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Nasir et al—FIBER QUALITY PREDICTION USING NIR SPECTRAL DATA

Abstract. The growing applications of near infrared (NIR) spectroscopy in wood quality control and
monitoring necessitates focusing on data-driven methods to develop predictive models. Despite the
advancements in analyzing NIR spectral data, literature on wood science and engineering has mainly uti-
lized the classic model development methods, such as principal component analysis (PCA) regression or
partial least squares (PLS) regression, with relatively limited studies conducted on evaluating machine
learning (ML) models, and specifically, artificial neural networks (ANNSs). This could potentially limit the
performance of predictive models, specifically for some wood properties, such as tracheid width that are
both time-consuming to measure and challenging to predict using spectral data. This study aims to enhance
the prediction accuracy for tracheid width using deep neural networks and tree-based ensemble learning
algorithms on a dataset consisting of 2018 samples and 692 features (NIR spectra wavelengths). Accord-
ingly, NIR spectra were fed into multilayer perceptron (MLP), 1 dimensional-convolutional neural net-
works (1D-CNNs), random forest, TreeNet gradient-boosting, extreme gradient-boosting (XGBoost), and
light gradient-boosting machine (LGBM). It was of interest to study the performance of the models with
and without applying PCA to assess how effective they would perform when analyzing NIR spectra with-
out employing dimensionality reduction on data. It was shown that gradient-boosting machines outper-
formed the ANNSs regardless of the number of features (data dimension). All the models performed better
without PCA. It is concluded that tree-based gradient-boosting machines could be effectively used for
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wood characterization utilizing a medium-sized NIR spectral dataset.
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INTRODUCTION

Smart quality control (QC) and characterization
of wood materials requires developing intelligent
monitoring systems through combining nonde-
structive evaluation (NDE) methods with data-
driven techniques. NDE tools play a crucial role
in fast and reliable data acquisition when it comes
to wood QC and properties monitoring. Common
NDE methods applied to wood materials include
color measurement, X-ray computed tomography
(X-ray CT), thermography, wave propagation, and
near infrared (NIR) spectroscopy, among which,
wave propagation methods and NIR spectroscopy
have been widely studied in the literature (Nasir
et al 2022). NIR spectroscopy can be used to pre-
dict wood properties directly related to sample
chemistry (Schimleck et al 2019) through analyz-
ing absorption or reflectance in the NIR range. It
has also been widely applied to predict wood
density, MC, mechanical properties, such as
modulus of elasticity and modulus of rupture
(Tsuchikawa 2007; Tsuchikawa and Schwannin-
ger 2013). Apart from predicting wood proper-
ties, NIR spectroscopy has been used for wood
identification, wood classification, and QC of ther-
mally modified wood (Tsuchikawa and Kobori
2015; Willems et al 2015).

Despite the growing opportunities that NIR spec-
troscopy offers for wood characterization and
QC, there are still limitations associated with this
technique. Apart from the need for a robust cali-
bration model, spectral data acquisition in indus-
trial settings imposes practical challenges because
of noise related to temperature and humidity var-
iations (Hein et al 2017). Specifically, there is a
significant gap between the performance of NIR
spectroscopy in laboratory vs industrial condi-
tions, where the high performance achieved under
laboratory-controlled conditions using multivari-
ate data analysis may not necessarily account for
the high variation in data acquired in real time in
a manufacturing environment (Hein et al 2017).

NIR spectral data are typically processed using
a pretreatment (bandwidth selection, smoothing,
normalization, etc.), feature extraction and/or
selection, and final decision-making, which
mainly involves using classification or regression
models. Most studies on the applications of NIR
spectroscopy in wood materials have focused on
dimensionality reduction for feature extraction
through applying principal component analysis
(PCA) regression, or partial least squares (PLS)
regression (Sandak et al 2016). There is a gap
in the literature about advanced data-driven



102

methods applied to NIR spectral data analysis.
Feature engineering could be a crucial step toward
designing a decision-making model with im-
proved accuracy over classical techniques. The
main feature selection techniques (filter, wrapper,
and embedded methods) are reviewed in the liter-
ature (Chandrashekar and Sahin 2014), including
an overview on the variable selection in multi-
variate analysis of NIR spectra (Yun et al
2019). PCA does use employ dimensionality
reduction; however, feature extraction via
PCA yields a new set of variables with no clear
physical meaning (Mao 2005). An alternative
approach could be feature selection in the para-
digm of supervised learning. Examples include
utilizing heuristic search methods, such as
genetic algorithm for variable selection in pre-
dicting the wood properties, such as pulp yield
using NIR spectral data (Ho et al 2022; Zhen et al
2022).

The performance of a data-driven predictive
model depends on both the feature engineering
(extraction or selection) technique and the choice
of regression or classification model for final pre-
diction. Moreover, it also significantly impacted
by the size and complexity of the dataset (Nasir
and Sassani 2021). Machine learning (ML), and
specifically, artificial neural networks (ANNs),
have been utilized to deal with datasets of higher
complexity to better unveil hidden patterns within
the data. Superior performance of ANNs over
PLS regression is reported in the literature with a
sample size in the range of 172-480 (Watanabe
et al 2014; Costa et al 2019; Ayanleye et al
2021). Variable (feature) extraction was typically
performed using PCA and the reduced datasets
were then fed into ANNSs (Costa et al 2019; Nasir
et al 2019; Ayanleye et al 2021). While the
reported accuracy could be impacted by the size
and complexity of the data, it highlights the impor-
tance of employing ML for enhancing the predic-
tion accuracy of NIR-based models. Yet, literature
in wood science and engineering still lacks com-
parative studies on the predictive performance of
models developed using different ML and feature
engineering techniques.
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While traditional ML. models rely heavily on the
knowledge of user(s) for feature extraction and
selection, deep learning (DL) models exhibit
built-in feature engineering characteristics (Miotto
et al 2018; Wang et al 2018), enabling them to
model complex nonlinear relationships in big data
(Nasir and Sassani 2021) through extracting com-
plex high-level abstractions as data representations
(Najafabadi et al 2015). Convolutional neural net-
works (CNNs) are among the most commonly
used types of DL models and have been combined
with NIR hyperspectral imaging for wood species
identification (Kanayama et al 2019). One-
dimensional (1D) CNN has also been applied to
softwood species classification (Yang et al
2020) and QC of Chinese zither panels (Huang
et al 2019).

This study aims to perform a comparative study
between the performance of some of the ML and
DL models for prediction of the properties of
wood-based materials. Since most published stud-
ies on data-driven methods applied to NIR spec-
tral data deal with small sample sizes, it also aims
to investigate applying ML and DL to a medium-
sized dataset. The target property for prediction is
tracheid width, which in addition to other tracheid
morphological characteristics (diameter, length,
and wall thickness) largely determine pulp fiber
quality and paper performance. Evaluation typi-
cally occurs on macerated samples that are exam-
ined with microscope or optical imaging system;
however, more rapid techniques are required for
routine incorporation into tree improvement pro-
grams. NIR spectroscopy offers an alternative
approach and fiber/tracheid properties have been
estimated in both hardwoods (Inagaki et al 2012;
Pereira et al 2015) and softwoods (Schimleck and
Evans 2004; Via et al 2004; Nabavi et al 2018;
Dahlen et al 2021). Fiber/tracheid length models
have generally demonstrated strong performance.
Similarly, models for wall thickness measured on
solid samples have also performed well; however,
models for tracheid diameter, whether it be mea-
sured by SilviScan on solid samples (Evans 1994)
or on macerated samples, have been noticeably
weaker. Therefore, the study investigates options
for enhancing the prediction accuracy of tracheid
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width. Two neural network (NN)-based models,
including the multilayer perceptron (MLP) and
1D-CNN, are utilized. Their performances will be
compared with those obtained from tree-based
ensemble methods; random forest, TreeNet
gradient-boosting, extreme gradient-boosting
(XGBoost), and light gradient-boosting machine
(LGBM). The study evaluates the impact of
applying PCA and compares that with the case of
developing models using the full range of NIR
data (no dimensionality reduction). The objective
is to improve prediction performance by design-
ing models capable of handling medium-sized
NIR spectral datasets while analyzing the full
range of NIR features with embedded feature
selection characteristics.

EXPERIMENTS AND DATA ACQUISITION

ML study was performed on samples utilized by
Nabavi et al (2018), which represents one of the-
largest spectral datasets on wood materials
and was comprised of 1842 loblolly pine (Pinus
taeda L.) radial strips from 225 trees and 99 stands.
The samples were taken from the Wood Quality
Consortium (WQC) baseline study (Jordan et al
2008; Antony et al 2010), which totaled 134 stands
representing six physiographic regions (Gulf
Coastal Plain, Hilly Coastal, North and South
Atlantic Coastal Plains, Piedmont, and Upper
Coastal Plain) across the Southeastern United
States. At each stand, three trees were felled and
25-mm thick disks were cut at 1.5 m intervals from
the base to a top diameter of 25 mm. A breast
height (1.37m) disk was also collected and four
book-matched pith-to-bark radial strips (12 mm
longitudinally X 12 mm tangentially) were cut
from these disks. Jordan et al (2008) and
Nabavi et al (2018) provide additional detail
regarding the collection and preparation of these
samples. The stands were largely sampled in the
early 2000s and many of the breast height disks
had been used in various WQC research projects
that followed their collection, hence some sam-
ples were unavailable for study (Nabavi et al
2018). Several of these disks also had blue stain
and were excluded from the study (Nabavi et al
2018). Following the sample selection procedure,
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the selected sections were cut from the radial
strips into individual 10-mm sections using a
razor blade. The sections were further cut into
2-mm sections using a razor blade. The samples
were then macerated with 20 mL of 50% hydro-
gen peroxide, 30 mL of water, and 50 mL glacial
acetic acid at 60°C for 48h (Franklin 1945).
After 48h, the tracheids and chemicals were
cooled to room temperature, then the tracheids
were separated from the pulping chemicals using
a Buchner funnel, rinsed with approximately
1.9L of water, and then the acidic spent chemi-
cals and the rinse water were neutralized with
sodium carbonate. The rinsed tracheids were then
diluted with approximately 1L of water prior to
analysis. The macerated samples were analyzed
using a TechPap MorFi Compact Fiber & Shive
Analyzer with a 4 pum resolution camera (Tech-
pap SAS, France) to assess tracheid properties.
The equipment measured the number of trac-
heids, frequency of tracheids, tracheid length,
and width using image analysis. For each sample,
approximately 2500 tracheids were analyzed.
The width-weighted tracheid width was used for
the calculations instead of the mean value to min-
imize the effect of fines (Carvalho et al 1997).
Width-weighted tracheid width is calculated by:
Eniwiz

W, = m (1

where W, is width-weighted tracheid length, n; is
number of tracheids in the ith class, and wj; is the
mean width of the ith class (Carvalho et al 1997).
Prior to the collection of NIR spectroscopic data,
each radial sample was marked from pith to bark
into 10-mm sections on the transverse face. Sub-
sequently, NIR diffuse reflectance spectra were
collected from the radial-longitudinal surface of
each pith-bark strip for the same 10-mm sections
using a FOSS NIRSystems Model 5000 scanning
spectrophotometer (FOSS NIRSystems, Inc., Lau-
rel, MD) fitted with a diffuse reflectance static
module. A custom-made autosampler consisting
of a Parker servo motor and controller, and a lin-
ear stage provided precise sample motion and a
Teflon mask with a window 5-mm high X
10-mm wide to limit the area scanned (Jones et al
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2007). NIR spectra were collected at 2 nm resolu-
tion over the wavelength range 1100-2500 nm.
The instrument reference was a ceramic standard
provided by the manufacturer. A total of 11,428
NIR spectra were collected from the 1842 samples.

Data Analysis

The preliminary analysis indicated the effective-
ness of applying second derivative to the NIR
spectra with left and right gaps of 4 nm. Also, the
data were smoothed using the Savitzky—Golay
approach (Savitzky and Golay 1964). All models
in this study were fit on the data after pretreatment.
A total of 70% of the data (N = 1404) were used
for model training while the remaining 30%
(N = 614) were used to test the model. The test
dataset was not used in the model development
until the final model was selected and thus, main-
tained its independence.

Models here were fit using two approaches. The
first approach extracted features by first applying
PCA to reduce data dimensionality. The reduced
dataset was then fed into the predictive ML mod-
els. The second approach fit the ML models
using the full spectral data, and the two methods
compared. Six different types of deep neural net-
works (DNNs) and tree-based ensemble algo-
rithms were used in this stud. Python and Minitab
statistical software were used in this study for the
data analysis.

Deep neural networks. MLP known as a uni-
versal approximator (Hornik et al 1989) is one of
the most widely used NNs for regression and clas-
sification. The model consists of input, hidden,
and output layers (Fig 1). The number of hidden
layers and neurons in each layer should be defined
by the user or tuned using an optimization tech-
nique for hyperparameter tuning. Having several
hidden layers could result in a deep model with
higher complexity. MLP NN with a feedforward
architecture is among the most basic types of
deep models with a series of feedforward fully
connected layers. The error backpropagation was
used by applying the “Adam” optimization algo-
rithm (with default parameter settings), which is a
stochastic gradient descent optimization method

WOOD AND FIBER SCIENCE, JUNE 2023, V. 55(1)

2hehe)

g .'W

QTTTT0 DD DD

TO000C 0

Figure 1. A schematic representation of the multilayer per-
ceptron model used in this study with three hidden layers
each having 10 neurons. The feed forward model with error
backpropagation for hyperparameters tuning is among the
most widely used ANNs. The shown sample network has 21
input parameters representing the case, in which PCA is
applied to the dataset.

(Kingma and Ba 2014) to adjust the weight of
neurons in the training process. The architecture
of MLP (number of hidden layers and neurons) is
shown to significantly impact the performance of
the model. Three hidden layers were used in the
MLP each having 10 neurons. The first hidden
layer used “Swish” activation function while the
remaining two used rectified linear unit (“ReL.U”).
Model training was done with a batch size of 32
and 25% of the training data were separately used
as validation data to evaluate loss and model
metrics at the end of each epoch. L2 regularization
with a value of 1e-3 was employed to prevent
overfitting. Early stopping method was used to
monitor the validation loss, which stopped model
training if the validation loss did not improve over
40 epochs. Thus, the model training was stopped
after 425 epochs on the dataset without applying
PCA and after 521 epochs on the dataset reduced
using PCA.
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The performance of MLLP NN was compared with
that obtained from CNN. CNN is an effective ML
algorithm that requires significantly fewer para-
meters than traditional DNNs. This is due to the
convolution operation, sparse connectivity, and
weight sharing in the network, resulting in much
fewer preprocessing operations compared with
other neural networks (Liu 2018). CNNs are a
subset of DL models, which is a class of ML that
uses multilayered ANNS to deliver state-of-the-
art accuracy in tasks, such as object detection,
speech recognition, language translation, image
classifications, and so on (Alzubaidi et al 2021).
1D-CNN s are similar to 2-D CNNs, but are used
mainly on 1D signals. In 1D-CNN, the convolu-
tional kernel/filter moves in just one direction to
calculate the output, and the output is a 1D sig-
nal. Modeling using 1D-CNN performs convolu-
tion operation on data and extracts significant
features from the raw input data. Convolution
involves sliding the kernel over the input signal,
which is also known as a shift-compute proce-
dure. The architecture of a typical CNN model is
shown in Fig 2. The architecture of the 1D-CNN
model consists of 72 filters, each with a size of 9,
and rectified linear unit (ReLU) as an activation
function for the convolution layer. The convolu-
tion layer’s output is then flattened, followed by
two dense layers having ReLU as an activation
function with 64 and 32 neurons, respectively.

Convolution
Layer

Pooling

Input
P Layer

0

Convolution
Layer
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To prevent overfitting, the first dense layer
employs L2 regularization with a value of le-5.
The model was constructed using the Adam opti-
mizer with a learning rate of 0.0005 and a batch
size of 27. During the training of the model, an
early stopping technique is used to prevent over-
fitting by terminating the training if there is no
improvement in validation loss for 30 epochs.

Tree-based ensemble learning. Ensemble learn-
ing is an approach to ML, which aims to enhance
predictive performance through combining the pre-
diction of multiple models that could be considered
as weak learners. While it can work for a variety
of algorithms, decision trees are commonly used
in this method. The intuitive nature of decision
trees make them easy for interpretation. Decision
trees were used for predicting the mechanical
properties and check formation in weathered tim-
ber (Nasir et al 20214, ¢; van Blokland et al 2021a,
b) using the classification and regression trees
(CART) algorithm (Steinberg and Colla 2009).
Decision trees have some advantages, such as
using a white-box model that is easy to under-
stand, require little preprocessing of data, and
can handle both numerical and categorical data
as well as missing data. However, they are prone
to overfitting by creating very complex trees,
which suffer from the generalization issue. This
highlights the importance of the pruning phase

o

Pooling
Layer

Fully Connected
Layers

Output

Figure 2. A sample representation of a typical 1D-CNN showing the convolution and pooling layers. The down-sampled data
are fed into a fully connected layer(s) for predicting the output. The number of convolution and pooling layers along with its

hyperparameters should be defined by the user or optimized.
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and imposing conditions, such as defining the
maximum number of terminal nodes or tree depth.
Also, decision trees may become unstable due to
variation in the data. That said, decision trees can
benefit from ensemble learning algorithms. Two
of the most common ensemble algorithms, bag-
ging and boosting, were used in this study. Both
methods had embedded feature selection charac-
teristics that enables ranking of the relative impor-
tance of the features (wavelengths, in this study)
through considering the contribution of the nodes
having that feature when finding an optimal deci-
sion (Nasir et al 2021b).

Employing the bagging approach, random forest
uses a subset of data to train multiple decision
trees and aggregates the decisions of the trees
known as weak learners through a voting scheme
for the final prediction (Liaw and Wiener 2002).
Random forest has been applied to the estimation
of mechanical properties of wood fiber insulation
boards (Schubert et al 2020). It has also used in
wood machining for monitoring tool wear classi-
fication (Nasir et al 2021d) and identifying frozen
and green lumber during circular sawing of logs
(Nasir et al 2020). The random forest in this study
contained 3000 trees and 80% of the training
dataset was randomly chosen to identify bootstrap
sample size. Additionally, a minimum number of
three cases was specified to split an internal node.
Finally, the number of predictors for node split-
ting was set to be the root mean root square of the
total number of predictors. Figure 3 shows a sche-
matic representation of a random forest model.

While the training process of weak learners in the
bagging method is independent and in parallel, it
is sequentially in the boosting method as the per-
formance of a prior model is modified in the sub-
sequent one (Fig 4). This approach has been used
for wood species identification (Sun et al 2021),
tool wear classification during wood machining
(Nasir et al 2021d), predicting the properties of
wood composites (Carty et al 2015), and develop-
ing an online color classification model for solid
wood flooring (Zhuang et al 2021). In the TreeNet
gradient-boosting machine, a random portion of
the training data are utilized to calibrate a CART
model with the maximum number of terminal
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Figure 3. Schematic representation of a random forest

model showing multiple decision trees trained separately
using a random subset of data. Then a voting scheme is used
for the final prediction.

nodes or the depth of the tree predefined. The
maximum number of terminal nodes per tree was
set to 12 and the minimum number of cases
allowed for a terminal node was set to six. The
subsample fraction in this study was set to 0.25.
The CART model should then update based on
the loss function. However, the update shrinks by
a learning rate, which was set to 0.1 following a
trial and error process during preliminary analy-
sis. Subsequently, additional CARTSs are added to
improve the error for a specified number of itera-
tions that defines the number of trees in the model
(Modeler 2019) (set to 5000 in this study). Finally,
the number of predictors for node splitting was set
to be the root mean root square of the total number
of predictors.

XGBoost is a scalable and distributed gradient-
boosting algorithm for various ML problems
(Chen and Guestrin 2016). It uses decision trees
as base models and trains them in a stagewise
manner, creating a strong composite model by
combining multiple weak models. XGBoost is
designed to improve the model generalization and
handle sparse data efficiently. In this optimal
model, the number of estimators was set to 1455,
the maximum depth of the trees in the model was
set to 5, the learning rate was defined as 0.027,
the subsample rate was equal to (.33, and
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Figure 4.

In TreeNet model, the gradient-boosting algorithm performs the training process sequentially, in which subsequent

models correct the performance of prior models. The process starts with training a classification and regression tree (CART)
model. It is then updated and CART models are sequentially added for a specified number of iterations lowering the error.

colsample_bytree and gamma were also set to
0.25 and 0.50, respectively. The colsample_bytree
is set to 0.25 determines 25% of the columns are
randomly chosen for each tree, and a gamma
value of 0.5 means that a node will only be split if
it results in a reduction of the loss function greater
than or equal to 0.5, which potentially prevent
overfitting and enhance the model’s generaliza-
tion ability.

LGBM is also an efficient, scalable, and optimized
tree-based learning algorithm using a histogram-
based decision tree learning algorithm that reduces
communication overhead and minimizes memory
usage, resulting in faster training times and im-
proved performance on large datasets (Ke et al
2017). Its strong predictive power and efficiency
have made it popular in various applied ML tasks.
In the optimal model, the bagging_fraction and
bagging_freq, which respectively determine the
subsample ratio and frequency of bagging during
training, were set to 0.42 and 0.53, respectively. It
indicates that 42% of the data are sampled for
each tree, and bagging is applied every 53 itera-
tions in the training process. Also, the L1 and L2
regularization terms on the weights (by adding a
penalty term to the loss function to reduce the
magnitude of the weights and prevent overfitting)

were 0.00028 and 0.043, respectively. The learn-
ing rate was set to 0.011, and no restriction was
put on the maximum depth of the tree allowing
the model to learn complex interactions between
features until all leaves are pure or until the num_-
leaves parameter is reached; for instance, in this
case, the number of leaves is set to 95. Finally, the
number of estimators was equal to 1600. In this
study, the optimal hyperparameters for XGBoost
and LGBM were selected using the Python API
Optuna (Akiba et al 2019). The Tree-Structured
Parzen Estimator (TPE) sampler in Optuna was
used, which is a Bayesian optimization-based
sampler that uses a probabilistic model to guide
the search process of hyperparameters. The TPE
uses a tree-structured representation of the search
space to model the probability distribution of the
target function and generates new samples in
regions likely to contain optimal solutions.

RESULTS AND DISCUSSION

Figure 5 shows the distribution for tracheid width
for the 2018 samples measured. The histogram
shows that the tracheid width of the samples
had an average of 40.67 um with a standard
deviation of 2.75 wm. The normality test using the
Ryan—Joiner method yielded a p-value < 0.01
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rejecting the null hypothesis of normal distribution.
It can be seen that the measured tracheid width var-
ies in the range of 31-49 wm. Table 1 summarizes
tracheid width descriptive statistics for the training
and test data. The average and standard deviation
of the tracheid width in both the training and test
data are very similar to that of the total dataset indi-
cating appropriate data splitting.

Prior to any analysis, the input dataset was stan-
dardized by rescaling the data to show an average
of 0 with standard deviation of 1. Subsequently,
PCA was performed on the input NIR data for
dimensionality reduction. Figure 6 indicates the
contribution of PCs to the data and reveals that
using 21 PCs can explain 95% of variation in the
data. This reduced the size of the input dataset to
a matrix of 2018 X 21. Table 2 shows the sum-
mary of the performance (mean square error
[MSE] and coefficient of determination [R*]) ob-
tained from the deep and ensemble models.

The lowest R* (test data) was obtained using ran-
dom forest model followed by the MLP NN.

Histogram showing the distribution of tracheid width.

1D-CNN showed a slightly higher R* than MLP
NN. Compared with the DNN models used in this
study, the gradient-boosting machines (TreeNet,
XGBoost, and LGBM) showed superior perfor-
mance resulting in higher R? and lower MSE. The
lowest error and highest R* was obtained from the
LGBM model followed by TreeNet. Figure 7
shows the R* variation with respect to the number
of trees in the TreeNet model. Although the
model was expanded to comprise 5000 trees, the
optimal performance (considering overfitting)
was chosen when having 2159 trees in the model.
Compared with DNNs, the gradient-boosting
machine algorithms show overfitting on the
training data, yet, yielded the best performance
on the test data.

The relatively higher performance of LGBM
model compared with other boosting methods,
such as XGBoost, could be linked to its tree
growth strategy, which is leaf-wise (it is level-
wise for XGBoost) resulting in growing the tree
in a selective manner, leading to smaller and
faster models as compared with XGBoost. It is

Table 1. Descriptive statistics of the tracheid width for the training and test data.

Dataset N % of N Mean StDev Minimum Q1 Median Q3 Maximum
Training 1404 69.57 40.65 2.71 32.59 38.85 40.80 42.60 48.92
Test 614 30.43 40.71 2.86 31.86 38.81 40.82 42.77 47.58
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Figure 6. Contribution of PCs to the data.

observed that LGBM performs slightly better
than XGBoost, which could be attributed to
either a better hyperparameter tuning or a better
model fitting. As the hyperparameters of both
LGBM and XGBoost are different, it could be
that the optimal hyperparameters for LGBM are
more suitable for the given dataset. Additionally,
the LGBM model is a better fit for the data and
was able to capture more complex relationships
within it.

Table 2. Performance summary of the deep and ensemble
models for prediction (PCA is applied).

Performance (Rz)

MSE R

Models Train Test Train Test
MLP NN 2.88 3.17 0.61 0.61
1D-CNN 2.53 3.45 0.63 0.62
Random Forest 3.05* 3.39 0.58* 0.58
TreeNet 0.54 2.94 0.93 0.64
XGBoost 0.11 2.99 0.99 0.63
LGBM 0.27 2.86 0.96 0.65

“Results indicating the out-of-bag performance.

The spectral data were also fed into the ML mod-
els without applying PCA. Table 3 summarizes
MSE and R* obtained from the different models
when full-range spectral data were directly used
for prediction. The lowest R* and highest MSE
(test data) corresponded to MLP NN. Random
forest and 1D-CNN revealed similar performance
while both slightly outperformed the MLP NN.
Similar to Table 2, it can be seen that gradient-
boosting algorithms outperformed the NNs and
random forest. The highest R* of 0.69 was
achieved using the LGBM followed by TreeNet
and XGBoost, which showed similar performance
(R* = 0.68). Figure 8 shows the variation in R
vs the number of trees in the TreeNet model.
Optimal performance considering R? of 0.68 and
overfitting was obtained using a model with 1959
trees. It can be seen that feeding the full range of
NIR data into the models without applying PCA
enhances the performance of the models.

All of the ML models fit here had improved fit
statistics compared with the R? of 0.61 (test data)
achieved by Nabavi et al (2018) for tracheid width
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Figure 7. Variation in the R* vs the number of trees in the TreeNet model (PCA was applied to the input data).

prediction using PLS regression. The slightly
higher performance of CNN compared with MLP
could be associated with the high-level data
abstraction capability of CNN. While MLP could
be considered a DNN model having three hidden
layers in its structure, it is one of the most basic
types of NNs. Representation of raw data are
learned in a DL model, such as CNN, through
multiple levels of abstraction (LeCun et al 2015;
Miotto et al 2018). Thus, one can conclude that
high-level data abstraction and the built-in fea-
ture engineering capability of CNN during its

Table 3. Performance summary of the deep and ensemble
models for prediction (PCA is not applied and the entire
spectral data were directly fed into the models).

Performance

MSE R

Models Train Test Train Test
MLP NN 2.73 3.03 0.63 0.63
1D-CNN 1.73 2.95 0.77 0.64
Random Forest 2.81* 2.92 0.61* 0.64
TreeNet 0.36 2.64 0.95 0.68
XGBoost 0.16 2.57 0.99 0.68
LGBM 0.09 2.56 0.99 0.69

“Results indicating the out-of-bag performance.

learning process results in superior performance
compared with a more traditional model, such as
MLP NN.

The higher performance of gradient-boosting
algorithms over NN is aligned with the bench-
mark study of Grinsztajn et al (2022), in which
tree-based models, such as XGBoost, outperformed
the NNs on medium-sized data (approximately
10K samples). The competitive performance of
tree-based models even when dealing with an
irregular pattern in the target function and unin-
formative features makes them powerful tools for
regression and classification tasks on tabular data-
sets, while MLP-like architectures are noticeably
affected by uninformative features (Grinsztajn
et al 2022). This could explain the lower perfor-
mance of MLP in this study. The superior perfor-
mance of gradient-boosting model over random
forest was also reported when classifying tool
wear during wood machining (Nasir et al 2021d).
However, further studies on datasets with differ-
ent sample size and complexity is needed to
benchmark this observation.

The embedded feature selection nature of tree-
based ensemble learning models resulted in
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Figure 8. Variation in the R? vs the number of trees in the TreeNet model (PCA was not applied to the input data).

identifying the relative importance of features
(wavelengths). For example, the results showed
that all 692 wavelengths were important in the
TreeNet model, while the random forest model
had 516 important predictors. The top 10 wave-
lengths for the TreeNet and random forest mod-
els are summarized in Figs 9 and 10. In both, the
relative importance of features are shown, where
the most important was assigned a score of 100,
with the remaining scaled accordingly.

1544
1540
1542
1594
1276
1590
1546
1692
1778
1228

Band assignments reported by Schwanninger et al
(2011) for wood components were used to deter-
mine, where possible, the origins of the features
shown in Figs 9 and 10. Four wavelengths
identified for the TreeNet model (including the
top three) were in the range 1540-1546nm and
this region is associated with first overtone O-H
stretch vibrations in cellulose. Wavelengths at
1542 and 1544 nm were also identified as the top
two important features in LGBM and XGBoost

0 20 40

60 80 100

Relative Importance (%)

Figure 9. Top 10 important wavelengths contributing to the obtained predictive TreeNet model.
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Figure 10. Top 10 important wavelengths contributing to the obtained predictive random forest model.

models. Wavelengths at 1590 and 1594 nm were
also among the most important and bond vibra-
tions in this region (1579-1597nm) share the
same origin. Wavelengths in both regions have
been assigned to specific bond types in cellulose
(Schwanninger et al 2011), which are summa-
rized in Table 4.

Of the remaining four wavelengths identified
by the TreeNet model, two (1692 and 1778 nm)
occurred in regions associated with first overtone
C-H stretch vibrations in lignin (1685 and 1698 nm)
and cellulose (eg 1780, 1788, and 1790 nm).
Similarly, 1228 nm is in a region (1212-1225 nm)
assigned to second overtone C-H stretch vibra-
tions in cellulose. The only wavelength without a
recognized band assignment arising from a speci-
fic wood component was 1276 nm.

Table 4. The specific bond types in cellulose for different
wavelengths.

Wavelength
(nm) Specific cellulose

1540 Adsorbed water (strong H-bond with
microcrystalline cellulose)

1545 Intramolecular H-bond in cellulose

1548 Crystalline regions in C1. O(3)-
H@3)----- O(5) intrachain H-bond

1588 Strong O(2)-H(2)- - - - - 0(6) of cellulose

1591 H-bonds of the cellulose 15 phase

1592 Crystalline regions in cellulose

1597 Strongly H-bonded O-H group in

cellulose 1,

The Random Forest model shared many fre-
quently used features with models developed
using TreeNet model and wavelengths (1544,
1542, and 1540 nm) associated with first overtone
O-H stretch vibrations in cellulose were again the
most important. The 1546 nm was also identified
(ranked seventh for both models), but its relative
importance was lower (39.4% vs 59.1% for Tree-
Net). Further, an additional wavelength (1538 nm)
from this region was identified among the top 10
features. First overtone C-H stretch vibrations in
lignin (1685 and 1698 nm) were again important,
with two wavelengths (1690 and 1692 nm) identi-
fied (vs 1692nm for TreeNet). Two additional
wavelengths (1454 and 1456 nm) were important
and occur close to 1447 and 1448 nm, wavelength
which arise from first overtone O-H stretch vibra-
tions in lignin. The only wavelength lacking a spe-
cific assignment was 1274nm. The presence of
recognized bond vibrations for the majority of
important features arising from specific wood
components indicate the importance of cellulose
and lignin in the development of our tracheid
width models. In general, the wavelengths identi-
fied for the model types were very similar; how-
ever, the random forest model appears to have
greater emphasis on lignin owing to the presence
of 1454 and 1456nm and the corresponding
absence of 1590 and 1594 nm (the cellulose-related
wavelengths important for the TreeNet model).

Overall, methods such as tree-based ensemble
models based on full-range NIR data could be
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applied for property assessment of a variety of
wood products. Not only may this enhance pre-
dictive performance of the developed model, but
it provides an opportunity for NIR feature ranking
and studying the relative importance of wave-
lengths in contributing to the performance of the
predictive model. For example, this study high-
lighted the importance of wavelengths related to
cellulose and lignin in developing a model for
predicting tracheid width. Future studies should
focus on the role of dataset size when employing
different ML and DL models. Further expanding
dataset size through employing synthetic data
augmentation methods, such as generative adver-
sarial network (GAN), could be an important
topic of future studies.

CONCLUSIONS

Overall, the tree-based gradient-boosting machines
outperformed the neural network models. LGBM
yielded the highest R? and lowest error followed
by XGBoost and TreeNet, whereas using MLP
NN did not result in high performance. All models
performed better without PCA when full-range
NIR spectra were directly fed into them. The
embedded feature selection characteristic of the
tree-based ensemble models could be used to
study the relative importance of features indicating
the importance of cellulose and lignin in the devel-
opment of tracheid width models. The developed
models improved the reported results for tracheid
width prediction using a PLS model, demonstrat-
ing the potential of DL, and specifically tree-based
ensemble models, when applied to a medium-
sized NIR dataset. The methodology could be
applied to any wood product for which NIR spec-
tral data can be collected and provides better pre-
dictive performance and improved insight into the
relative importance of individual NIR wave-
lengths. Since the performance could be impacted
by the size of data and its complexity, the pro-
posed models should be tested on other NIR data-
sets, specifically those of small sample size, which
is more typical when collecting data under labora-
tory conditions. Finally, the models could also be
tested on big data; however, this requires large-
scale data acquisition to better simulate industrial
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conditions and account for the high-variability of
real-life situations. Future research could study
employing synthetic data augmentation methods
for increasing the size of datasets and how it
impacts the performance of predictive models
based on the NIR data spectral.
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