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ABSTRACT 

Wood chip thickness is an important factor in pulp quality and yield. An artificial neural network 
model was developed and incorporatecl into a growth and yield simulator to predict wood chip thick- 
ness distributions from stand and tree characteristics. Models based on direct parameter estimation 
and parameter recovery were also developed for comparison to the neural network. Data were derived 
from 11,77 1 individual loblolly pine chip thickness measurements. Four stand ages, five dbh (diameter 
at breast height) classes, and three stern positions were used to predict the cumulative proportion of 
chip weight per chip thickness class. liesults showed that the neural network model was superior to 
the two deterministic models on the basis of hias, root mean square error, and index of fit. Sensitivity 
analyses for the neural network model demonstrated that thicker chips were produced by younger 
stands and lower stem positions. The neural network was combined with a growth and yield simulator 
to demonstrate its use as a tool for procurement foresters and mill managers in predicting yields from 
ctands of given characteristics. 

Ktlywords: Neural network, wood chips, wood chip thickness, wood chip thickness distributions 

~NTRODUCTION and fiber efficiencies (Worster et al. 1977; 
Christie 1987). The control of chip thickness 

Wood thickness is a major factor in the distributions readily translates into increased 
performance of pulp digesters and in subse- yield per unit cost and has been studied from 
quent pulp quality and yield (Borlew and Mil- four different approaches or production 
ler 1970; Becker 1992; Tikka et al. 1993). Dif- phases: 1) prechipping wood conditions 
ferent pulping methods require different chip (Flowers et al. 1992; Wallace et al. 1992; Ko- 
thicknesses (Dubois et al. 1991 ; Wood and ger et al. 1993); 2) mechanical considerations 
Gosda 1992). Chip thickness below or iibove during chipping (Twaddle and Watson 1990; 
an optimum range produce either overcooked Dubois et al. 1991; Uelmen 1993); 3) screen- 
or undercooked pulp, thereby reducing process ing of chips prior to pulping (Christie 1987; 
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FIG. 1. A simple multilayer neural network 

Tikka et al. 1993); and 4) pulping conditions harvesting, and chipping strategies. The objec- 
(Worster et al. 1977; Becker 1992). tive of manipulating chipping strategies could 

Prediction of chip thickness distributions be either optimum chip thickness or optimum 
from prechipping wood conditions has several chip thickness mixes. 
advantages. It can change the magnitude or 
type of control needed in later production MODELING APPROACHES 

phases, and it allows the purchase price of 
roundwood to be based on projected yields. 
Prechipping studies by Flowers et al. (1992) 
and Koger et al. (1993) showed that stand age, 
dbh (diameter at breast height) class, and chip 
position in the stem influenced the distribution 
of chip weights by thickness class. Given ad- 
equate prediction equations, these variables 
could be readily manipulated to increase pulp 
yields. 

The objective of our study was the enhance- 
ment of modeling techniques for predicting 
chip thickness distributions from prechipping 
stand and tree characteristics. W; developed 
and compared three models. The best model 
was integrated with a growth and yield simu- 
lator for the purpose of predicting total chip 
weight by thickness class for stands of a given 
age, site index, and merchandizing standards. 
The utility of the integrated model for the pro- 
curement forester and mill manager is two- 
fold: I)  the prediction of chip yields from 
stands under consideration for purchase or 
scheduled for harvest; and 2) the prediction of 
yields from the manipulation of management, 

We selected two parametric methods and 
one nonparametric method for predicting chip 
thickness distributions. The parametric meth- 
ods, based on the Weibull distribution func- 
tion, were direct parameter prediction and pa- 
rameter recovery. The nonparametric ap- 
proach was a neural network. Each approach 
and its advantages are discussed below. Bias, 
precision, and index of fit statistics were used 
to compare the three models and to select the 
best one for integration with the growth and 
yield simulator. 

Neural networks 

The use of neural networks, formally called 
artijiciczl neural networks, is a technique from 
the field of artificial intelligence that attempts 
to simulate human cognitive behavior. There 
are numerous neural network types, but per- 
haps the most popular is the back-propagation 
network. A multilayered, back-propagation 
network (Fig. 1) is composed of an input layer, 
an output layer, and one or more middle layers 
called hidden layers. Each layer contains a 
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number of nodes that hold and transrnit cal- 
culated values. The input layer contains one 
node for each independent variable in the 
model, and the output layer contains one node 
for each dependent variable in the model. Trial 
and error testing during network construction 
determines the number of hidden layers and 
number of nodes per hidden layer. Values trav- 
el in one direction along connecting links, 
from nodes in the input layer to nodes in the 
output layer. Each link is associated with an 
iteratively calculated weight. 

There are two phases of network develop- 
ment, a training phase and a testing phase. 
Learning (weight adjustment) and model 
building occur in the training phase. Evalua- 
tion of models occurs in the testing phase. 
During training, the nodes of the input layer 
receive scaled data values from the indepen- 
dent variables. Each input node value is mul- 
tiplied by the corresponding weights of its 
links, and the products are transmitted to con- 
necting nodes in the first hidden layer. The 
weighted values from each input node are 
summed, transformed by a smoothing or trans- 
fer function, and stored in a hidden layer node. 
The weighting, summation, and transforma- 
tion process is repeated from layer to layer 
until the output layer is reached. Node values 
are descaled at the output layer. 

The difference between the output node val- 
ues (predicted output) and their paired target 
values (observed output) is used to adjust the 
network weights by propagating errors back 
through the network according to a learning 
rule. Weights are adjusted in proportion to the 
product of a learning rate, an error derivative, - 
and the output from the previous layer 
(Neuralware 1993; Weiss and Kulikowski 1 99 1). 
The neural network produces a nonlinear mod- 
el whose parameters, the network weights, are 
adjusted after each input or epoch (specified 
number of inputs). 

During the testing phase, values travel 
through the network in the same manner as in 
the training phase, except there is no updating 
of weights. Network inputs either come from 
random subsets of the training data or from an 

independent data set. As predicted output val- 
ues are produced, they are compared to cor- 
responding observed outputs to calculate a 
collective error. The best of many models is 
usually chosen on the basis of the lowest root 
mean square error. 

There are several general advantages of 
neural networks as compared to traditional 
modeling techniques. Neural networks assume 
no predetermined functional form, and thus no 
prior knowledge of the model is needed. They 
are particularly well adapted to applications 
where no suitable mathematical model is 
known or where systems may be composed of 
complicated interactions. 

A noted disadvantage of neural networks is 
the inability to place logical constraints on the 
output. Another disadvantage can be the mag- 
nitude of data needed during the training 
phase. Problems that produce small data sets 
are not well suited to modeling with neural 
networks. 

Direct parameter prediction 

The direct parameter prediction approach 
involves identifying a parametric probability 
function that closely approximates the ob- 
served distribution. The parameters of the se- 
lected distribution are estimated by maximum 
likelihood estimation or by non-linear least 
squares fittings of the cumulative distribution 
function to the empirical distribution func- 
tions. Parameter estimates are then regressed 
on the predictor variables to build a distribu- 
tion prediction model (Bailey and Dell 1973; 
Dell et al. 1981; Kendal and Stuart 1977). 

Purameter recovery 

The parameter recovery method for esti- 
mating parametric distributions is an indirect 
technique. First, regression equations are 
found for predicting selected moments (mean 
or quadratic mean) and/or order statistics from 
the predictor variables associated with each 
distribution. The expected value equation de- 
rived for each predicted moment or order sta- 
tistic is equated to its corresponding regression 
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equation, and the subsequent linearlnonlinear 
system of equations is then solved for the de- 
sired parameter estimates (Farrar and Matney 
1994; Kendal and Stuart 1977; Matney and 
Farrar 1992; Matney and Sullivan 1982a, b; 
Zarnoch et al. 1991). 

Unlike the neural network, both parametric 
approaches are bound to a particular function- 
al form and automatically impose logical con- 
straints. These approaches can yield excellent 
predictions if the assumed distribution closely 
approximates the actual distribution. On the 
other hand, when the actual distribution is 
complex, multi-modal, or discontinuous, these 
approaches are of limited value. 

DATA 

The data consisted of measurements taken 
on 1 1,77 1 individual loblolly pine wood chips. 
Green Bay Packaging Company's plantations 
near Morrilton, Arkansas, supplied the trees. 
Three to ten trees were selected from within 
each of four stand ages (14, 19, 23, and 29 
years) and five diameter classes (5. 7, 9, 11, 
and 13 inches dbh). Debarked tree length 
stems were individually identified and chipped 
in diameter-age groups. Price lndustries in 
Perry, Arkansas, chipped the trees. Chip sam- 
ples were taken from the butt (I),  middle (2), 
and top (3) thirds of each group of stems. De- 
tails on the chipper set-up are founcl in a pre- 
vious study by Koger et al. (1 993). Chips were 
classified with a Gradex classifier to determine 
the percentage of fines, pins, accepts, and 
overs. Individual chip thickness measurements 
were made with an electronic caliper, and each 
chip was weighed to the nearest hundredth of 
a gram. Chips that were less than 2 millimeters 
in thickness were not individually measured 
but were collectively weighted by stand age- 
diameter-stem position class. The average chip 
thickness was 3.88 millimeters, and the aver- 
age chip weight was 0.56 grams (Koger et al. 
1993). 

The independent variables for the three 
models were stand age, dbh class, chip posi- 
tion in the stem, and chip thickness. There 

were a total of 54 bulk samples representing 
unique combinations of variable levels. The 
dependent variable was defined as the cumu- 
lative proportion of chip wcight that is less 
than or equal to each unique chip thickness. 
The cumulative proportion, though not a rel- 
ative frequency probability distribution, does 
share the same properties of probability dis- 
tributions, and these properties were important 
in the development of the parametric ap- 
proaches. Instead of predicting the relative 
numbers of chips of a specified thickness, the 
models predict the cumulative proportion of 
the total weight of chips having a specified 
thickness. 

METHODS 

Neural network 

We used NeuralWare's Neural Works Pro- 
fessional IVPlus (Neuralware, Inc., Pittsburgh, 
PA) software to construct the neural network 
model. The software ran on a SUN 690 MP 
minicomputer. Many network types are avail- 
able through the NeuralWorks software, but 
we selected the commonly used fully con- 
nected. hetero-associative, feed forward, back- 
propagation form. Feed forward networks 
(like the back-propagation learning system) 
have been mathematically proven to be capa- 
ble of approximating continuous functions to 
any degree of accuracy (Hassoun 1995). 

Building a back-propagation network with 
NeuralWorks requires the selection of various 
parameters. We based some parameter selec- 
tions on NeuralWare's recommendation and 
others on trial and error experimentation and 
minimum root mean square error. Table 1 
summarizes the selected parameters. Different 
values of the parameters in Table 1 constitute 
separate networks that were tested. We tried 
network architectures with one, two, and three 
hidden layers and with a varying number of 
nodes per layer. An architecture of two hidden 
layers with eight nodes in the first hidden layer 
and four nodes in the second hidden layer was 
chosen because it produced the least root mean 
square error of the models tested. 
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T A B L ~  I .  Selected NeuralWorks Professional II/Plus network pararnetczrs. 

P.lramuter Value Dr\crlptli>n 

Network type 

Learning rule 
Transfer function 
Epoch size 
No. hidden layers (HL) 
No. nodeslhidden layer 
Momentum 

Learn counts (in thousands) 

Learning coefficients 

back-propagation 
hetero-associative 

min-niax table 
fully connected 

delta rule 
sigmord 
1 = slantlard for delta rule 
2 
HLI - 8, HL2 = 4 
0.8 

HL1 == 10, 30, 70, 150, 310 
HL2 == 10, 30, 70, 150, 310 
Output = 10, 30, 70, 150, 310 
HLI: 0.9, 0.45, 0.225, 0.1125, 

0.0000 1 
HL2: 0.6, 0.3, 0.15, 0.07, 0.00001 
Output: 0.15, 0.075, 0.0 1875, 

0.001 17, 0.00 

back-propagation of errors 
different input and output vari- 

ables 
scaled inputs 
all nodes connected in adjacent 

layers 
governs weight adjustments 
smoothing function 
no. inputs per weight update 

modifies weights to deter conver- 
gent behavior 

the sequential number of inputs 
for which a learning coefficient 
applies 

multipliers in the calculation of 
weights; values change after a 
set number of inputs (learn 
count) 

A network stopping criterion of 300,000 
network cycles was determined during prelim- 
inary testing. One chip observation is pro- 
cessed by one network cycle. During prelim- 
inary tests, the neural networks were allowed 
to run with no stopping criterion until im- 
provements in error were no longer made. 
This always occurred before 300,000 network 
cycles. 

NeuralWorks randomly presented samples 
of the chip measurements to the networks for 
training. Sampling occurred without replace- 
ment until all 11,771 observations were pre- 
sented at least once. Random sequences of the 
1 1,77 1 observations were presented repeatedly 
until the stopping criterion was reached. Sam- 
ple sizes consisted of approximately 17% of 
the chip measurements. Different sample sizes 
were tested, but those larger than 17%) showed 
no improvement in root mean square error. 

One hundred and forty-eight models were 
generated for each network architecture. The 
model with the least root mean square error 
(Fig. 2) was selected and output through a 
NeuralWorks utility in standard C language 
source code. Bias, root mean square error 

(RMSE), and index of fit were calculated for 
comparison with the two parametric models 
(Table 2). Bias was calculated as the average 
difference between observed and predicted 
values, and index of fit was calculated as one 
minus the quantity of the error sum of squares 
divided by the total sum of squares. 

Direct parameter prediction 
Previous work by Koger (1994) demonstrat- 

ed that extremely close approximations to the 
normalized weighted chip distributions could 
be obtained by nonlinear least squares fitting 
of the cumulative distribution of a three-pa- 
rameter Weibull function. The Weibull cumu- 
lative distribution function was thus accepted 
as the appropriate model for predicting cu- 
mulative chip weight distributions. The Wei- 
bull distribution can assume many shapes, and 
because of this flexibility has been widely ap- 
plied in forestry and other fields to model dis- 
tributions. The following cumulative Weibull 
distribution function equation was employed 
in an SAS (SAS Institute Inc., Cary, NC) 
Guass-Newton NONLIN procedure to produce 
parameter estimates. 
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FIG. 2 .  Neural network architecture that possessed the least root mean square error. 

~ ( t )  = 1 - e-l(L-~~Vhl' (1) All a parameter estimates obtained the log- 

where ical lower bound of 0. As a result, we elected 
to use the following two-parameter Weibull 

F(t) = proportion of less than equation for both the direct recovery mod- 

or equal to a thickness of t, eling approaches. 

t = chip thickness in millimeters, 

a = location parameter 

(the minimum chip thickness), After estimates of the b and c parameters 
were obtained, a regression analysis was per- 

b = scale parameter, formed to find the best equations to predict the 
c = shape parameter, and model parameters from the 54 combinations 

of stand age (age), tree dbh class (dbh), and 
e = base of the natural (Naperian) stem position (pos). The best parameter pre- 

logarithm. diction equations developed were: 

TAI~LL: 2. Bias, root tnean squure error, ~ ~ n d  index of$t by chip thickness class for the three modeling approaches. 

heoc;!l nztwolk Pxameter recovery D~rect parameter 
('I,,,> t h , ~ k , , ~ \ \  -- 

c lr,\\ 1 II>I~ I N o  oh,. Bla\ RMSE B,.i\ RMSE Bta\ RMSE 

0 8 
1 389 
7 - 3,184 
3 3,039 
4 2,393 
5 1,467 
6 688 
7 356 
8 160 
9 47 

10 40 
All 11,771 

Index of Fit 


















