05) among the groups with the following exceptions. ** There was a statistically significant difference (p , 0.05)
between 80 grit and all other grits, respectively.
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Table A5. Cochran’s Q test for Fig A2.

Total N 167
Test statistic 141.089
Degree of freedom 6
Asymptotic sig. (2-sided test) 0.000

Table A6. Pairwise comparisons for Fig A2.

Sample 1-Sample 2 Test statistic Std. error Std. test statistic Sig. Adj. sig.a

T2_Grit80-T2_Grit180 0.192 0.024 7.976 ,0.001 0.000
T2_Grit80-T2_Grit1500 0.204 0.024 8.475 0.000 0.000
T2_Grit80-T2_Grit240 0.210 0.024 8.724 0.000 0.000
T2_Grit80-T2_Grit400 0.222 0.024 9.223 0.000 0.000
T2_Grit80-T2_Grit800 0.228 0.024 9.472 0.000 0.000
T2_Grit80-T2_Grit600 0.234 0.024 9.721 0.000 0.000
T2_Grit180-T2_Grit1500 0.012 0.024 0.499 0.618 1.000
T2_Grit180-T2_Grit240 0.018 0.024 0.748 0.455 1.000
T2_Grit180-T2_Grit400 0.030 0.024 1.246 0.213 1.000
T2_Grit180-T2_Grit800 0.036 0.024 1.496 0.135 1.000
T2_Grit180-T2_Grit600 0.042 0.024 1.745 0.081 1.000
T2_Grit1500-T2_Grit240 20.006 0.024 20.249 0.803 1.000
T2_Grit1500-T2_Grit400 20.018 0.024 20.748 0.455 1.000
T2_Grit1500-T2_Grit800 20.024 0.024 20.997 0.319 1.000
T2_Grit1500-T2_Grit600 20.030 0.024 21.246 0.213 1.000
T2_Grit240-T2_Grit400 0.012 0.024 0.499 0.618 1.000
T2_Grit240-T2_Grit800 0.018 0.024 0.748 0.455 1.000
T2_Grit240-T2_Grit600 0.024 0.024 0.997 0.319 1.000
T2_Grit400-T2_Grit800 0.006 0.024 0.249 0.803 1.000
T2_Grit400-T2_Grit600 0.012 0.024 0.499 0.618 1.000
T2_Grit800-T2_Grit600 20.006 0.024 20.249 0.803 1.000

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. Asymptotic significances (2-sided
tests) are displayed. The significance level is 0.05.

aSignificance values have been adjusted by the Bonferroni correction for multiple tests.
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Figure A3. Comparison of Peru field model predictive accuracy (top-2) by sanding grit (solid bars) and knife-cut (patterned
bar) groups (N 5 75). The percentages of specimens correctly identified among all the groups were compared using Cochran’s
Q with post hoc multiple comparisons per Dunn (1964) with an experiment-wise error of 0.05. Multiple comparisons showed
that there were no significant differences (p . 0.05) among the groups with the following exceptions. ** There was a statisti-
cally significant difference (p, 0.05) between 80 grit and all other grits, respectively.

Table A7. Cochran’s Q test for Fig A3.

Total N 75
Test statistic 47.652
Degree of freedom 7
Asymptotic sig. (2-sided test) ,0.001
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Table A8. Pairwise comparisons for Fig A3.

Sample 1-Sample 2 Test statistic Std. error Std. test statistic Sig. Adj. sig.a

T2_Grit80-T2_Grit800 0.133 0.029 4.554 ,0.001 0.000
T2_Grit80-T2_Grit1500 0.147 0.029 5.010 ,0.001 0.000
T2_Grit80-T2_Grit400 0.147 0.029 5.010 ,0.001 0.000
T2_Grit80-T2_Grit180 0.147 0.029 5.010 ,0.001 0.000
T2_Grit80-T2_Grit600 0.160 0.029 5.465 ,0.001 0.000
T2_Grit80-T2_Grit240 0.160 0.029 5.465 ,0.001 0.000
T2_Grit80-T2_ Knife 20.160 0.029 25.465 ,0.001 0.000
T2_Grit800-T2_Grit1500 0.013 0.029 0.455 0.649 1.000
T2_Grit800-T2_Grit400 20.013 0.029 20.455 0.649 1.000
T2_Grit800-T2_Grit180 20.013 0.029 20.455 0.649 1.000
T2_Grit800-T2_Grit600 20.027 0.029 20.911 0.362 1.000
T2_Grit800-T2_Grit240 20.027 0.029 20.911 0.362 1.000
T2_Grit800-T2_Knife 20.027 0.029 20.911 0.362 1.000
T2_Grit1500-T2_Grit400 0.000 0.029 0.000 1.000 1.000
T2_Grit1500-T2_Grit180 0.000 0.029 0.000 1.000 1.000
T2_Grit1500-T2_Grit600 20.013 0.029 20.455 0.649 1.000
T2_Grit1500-T2_Grit240 20.013 0.029 20.455 0.649 1.000
T2_Grit1500-T2_Knife 20.013 0.029 20.455 0.649 1.000
T2_Grit400-T2_Grit600 0.013 0.029 0.455 0.649 1.000
T2_Grit180-T2_Grit600 0.013 0.029 0.455 0.649 1.000
T2_Grit400-T2_Grit180 0.000 0.029 0.000 1.000 1.000
T2_Grit400-T2_Grit240 20.013 0.029 20.455 0.649 1.000
T2_Grit400-T2_ Knife 20.013 0.029 20.455 0.649 1.000
T2_Grit180-T2_Grit240 0.013 0.029 0.455 0.649 1.000
T2_Grit180-T2_ Knife 20.013 0.029 20.455 0.649 1.000
T2_Grit600-T2_Grit240 0.000 0.029 0.000 1.000 1.000
T2_Grit600-T2_ Knife 0.000 0.029 0.000 1.000 1.000
T2_Grit240-T2_ Knife 0.000 0.029 0.000 1.000 1.000

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. Asymptotic significances (2-sided
tests) are displayed. The significance level is 0.05.

aSignificance values have been adjusted by the Bonferroni correction for multiple tests.
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Figure A4. Predictive accuracy for knife-cut dataset including 10 additional specimens of Poulsenia and 10 additional speci-
mens of Schizolobium, all from the UNALM collection (N5 95).
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Figure A5. Confusion matrix for ResNet50, 1500 sanding grit.
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Figure A6. Confusion matrix for ResNet 50, 800 sanding grit.
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Figure A7. Confusion matrix for ResNet 50, 600 sanding grit.
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Figure A8. Confusion matrix for ResNet 50, 400 sanding grit.
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Figure A9. Confusion matrix for ResNet 50, 240 sanding grit.
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Figure A10. Confusion matrix for ResNet 50, 180 sanding grit.
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Figure A11. Confusion matrix for ResNet 50, 80 sanding grit.
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Figure A12. Confusion matrix for ResNet 50, knife cuts.
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