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Abstract. Image analysis is an important method for rapidly measuring wood property variation, but it is
infrequently applied to disks collected from forestry studies. The objective of this study was to compare
image-estimated wood and bark volumes and diameters to reference measurements, and to extract more
information from the images including the shape (out-of-round index, eccentric pith) and the amount and
location of severe compression wood. A total of 1120 disks were cut from multiple height levels of 48
defect-free and 56 defect-containing (forking, excessive sweep, and ramicorn branching) longleaf pine
(Pinus palustris) trees from 16 stands across Georgia (U.S.). Disks were machined on one transverse sur-
face using a computer numeric controlled router to prepare a clean surface for imaging. Three images, one
under white light, the second under blue light, and the third under blue light with a green longpass filter,
were taken for each disk. Volumes and diameters estimated from images were in close agreement with ref-
erence methods. Linear models fitted as measured vs image volumes for wood and bark had coefficient of
determination (R?) values of >0.99 and 0.96. Linear models fitted as measured vs image diameters had R?
values of >0.99. Out-of-round index and pith eccentricity values calculated from images showed a moder-
ate positive correlation (R = 0.43). Algorithms developed were able to correctly identify severe compres-
sion wood, but not mild-to-moderate compression wood. Severe compression wood was moderately
correlated to out-of-round index (R = 0.54) and pith eccentricity (R = 0.48). More than 98% of the disks

having severe compression wood came from defect-containing trees.
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INTRODUCTION

Wood is a natural heterogeneous material with
properties that exhibit significant variability
(Zobel and van Buijtenen 1989; Thumm et al
2010). Within a species, variability exists within
annual rings, between annual rings, within trees
due to changes in cardinal direction and height,
between trees, between stands, and between dif-
ferent growing regions (Panshin and de Zeeuw
1980; Megraw 1985; Burdon et al 2004; Jordan
et al 2008; Auty et al 2013, 2014; Eberhardt et al
2018). To measure variability in wood and fiber

* Corresponding author
T SWST member

Wood and Fiber Science, 55(2), 2023, pp. 157-175
https://doi.org/10.22382/wfs-2023-14

Compression wood, nondestructive evaluation, taper, wood and bark volume, wood

properties, typically cores are collected from trees,
or disks are destructively sampled from different
heights after felling (Zobel and van Buijtenen
1989; Eberhardt et al 2018). Disks are typically
either processed “whole” to collect wood and
bark specific gravity (SG) (density divided by the
density of water) and MC, or further cut into pith-
to-bark strips to provide information on radial var-
iation (Dahlen et al 2018; Eberhardt et al 2018;
Schimleck et al 2019).

Disks or bolts from felled trees can be used to
assess changes in diameter from the stump (tree
bottom) to the tip (tree top) to measure the stem
taper (Burkhart and Tomé 2012). Outside bark
diameter is typically measured using a diameter


mailto:sameen.raut@uga.edu
mailto:jdahlen@uga.edu

158

tape, the inside bark diameter can be estimated
using a bark gauge, or averaging two diameter
measurements after felling, or from using a diam-
eter tape following careful bark removal (Eber-
hardt et al 2017). These diameter measurements
typically assume that the shape is circular, with
tree shape evaluated qualitatively; however,
research on quantitative assessment is advancing
through the use of LiDAR or photogrammetric
point clouds (Morgan et al 2022). In reality, disk
shapes are variable, and the pith is not centered
along the entire length of a tree. A major cause for
eccentric radial growth is due to the formation of
reaction wood, and in gymnosperms, it is termed
compression wood (Timell 1986). Compression
wood is generally darker in color than normal ear-
lywood but lighter than normal latewood, and it
has a high microfibril angle, high longitudinal
shrinkage, high lignin content, and low cellulose
content, which makes it unsuitable for lumber pro-
duction and undesirable for pulp and paper
(Timell 1986; Rune and Warensjo 2002).

Nondestructive evaluation of wood is increasingly
being used in forestry and forest products
research, operations, and manufacturing (Ross and
Pellerin 1994; Ross 2015; Schimleck et al 2019).
Imaging is one of many nondestructive evaluation
tools which has seen extensive use (Evans 1994;
Evans et al 1999; Bucur 2003a, 2003b; Decellee
et al 2019; Wright et al 2019). For example, a
major industrial application of imaging is in lum-
ber manufacturing facilities, where the shape and
volume of logs is measured using high-resolution
laser scanners after debarking (Thomas and
Bennett 2014; Sauter et al 2019). Lumber can be
graded using single-pass X-ray scanners (Schajer
2001; Oh et al 2008, 2009), via the quantification
of knots using the “tracheid effect”, where a cam-
era detects the returned orientation of a series of
laser beams projected onto wood (Nystrom 2003;
Roblot et al 2010; Habite et al 2020), or using arti-
ficial intelligence (Lopes et al 2020; Hwang et al
2021; Kodytek et al 2022). Research instruments
using imaging are numerous, but specific to wood
and fiber quality research is the SilviScan suite of
instruments that measure cell dimensions, microfi-
bril angle, and wood density (Evans 1994; Evans
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et al 1999; Schimleck et al 2019). Comparatively,
there are a limited number of studies conducted
that describe imaging work done on whole-disks;
however, this is changing due to technological
advancements. In this regard, Pont et al (2007)
working with radiata pine (Pinus radiata) disks
using red-green-blue (RGB) images, delineated
annual rings and detected areas of compression
wood, and then created a three-dimensional (3D)
stem model showing varying levels of compres-
sion wood. Thumm et al (2010) developed partial
least squares regression models for near IR hyper-
spectral imaging data collected from radiata pine
cross-sectional disks to predict and visualize varia-
tion in lignin, galactose, and glucose content.
Riddell et al (2012) deployed flatbed scanning of
radiata pine disks (25-35-mm thick) using trans-
mitted light to measure spiral grain angles.
Thomas and Collings (2015) used circular polar-
ized light to enable 3D visualization of compres-
sion wood and spiral grain in microtome-cut
radiata pine transverse sections. Lerm et al (2017)
constructed a mobile in-field RGB imaging sys-
tem and imaged cross-cut sections of Pinus patula
logs to construct 3D models showing resin pock-
ets, pith location, branch structure, and log shape.
The DiscBot system developed by Scion was
designed to measure wood property variation both
radially and in circumference (Schimleck et al
2019). Raatevaara et al (2020) used RGB images
of the end faces of Norway spruce (Picea abies)
logs to extract out-of-roundness and pith eccen-
tricity data which they combined with stem taper
data to predict maximum bow height.

To calculate whole-disk SG of wood or bark,
green volume is typically measured using water
displacement because of the nonuniform disk
shape (ASTM 2017). Imaging presents an oppor-
tunity to not only replicate the volume measure-
ments needed for SG calculation but to further
extract information from disks particularly if the
surface quality is improved prior to imaging.
These additional measurements could include
assessments of disk shape, including how much a
disk is out of round and how far the pith is from
the geometric center of the disk; and the quantity
and location of compression wood. An important
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Table 1. Summary of the diameter outside bark (DOB) and diameter inside bark (DIB) for all the longleaf pine cross-

sectional disks used in this study.

Defect-free

Defects

Site type Property N Mean SD Min Max N Mean SD Min Max
Cutover DOB (cm) 268 13.8 5.0 6.3 30.9 251 13.2 4.5 6.3 23.6
(N = 519) DIB (cm) 122 45 5.6 28.2 11.6 3.9 5.6 20.8
Old field DOB (cm) 2717 15.5 5.8 6.6 325 324 14.4 5.0 6.3 27.7
(N = 601) DIB (cm) 14.0 52 5.8 29.7 12.9 4.5 53 23.9
Overall DOB (cm) 545 14.6 55 6.3 325 575 13.9 4.8 6.3 27.7
(N = 1120) DIB (cm) 13.1 4.9 5.6 29.7 12.3 4.3 53 23.9

advantage of imaging is being able to store a digi-
tal record of the samples, as it is not typically fea-
sible to store disks well beyond the conclusion of
a study due to space considerations. Opportunities
to match images with reconstructed models, to
show within-tree variation with images, or even
determine outliers in data due to input errors, etc.
are possible with images. Hence, the objective of
this study was to compare wood and bark volume
information and inside and outside bark diameters
with reference measurements. Additional objec-
tives were to use the images to measure shape
information including how out of round the disks
are along with the pith eccentricity, and to esti-
mate the quantity of compression wood. Images
of green longleaf pine (Pinus palustris) disks
above the FSP without any drying were collected
to save measurement time and reduce cracking
that occurs during the drying of disks.

MATERIALS AND METHODS
Tree Selection and Disk Extraction

Samples used for this study were collected from
16 stands of planted, unthinned longleaf pine trees
throughout southern Georgia (U.S.). Stands sam-
pled were from either cutover forest sites (where
the previous rotation was trees; most likely south-
ern pine species) or old agricultural fields (the
prior rotation was not a tree species) (Hainds
2004; Johnson and Gjerstad 2006; Kush et al
2006), with eight stands sampled per site type.
Stands ages ranged from 12 to 25 yr. Trees were
classified as defect-free (no visible stem defects),
or defect-containing (herein referred to as defect
trees) ie fork, excessive sweep, or ramicorn

branching present. From each stand, 20 trees were
felled, with up to six defect trees sampled based
on the frequency of defect trees within each stand
(Raut et al 2022). From each stand, a subsample
representing all of the defect trees sampled, and
three defect-free trees representing a suppressed
(small), codominant (medium), and dominant
(large) tree were selected and used for the study
for a total of 104 trees.

Cross-sectional disks (approximate thickness of
50 mm) were cut from the trees at fixed intervals:
0.15, 0.6, 1.37, and 2.44 m, and from there every
1.22m along the tree up to the point, where the
outside bark diameter was 76 mm. From the
forked trees, disks were extracted from the same
fixed height intervals up to the fork base before
the bifurcation, from each of the fork bases after
the bifurcation, and then from the height of the
forks, where the outside bark diameter was
76 mm. A total of 1120 cross-sectional disks were
examined, with 56 defect trees (575 disks) and 48
defect-free trees (545 disks) (Table 1). The disks
were labeled, placed in plastic bags, sealed, and
transported from the field to a freezer in the
Wood and Fiber Quality lab at the University of
Georgia, where they were kept frozen until further
processing.

Disk Surfacing and Imaging

The disks were removed from the freezer and
thawed for 48 h after which they were removed
from their plastic bags. A three-axis computer
numerical controlled (CNC) router (Fine Line
Automation, Lebanon, PA) was used for machin-
ing one surface of the disks (Fig 1). The CNC



Figure 1. The three-axis computer numerical controlled
(CNC) router preparing a cross-sectional disk surface for
imaging.

router was controlled using an Arduino microcon-
troller (Arduino AG, Somerville, MA) with step-
per motors used for linear motion. Since the disks
were cut in the field using a chainsaw, the disk
thickness varied. An ultrasonic distance sensor
(Micro Detectors UK6, Modena, Italy) mounted
on the y-axis of the CNC router was used to mea-
sure the thickness and the diameter of the disks.
The disks were held on the router bed using a
mechanical restraint. The router cut depth and
cutting path was adjusted based on the disk thick-
ness and diameter. The cutting bit used was an
Amana Tool RC-2257 surface planer (Newton,
IA). The router cut two passes on each disk, the
first pass alternated the cut direction from left to
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right using the y-axis, where the router took
approximately 6.4 mm off the surface of the disk
(z-axis) in 28 mm passes (x-axis). The second
pass skimmed the disk with 0.3 mm cut depth
(z-axis) in 60.5 mm passes (x-axis). Cutting was
from left to right for the second pass, and after
each pass, the router returned to the left position
of the y-axis before moving up on the x-axis.
The second pass improved the surface for imag-
ing (Fig 2).

Following surface preparation, images of the
disks were taken using a custom-built setup with
a white background and controlled using an
Arduino microcontroller which interfaced with a
computer running Python (Python Software
Foundation, https://www.python.org/). Communi-
cation between the Arduino and Python was done
using serial commands. The camera used was an
Allied Vision Manta G-1236 with a 12.4-mega-
pixel sensor (Stadtroda, Germany) and a 12 mm
lens (f/2.8) (Computar, Cary, NC). The camera
control was done using the Pymba library (https://
github.com/morefigs/pymba). Prior to imaging,
disk thickness was read by an ultrasonic sensor
(Micro Detectors UK6). A linear translation stage
with a stepper motor (step size = 0.0254 mm)
moved the top surface of the disk to 600 mm from
the camera based on the disk thickness reading
from the ultrasonic sensor. Thus, each disk was
imaged with a fixed focal length from the camera

Figure 2. The left image shows the typical surface quality of a chainsaw-cut wood disk; the right image shows the same disk
after surface preparation (background removed from both images).
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to ensure accurate calculation of diameter and
area measurements.

It was found that different steps in image proces-
sing were best achieved when the disks were lit
using different sources. As such, lighting for the
disks was done using two LED strip light sources;
white light with 4000K color temperature, and
blue light (475 nm) (Super Bright LEDs Inc., St.
Louis, MO). One challenge in working with
images that contain both wood and bark was iso-
lating the bark from the wood. During initial tests
that were focused on using fluorescence imaging
techniques with the blue LEDs and a 50-mm
diameter green longpass filter (>525nm)
(Edmund Optics, Barrington, NJ) to detect com-
pression wood (Thomas 2014), it was observed

(a)

(b)

(c)

Figure 3.
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that the fluorescence image had clear separation
between the bark and the wood. A total of three
RGB images were taken for each machined disk.
The first image was taken using white light with
12.5ms exposure time (herein referred to as the
white image). The second image was taken using
blue light with 80ms exposure time (herein
referred to as the blue image). The third image
was taken under blue light with 500 ms exposure
time with the longpass filter moved in front of the
lens using a stepper motor (herein referred to as
the filter image). The three images for one disk
are shown in Fig 3(a), note that the paint used to
mark the location on the tree to cut disks fluor-
esces and appears bright orange in the filter image
(this was not intended and discovered after field
sampling). Images were saved with each color

(a) A set of three images taken for a machined disk having a diameter outside bark (DOB) of 17.3 cm. Left: white

image; middle: blue image; right: filter image. (b) Image showing the green channel of the blue image (left) and an image of
the whole-disk mask (right). (c) White (left), blue (middle), and filter (right) images after the whole-disk mask was applied to

the original images.
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channel having an 8-bit depth, so pixel values ran-
ged from 0 to 255 for each channel.

Disk Measurements

Following imaging, the outside bark diameters
were measured to the nearest 0.1 cm with a diam-
eter tape, and the disks were weighed to the near-
est 0.01 g on a digital scale. The bark from the
disks was peeled off, inside bark diameters mea-
sured, and the disks weighed again. The total bark
weight for each disk was calculated from the dif-
ference in weight with and without bark. The
largest piece of bark from each disk, and the
peeled disks were used for volume measurement
where they were labeled and submerged in water
for 48-72h. Following submerging, the bark
pieces and the peeled disks were measured (sepa-
rately) for their green volume to the nearest
0.01 cm® using water displacement (ASTM
2017). The green volume of the bark piece was
then extrapolated to the total bark green volume
using the total bark weight for each disk.

Image Processing

Image processing was done in Python version
3.7 (Python Software Foundation, https://www.
python.org/) on the Spyder interface (Raybaut
2009) using the libraries OpenCV (Bradski
2000), NumPy (Harris et al 2020), and pandas
(McKinney 2010). The camera was calibrated
using various objects of known sizes and the
lens was checked for distortion using OpenCV
(Bradski 2000). Each pixel represented a length
of 0.167 mm and an area of 0.0280 mm?.

Background isolation. The first step in image
processing was to isolate the background from the
wood and the bark. The green channel of the blue
image was used because the background was uni-
formly bright (pixel value = 255), whereas the
wood and bark were darker (Fig 3[b], image on
the left). A mask of the background was created
by thresholding the image with any pixel less
than 255 being converted to 0 (wood and bark),
and any pixel equal to 255 as white (background)
(Fig 3[b], image on the right). The mask from
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each disk was then applied to the white, blue, and
filter images (Fig 3[c]).

Wood and bark isolation. After isolating the
background, the location of the pith was manually
determined in Python with the coordinates saved
in a CSV file. The red channel of the filter image
was used to isolate the bark from the wood
because the inner bark near the wood and outer
bark were uniformly dark and thus enabled the
clear separation of wood and bark. The one area
where the bark was similar to the wood was at the
pith, which is made up of ground tissue, rather
than the rest of the wood made up of secondary
xylem tissue (Beck 2010). To isolate the pith
from the bark, a white mask was applied to the
pith using the coordinates of the pith (Fig 4, top
left image). An initial mask of the bark was cre-
ated by thresholding the image with any pixel
value less than 30 being converted to 255 (white)
and the rest of the pixels converted to 0 (black).
The bark mask was applied on the whole-disk
white images to remove the bark; however, some
regions on the outside of the bark were bright due
to the orange paint that fluoresced (Fig 3[a],
image on the right). To correct for this, the largest
contour (Arbelaez et al 2011; Papari and Petkov
2011) of the image, which was the wood, was
retained and converted to a mask. A corrected
bark mask (Fig 4, top right image) was created
using the whole-disk mask and the wood mask.
The correct bark mask was then applied to each
whole-disk white image to isolate the wood from
the entire disk (Fig 4, bottom left image).

Wood and bark area. The whole-disk area in
pixels containing both the wood and bark was
determined by counting the number of nonwhite
pixels (pixel value <255) in the blue channel of
the white image (Fig 3 c, image on the left). The
total wood area in pixels was determined by
counting the number of nonwhite pixels (pixel
value <<255) from the blue channel of the isolated
wood image (Fig 4, bottom left image). The blue
channel of the white images was used in both
these instances because only the background was
white (pixel value 255) and none of the disk fea-
tures had a pixel value of 255. Other channels
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Figure 4. The top left image shows the red channel of the filter image with a white mask applied to the pith and the wood
appearing lighter than the bark which appears much darker. The top right image shows the bark mask made using the whole-
disk mask and the wood mask found after finding the largest contour. The bottom left image shows the isolated wood after
applying the mask. The bottom right image shows the longest (green) and the shortest (red) diameters passing through the pith.

that allow whole-disk and wood area calculation
in a similar fashion include the green channel of
the white images, the red channel of the blue
images, and all the channels (red, green, and blue)
of the filter images. Hence, the red channel of the
white images, and the blue and green channels of
the blue images are not suitable for this purpose
because earlywood in these channels appeared
white (pixel value 255). The bark area was calcu-
lated by subtracting the wood area from the
whole-disk area.

Inside and outside bark diameters. The
whole-disk mask and the wood mask were used
to detect the edges by applying a canny edge
detection algorithm (Canny 1986) which returns a
one-pixel-wide outline of the wood and bark
edges with the edges as white (pixel value 255)

and the rest of the image black (pixel value 0). To
calculate the average inside and outside bark dia-
meters, the Euclidean distance from the pith coor-
dinates to each individual edge pixel coordinates
was determined and the mean radius was calcu-
lated, which was converted to diameter. To obtain
distinct edges prior to using canny edge detection,
a median filter was applied to the whole-disk
mask and the wood mask with a kernel (size
11 X 11), the images were then eroded with a ker-
nel (size 7 X 7), after which they were dilated
using a kernel (size 7 X 7) (Huang et al 1979;
Efford 2000; Singh 2019).

Out-of-round index and pith eccentricity. The
extent of a disk out of round was determined by
calculating an index value adapted from Fallah
et al (2012) which uses the maximum and the
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minimum inside bark diameters in a plane that
included the pith of each disk as

Out-of-round index
_ Maximum diameter — Minimum diameter

ey

Maximum diameter

To calculate the maximum and minimum inside
bark diameters, all the possible straight lines pass-
ing through the pith from each individual edge
pixel coordinates to their opposite ends in the
canny edge image of the wood mask were deter-
mined, and then the two straight lines with the
maximum and minimum length found (Fig 4, bot-
tom right image). With Eq 1, disks that were
more out of round would have an index value
closer to 1 while a disk from a circular stem
would have an index value closer to 0.

Pith eccentricity as defined by Moya et al (2008)
was calculated as the Euclidean distance between
the geometric center of the disk and the pith coor-
dinates and is expressed as a percentage of the
mean disk radius:

Pith eccentricity (%)

Euclidean distance between the
_ pith and the geometric center
Mean radius

X 100.
2)

To obtain the geometric center coordinates, a con-
tour finder algorithm on wood masks was applied
which would return a single contour and then the
central coordinates of the contour extracted via
image moments (Bradski 2000).

Severe compression wood. To detect severe
compression wood in disks, the white isolated
wood images (Fig 4, bottom left image) were
used and converted from RGB color space to the
YCrCB color space (Jack 2007). The Cb channel
(Fig 5, top left) shows the severe compression
wood as being brighter than the rest of the image.
The image was binarized (threshold) whereby any
pixel value less than or equal to 95 (determined
through experimentation) was not severe
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compression wood, and any pixel value greater
than 95 was severe compression wood. The area
near the pith was falsely classified as severe com-
pression wood so after converting the image to
binary, the pith was removed based on its coordi-
nates. A median filter (Huang et al 1979; Singh
2019) was applied using a kernel (size 9 X 9) to
reduce noise. The resultant compression wood
mask is shown in Fig 5, top right. For the illustra-
tion of severe compression wood, the black pixels
were converted to lime green (R = 153, G =
255, and B = 51) and this mask was applied
to the wood images (Fig 5, bottom left). The
resultant images were then manually checked to
determine if the technique classified severe com-
pression wood correctly.

The spatial distribution of severe compression
wood in disks from defect trees was quantified by
dividing the disks using a circular grid beginning
at the pith (Fig 5, bottom right). Triangles origi-
nating from the pith were constructed at
10-degree increments with 20-pixel radius incre-
ments. At each subsection, the amount of severe
compression wood as a percent of the subsection
was calculated. This provided both the quantity
and location of severe compression wood occur-
rence within a disk.

Statistical Analysis

Following the image analysis work in Python
(Python Software Foundation, https://www.
python.org/), the results were saved to a CSV file.
For the remaining statistical analysis and graphics,
R (R Core Team 2020) with the R studio interface
(RStudio 2020) was used, along with the tidyverse
collection of packages (Wickham et al 2019) for
data munging and ggplot2 (Wickham 2016) for
plotting. The length and area measurements in
pixels were converted to cm or cm®. Wood and
bark areas were multiplied by the thickness of the
disk (recorded using the ultrasonic sensor that
positioned the disk at a fixed distance from the
lens) to calculate the wood and bark volumes in
cm’. Plots were made for all volumes and diame-
ter measurements and linear models were fitted to
determine how accurate the images were to the
reference measurements. The accuracy of the
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Steps involved in the detection and quantification of severe compression wood using the Cb channel (top left) from

the YCrCb colorspace image. Image after thresholding and binarizing after removing the pith and applying a median filter (top
right). The identified compression wood areas were then overlaid on wood-only images with lime green color for visualization
(bottom left). A figure showing the circular grid divided into a definite number of spatially labeled subsections overlaid on to
disk images from defect trees to enable quantification of severe compression wood with their location within a disk (bottom

right).

image measurements was assessed by calculating
the coefficient of determination (R*) and mean
absolute percentage error.

A plot showing the out-of-round index for the
disks from defect and defect-free trees as a func-
tion of relative height (disk height divided by the
total height) was produced. Analysis of variance
(ANOVA) by means of a linear mixed effects
model where stands and trees were treated as ran-
dom factors was conducted using the ImerTest
package (Kuznetsova et al 2017) to test for differ-
ences in out-of-round index and pith eccentricity
in disks from defect and defect-free trees, and
from cutover and old field sites. A plot to show
the relationship between out-of-round index and

pith eccentricity was created and a locally esti-
mated scatterplot smoothing curve was fitted to
the data points. Severe compression wood detec-
tion accuracy was determined qualitatively
through a side-by-side visual inspection of white
images with images in which severe compression
wood was labeled. Spearman rank correlation was
computed to indicate the strength of association
between the amount of severe compression wood
occurrence in a disk with out-of-round index and
pith eccentricity. Quantity and location informa-
tion of severe compression wood in disks from
defect trees was used to create a single final map
that showed the spatial distribution of severe com-
pression wood. This was achieved in R using the
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Figure 6. Reference wood and bark volumes and outside and inside bark diameter of disks plotted against the same estimates
obtained from images. The solid line in each of the four plots represents the linear model fitted for the data and the dotted line

represents the 1:1 line.

gstat (Pebesma 2004; Graler et al 2016), raster
(Hijmans 2022), and spatstat (Baddeley et al
2015) packages.

RESULTS

Wood and Bark Volumes and Outside Bark
and Inside Bark Diameters

The relationship between the reference measure-
ments and the image-estimated volume and diam-
eter measurements is shown in Fig 6. The four
measurements were in close agreement with the
image estimated measurements. The 1:1 line (dot-
ted line) showed that the images slightly overpre-
dicted wood and bark volumes. The images

slightly underpredicted the outside bark dia-
meters, particularly as the diameter increased,
while there was little difference between the two
inside bark diameter measurements.

Out-of-Round Index and Pith Eccentricity

The mean out-of-round index value for the disks
in this study was 0.06 (Table 2). The disks from
defect trees had a significantly higher mean out-
of-round index value (0.08) as compared with the
disks from defect-free trees (0.05) (p << 0.0001).
The first plot in Fig 7 shows that all the disks that
have an out-of-round index value greater than
0.20 come from defect trees. Mean out-of-round
index values for disks from cutover sites (0.07)

Table 2. Summary of out-of-round index and pith eccentricity for the overall data and separated by defect and defect-free

longleaf pine trees.

Overall

Defect-free Defect

Property Mean SD Min Max Mean SD Min Max Mean SD Min Max p value
Out-of-round index  0.06 0.05 0.01 0.64 0.05 002 0.01 019 008 0.06 001 0.64 <0.0001
Pith eccentricity (%) 82 7.5 00 742 57 36 00 287 108 94 00 742 <0.0001
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Figure 7. Out-of-round index plotted against relative height for all the disks (first plot). Out-of-round index plotted against
pith eccentricity and a locally estimated scatterplot smoothing curve fitted to the data points shown in the second plot.

were not significantly different from old field sites
(0.06) (p = 0.232). Disks that had the highest
out-of-round index values (>>0.3) came from rela-
tive heights less than 0.3 from defect trees (Fig 7,
first plot). Disks that had the highest pith eccen-
tricity values (>40%) came from relative heights
less than 0.4 from defect trees, otherwise similar
conclusions as found for out-of-round index apply
here. Pith eccentricity showed a moderate positive
correlation with out-of-round index (R = 0.43),
and when plotted (Fig 7, second plot) shows a
nonlinear relationship where out-of-round index
increased at an increasing rate as pith eccentricity
increased.

Severe Compression Wood

A total of 89 disks having severe compression
wood were visually identified and the amount of
severe compression wood was quantified. On
disks that did not have severe compression wood
(the remaining 1031 disks), latewood was falsely
classified as compression wood. Hence, the algo-
rithm is not recommended for images of disks that

do not have severe compression wood or have
only mild-to-moderate compression wood. In the
89 disks that had severe compression wood, on
average 30.3% of the wood portion of the disks
was comprised of severe compression wood
(Table 3). There were 49 disks from cutover sites
with 33.5% of the wood portion of the disks com-
posed of severe compression wood, which was
not significantly different from the 40 disks from
old field sites that had 26.3% (p = 0.496). Exam-
ining the tree defect types for the 89 disks that
were classified as having severe compression
wood, a majority (54 out of 89) of the disks came
from trees that had excessive sweep (Table 4). On
average, 35.1% of the wood portion in those 54
disks from sweep trees was severe compression
wood. A total of 23 disks from trees classified as
having a combination of at least two or all possi-
ble visible stem defects which include forking,
sweep, and ramicorn branching had severe com-
pression wood occurrence; trees having such a
combination of visible stem defects were labeled
as “mixed defect” trees. There was only one disk
from a tree with no visible stem defect that had

Table 3. Summary of the 89 longleaf pine disks that had severe compression wood.

Overall (N = 89)

Cutover (N = 49) Old field (N = 40)

Property Mean SD Min Max Mean SD Min Max Mean SD Min Max p value
Compression wood (%) 303 158 6.8 623 335 164 6.8 619 263 142 72 623 0.496
Diameter inside bark (cm) 11.2 35 58 198 11.1 29 58 178 112 42 6.1 198 0.831
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Table 4. Summary of the 89 longleaf pine disks having severe compression wood occurrence in different defect types.

Compression wood (%)

Out-of-round index Pith eccentricity (%)

Defect Mean SD Min Max Mean SD Min Max Mean SD Min Max
Fork (N = 11) 25.9 10.4 11.0 433 0.15 0.07 0.07 030 248 9.1 11.0 380
Sweep (N = 54) 35.1 16.9 6.8 623 017 0.12 004 0.64 262 15.6 44 742
Mixed defects (N = 23) 213 104 72 411 014 0.06 005 023 223 106 1.1 384
Defect-free (N = 1) 24.8 — — — 0.07 — — — 21.9 — — —

Mixed defects include disks from trees that had a combination of at least two visible stem defects which included forking,

sweep, and ramicorn branching.

severe compression wood (Table 4). Spearman
rank correlation coefficients, calculated to investi-
gate the strength of association between out-of-
round index and pith eccentricity with severe
compression wood quantity, showed that both
out-of-round index and pith eccentricity were
moderately correlated to severe compression
wood quantity with correlation coefficient values
of 0.54 and 0.48, respectively. A plot showing the
spatial distribution of severe compression wood
occurrence relative to the disk diameter in disks
from defect trees is shown in Fig 8. On average,
disks from defect trees had lower severe

Severe Compression Wood - Defect Trees

Severe Compression Wood (%)0 54 6

Figure 8. Spatial distribution of severe compression wood
relative to the disk diameter in disks from defect trees.

compression wood (<1%) near the pith and the
amount increased toward the bark (6%).

DISCUSSION

It was demonstrated that imaging can be used to
replicate reference measurements done on wood
disks to calculate volume and diameter measure-
ments. Overall, the volume and diameter results
from the images provided similar results as the
reference measurements determined using water
displacement to measure volume, or using a diam-
eter tape to measure the diameter of the disks.
This was possible because of accurate camera cal-
ibration and a fixed focal length. The images
slightly overpredicted the wood and bark
volumes. The reason for the overprediction of
wood volume is that the disk surface is assumed
smooth in the images, with equal thickness
throughout the entire disk. However, as only one
surface was machined for imaging, the bottom
surface was still rough cut from the chainsaw.
This uneven surface on the bottom of the disk
resulted in a slight overprediction of volume.
Another reason for possible differences at the
individual disk level is that images are two-
dimensional, and the area calculated is for the one
surface that is imaged, and thus the imaging
ignores diameter changes with height due to taper
(Burkhart and Tomé 2012). Other possible
sources of error are localized growth deformations
on the sides of the disks which are not accounted
for during imaging. In addition to biological dif-
ferences within the disks themselves is the accu-
racy of the ultrasonic sensor and the assumption
that the disks were of even thickness. It is impor-
tant to note that these errors were small and
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imaging for wood volume had R* > 0.99. Another
possible source of error is any error in the refer-
ence method, since no method is without error.

The bark volume had lower accuracy than the
wood volume, but still high prediction accuracy
(R* = 0.96). For wood volume, the volume mea-
surement of wood and the imaging are done on
the exact same piece, that is the full disk. Bark
has more error because the image volume of bark
was the entire bark, whereas with the reference
method, the largest piece of bark was used (since
bark comes off in pieces during the peeling pro-
cess), and the volume of the piece is scaled up to
the full bark volume based on the weight of the
bark vs the weight of the piece. Because the
image bark volume represents the entire bark vol-
ume, the image measurement is likely more accu-
rate than the work done on the piece of bark.

The measurement of diameter from the images
consistently underpredicted the outside bark diam-
eter, whereas there was almost no difference in
inside bark diameter measurements. After peeling
the bark from the wood, the wood surface is rela-
tively smooth and nearly free of any fissures.
Whereas with the outside bark diameter, as the
disks get larger, the outer bark shape is more irreg-
ular with more fissures (Eberhardt 2015). When
measuring the diameter using a diameter tape, the
diameter tape is pulled tight over the fissures
which overestimate the diameter slightly. With
smaller disks found higher up the tree, bark thick-
ness is more uniform, and smaller differences
were observed between the reference and the
image measurements. In longleaf pine, the inner
bark is approximately 15% of the total bark thick-
ness at the stump height, whereas toward the top
of the tree, the inner bark thickness is more than
40% of the total bark thickness (Eberhardt 2013).

Using the white light disk images, the amount of
severe compression wood within the disks was
estimated. It was acknowledged that it is an esti-
mate as the technique only worked for severe
compression wood. Generally, mild compression
wood can be difficult to quantify (Thomas and
Collings 2015). Here it was relatively easy to
determine if the method was working for a disk by

169

overlaying algorithm-detected severe compression
wood onto the actual image, and manually verify-
ing each disk for accuracy. The disks were imaged
green as the compression wood in fresh disks had
a darker reddish appearance which can improve
accuracy in detection when using an RGB camera
(Timell 1986; Nystrom and Kline 2000). How-
ever, many researchers have noted the inability of
an RGB camera alone to accurately detect com-
pression wood areas (Duncker and Spiecker
2009), particularly for segmenting mild compres-
sion wood from latewood (Pont et al 2007). Late-
wood SG increases from pith to bark in southern
pines including longleaf pine, with the latewood
band of cells having lower density near the pith,
and these rings can be difficult to distinguish even
at higher resolution (Dahlen et al 2018). Nystrom
and Kline (2000) used a multivariate regression
model to identify compression wood, using a color
line scan camera and X-rays. They concluded that
X-rays were not effective at compression wood
identification; however, their multivariate regres-
sion model which focused on color information
had an accuracy of more than 87% in detecting
compression wood. The relatively high accuracy
of compression wood identification by Nystrom
and Kline (2000) may be due to the surface
imaged; they scanned the tangential and radial sur-
faces of green lumber, whereas the transverse sur-
face of cross-sectional disks were imaged here.
The amount of compression wood can be manu-
ally segmented on the disks themselves using a
planimeter, or alternatively, the areas can be man-
ually segmented using an image software, but
both methods are extremely time consuming
(Andersson and Walter 1995; Thomas 2014).

The fluorescence image could result in reliable
separation between the latewood and the compres-
sion wood, but it was not the case. Thomas (2014)
found that global values for thresholding compres-
sion wood were not successful for very juvenile
radiata pine (Pinus radiata) (aged 1-3 yr old), and
the same conclusion was reached here for longleaf
pine. At an individual disk level, mild compres-
sion wood can be distinguished from latewood,
and thus in the future, it may be possible to cor-
rectly identify compression wood using a machine
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learning approach (Michelucci 2018; Bhuyan
2019; Singh 2019); however, labeling the com-
pression wood is time-consuming. Duncker and
Spiecker (2009) found that hyperspectral imaging
had an accuracy greater than 91% in classifying
severe compression wood, moderate compression
wood, normal wood, and cracks in cross-sectional
disks of Norway spruce (Picea abies). Cutting
samples thin, either using a microtome, or to a
few mm in thickness and using transmitted light
can result in accurate quantification of compres-
sion wood, at the expense of greatly increased
sample preparation (Andersson and Walter 1995;
Rune and Warensjo 2002; Thomas 2014; Thomas
and Collings 2015). Even though there are clear
challenges with compression wood identification,
the method was successful in extracting more
information than is typically attained without
imaging and the measurement and verification
process is relatively fast.

A major advantage of imaging disks over the ref-
erence methods is that the images enable other
measurements to be collected. For example, how
much a disk was out of round and how far the
pith was from the geometric center expressed as
pith eccentricity was calculated. Rune and Ware-
nsjo (2002) calculated pith eccentricity and out-
of-roundness for 6-yr-old, planted Scots pine
(Pinus sylvestris) trees grown in Sweden and
reported that pith eccentricity values were highest
near the stem base, a finding that agrees with our
pith eccentricity results. Eccentric radial growth
and compression wood formation are often synon-
ymous (Timell 1980). Rune and Warensjo (2002)
reported a Spearman rank correlation coefficient
of 0.44 between severe compression wood and
pith eccentricity, similar to 0.48 that was found in
this study. However, they found almost no corre-
lation (R = 0.06) between out-of-roundness and
severe compression wood and moderate correla-
tions (R =0.36) between out-of-roundness and
pith eccentricity. Rune and Warensjo (2002) cal-
culate out-of-roundness and pith eccentricity
slightly different from this study; however, it
is more probable that the different species and
the age of the trees impacted the results. Some
studies calculated the out-of-roundness and pith
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eccentricity the same way as Rune and Warensjo
(2002) (Warensjo and Rune 2004; Raatevaara et al
2020) while others calculated them differently
(Williamson 1975; Moya et al 2008; Medhurst
et al 2011; Fallah et al 2012; Sauter et al 2019).
The study objective was not to go in-depth and
compare different studies on their methods to cal-
culate out-of-round index and pith eccentricity
values, but rather to show that the image analysis
steps described can provide information to enable
such calculations.

An additional advantage to imaging is the digital
record of the image itself, which can be used for a
number of purposes including comparing models
generated to the actual disks, visual reference for
different silvicultural treatments, as well as others.
There is comparably little information available
in the literature on imaging wood disks. The clos-
est work is from Scion’s DiscBot—which is a
purpose-built wood quality instrument consisting
of an RGB camera, a hyperspectral imaging sys-
tem, an acoustic velocity scanner, and an X-ray
system (Schimleck et al 2019). The DiscBot uses
dry disks which are cut in half prior to drying to
avoid cracking that occurs due to differential
shrinkage (radial shrinkage is less than tangential
shrinkage). After drying, the DiscBot system cap-
tures wood property variation both radially and
circumferentially. Most wood and fiber quality
studies looking at within-tree variation collect
disks from multiple height levels, but from each
disk, wood property variation is typically only
measured radially, and hence, variation in circum-
ference is not usually measured (Schimleck et al
2019). For example, the laboratory instruments
used at the Wood and Fiber Quality laboratory at
the University of Georgia are generally set up to
work for radial variation and thus cannot be used
on large disks. Here, using imaging on green
disks, the surface of the disks is machined,
imaged, and then processed as per the normal lab-
oratory procedures. While variation due to cir-
cumference is usually ignored, Eberhardt et al
(2018) found the northern side of mature longleaf
pine trees growing in the southeastern United
States to have higher ring SG and higher latewood
proportion compared with the southern side.
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Advancement in computing hardware in recent
times has enabled complex image analysis to be
carried out. For example, deep learning is one
such modern machine learning image processing
and data analysis tool that has shown considerable
potential (Kamilaris and Prenafeta-Bolda 2018).
Computer vision-based wood identification is a
new research field in wood science where imaging
in combination with machine learning techniques
has been used to accurately identify various wood
species (Yadav et al 2017; Hwang and Sugiyama
2021; Ravindran et al 2021, 2022a, 2022b). It has
been noted that more complex, nonlinear methods
such as deep learning with neural networks that
use various convolutions to provide a hierarchical
representation of data could provide more accu-
rate estimates than existing, conventional methods
(Raatevaara et al 2020; Hwang and Sugiyama
2021). However, one drawback of deep learning
methods is the need for large datasets when train-
ing the models (Hwang and Sugiyama 2021). Per-
haps in the future, deep learning methods of image
classification of compression wood could result in
accurate quantification of mild and moderate com-
pression wood.

CONCLUSIONS

An imaging technique was developed to replicate
reference wood and bark volume measurements
typically made using water displacement. The
results from image analysis were in close agree-
ment with the results from the standard methods.
Outside bark and inside bark diameters measured
from images were also in close agreement with
the measurements taken using a diameter tape.
Imaging combined with effective surface prepara-
tion of green disks can aid in extracting accurate
spatial measurements from images. Discrepancies
between wood volume measurements were less
than bark volume measurements because the
wood volume measurement is done on whole-
disks for both the standard and imaging methods;
whereas the standard bark volume measurement
is done only on the largest piece obtained after
peeling bark from the green disk and the volume
of that piece is then extrapolated to the total bark
volume using the bark weight. Because the image
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represents the entire surface of the bark, it is pos-
sible that bark volume measurement from an
image is more accurate than the reference method
made using a bark piece. There was almost no
difference between methods for measuring diame-
ter inside bark, whereas outside bark diameter
had more variability. The outside bark surface is
usually rough with fissures whereas the inside
bark surface is smooth and more consistent.

Estimates of how much a cross-sectional disk was
out of shape by calculating an out-of-round index,
and how far the pith was from the geometric cen-
ter by calculating pith eccentricity values were
made. Out-of-round index was found to have a
moderate positive correlation with pith eccentric-
ity. Disks that had the highest out-of-round index
and pith eccentricity values came from lower sec-
tions of a defect tree having at least one visible
stem defect. Both out-of-round index and pith
eccentricity were moderately correlated to severe
compression wood quantity. More than 98% of
the disks that had severe compression wood
occurrence came from defect trees. A majority of
the disks (more than 60%) having severe com-
pression wood came from trees that had excessive
sweep. It was not possible to isolate mild-to-
moderate compression wood from latewood using
global parameters, thus the parameters would
need to be tuned for each disk which necessitates
the use of complex machine-learning algorithms.
The methods developed in this study can be uni-
versally applied to cross-sectional disks from
other southern pines and tree species of different
age groups with slight modifications to the thresh-
old values mentioned for segmentation.
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