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ABSTRACT 

This study concentrated on the ultrastructural characteristics of hardwood fracture surfaces, but it 
included southern yellow pine as a representative iofiwood for comparison. Very small specimens 
were made. tested for comoression oarallel to the erain. tension ~arallel  to the psain, shear in the radial - 
plane and shear in the tangential plane, and were then prepared for scanning electron microscopy. 
Secondary electron micrographs of the fracture zones were recorded singly or in stereo pairs, and a 
number are used to illustrate the major findings. 

Thick-wall cells tend to fail in an intrawall pattern at the SIlS2 interface, while thin-walled cells 
are more likely to fail with transwall fracture. In tangential shear tests of ring-porous woods, the plane 
offracture follows the earlywood vessels which are thin-walled and have wide lumens. Large oak-type 
rays affect the fracture path in all of the test modes. Certain characteristic types of failure can be 
related to each of the testing modes utilized. 

Keywords: Scanning electron microscopy, compression parallel to the grain, tension parallel to the 
grain, radial shear, tangential shear, inwwall failure, transwall failure, intercell failure, fracture paths, 
fracture surface. 

INTRODUCTION 

During the many decades in which the mechanical testing of wood has been 
practiced, characteristic patterns of gross- or macro-failure in standard test spec- 
imens have become well recognized and generally predictable. These tests have 
included compression parallel to the grain, tension parallel to the grain, radial 
shear, and tangential shear. Relatively recently, interest has developed in the 
nature of wood fracture at the microscopic and even at the ultrastructural level. 
No doubt the more general availability and increased use of scanning electron 
microscopy (SEM) have been major factors in this trend. However, realization of 
the importance of the morphological influence on the nature of fracture in wood 
is not as new as scanning electron microscopy. 

A few examples ofthe appreciation of anatomical considerations in wood behav- 
ior can be cited. Clarke (1935) related structure to failure of ash wood using light 
microscopic evidence. In 195 1, Wardrop published the results of a study in which 
the microstructure of coniferous tracheids was related to the breaking load in 
tension of specimens microtomed to 80 micrometers in thickness. This approach 
permitted comparison of specimens from earlywood and latewood of one growth 
increment, or of successive growth rings. Details of the technique were reported 
by Kloot in 1952. 

Tiemann (I 95 1) in his reference work on wood technology included anatomical 
relationships to mechanical failure. In 1963, Kollmann described the phenomena 
of fracture in wood and used photomicrographs to illustrate microscopic defor- 
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mations and cracks. He also wrote about submicroscopic "slips" which other 
authors had theorized about earlier in the century. 

Wardrop and Addo-Ashong (1 965) prepared an extensive review ofthe anatomy 
and the "molecular and supermolecular" organization of wood as background for 
a clearer understanding of structural changes related to mechanical failure. A 
number of light and transmission electron micrographs illustrated the structural 
deformation and failure at the cell-wall level resulting from tests in compression 
and tension parallel to the grain. 

Pentoney with coworkers DeBaise and Porter (1966) explored the morphology 
and mechanics of wood fracture. They were particularly concerned with crack 
propagation in wood shear fracture. DeBaise (1970, 1972) was one of the first to 
examinc cell-wall layers following failure to determine the precise location of 
fracture. The scanning electron microscope was employed in this research. He 
found that slow crack propagation produced relatively smooth fracture surfaces, 
while rougher surfaces resulted from rapid crack propagation. He also introduced 
the terms "intercellular" and "intracellular fracture" to describe the nature and 
location of failure between and within coniferous wood cells. 

The importance of wood failure in mechanical pulping was investigated by a 
number of individuals, but Koran (1967) utilized both scanning electron micros- 
copy and transmission electron microscopy in his studies on black spruce. The 
radial and tangential surfaces of this material generated through tensile failure at 
various temperatures were examined in detail and analyzed critically. He intro- 
duced "trans-wall failure" and "intra-wall failure" into the terminology on frac- 
ture. Woodward (1 980) used green ponderosa pine to evaluate the effect ofelevated 
temperatures on its tensile behavior and fracture path orientation as related to 
location of hemicelluloses in the cell wall. 

In the present study, emphasis was placed on fracture modes in hardwoods 
because of the apparent lack of published information in this area. In addition. 
the specimens were prepared from wood samples taken from small trees, less than 
6 inches in diameter, and grown on southern pine sites-i.e., on poor hardwood 
sites. 

The types of tests included in this research were compression parallel to the 
grain, tension parallel to the grain, shear in the radial plane, and shear in the 
tangential plane. For comparison, a representative softwood, southern yellow pine, 
was included with the three hardwood species selected. The same specimen sizes 
and testing procedures were employed for both softwoods and hardwoods. 

MATERIALS AND METHODS 

Since many of the hardwood trees grown on southern pine sites are small in 
diameter (less than 6 inches), large standard-size test specimens cannot always be 
readily produced. For this study only small size wood samples could be provided 
by the Pineville Laboratory at the time the study was being initiated. To assure 
having authenticated material, as well as for other reasons outlined below, it was 
decided to scale down test specimen size to fit the available wood samples. 

This approach is recommended by ASTM Standard D143-52 for such circum- 
stances. However, even under the recommended ASTM "Secondary methods," 
only specimens for compression parallel to the grain tests are reduced in size; in 
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this case the reduction is from 5 X 5 X 20 cm to 2.5 X 2.5 X 10 cm. All of the 
other mechanical tests are to be conducted with 5-cm X 5-cm cross-section mate- 
rial with length adjusted to the nature of the specific test. Unfortunately, even the 
reduced size indicated for compression parallel to the grain was too large for the 
available material. Therefore much smaller sizes were utilized as discussed under 
"Specimen preparation." 

Another very practical reason for utilizing small test specimens is related to the 
type of microscopy employed for the study. The scanning electron microscope 
requires that the specimen be relatively small if high vacuum is to be achieved 
within a reasonable time. Also, the chamber size will not accommodate entire 
specimens of standard size. They must be cut, and cutting artifacts may be created 
in this process since mechanical damage is difficult to avoid in sawing or machin- 
ing. 

When large specimens are tested to failure, it is sometimes difficult to locate a 
characteristic failure zone. By using small samples, the failure zone is readily 
located and further cutting is eliminated or minimized. In tensile test specimens 
the failure can be concentrated in a necked-down region only 2 X 3 mm in cross- 
section, for example. In shear tests specimens, an entire failure zone can be 
concentrated either in the earlywood or in the latewood thus offering ideal oppor- 
tunities for observing the differences in behavior in the two regions. 

It may be questioned whether very small samples behave in the same way as 
standard large samples in mechanical testing. From preliminary trials, it was found 
that, indeed, very small samples do fail in the characteristic gross pattern, provided 
that the test fixtures are appropriately designed and that correct proportions are 
maintained in the small specimens. Samples for compression parallel to the grain 
offer a good example of the similarity of behavior. Specimens only 1 cm in cross- 
section fail with the same well-defined buckling pattern as exhibited in ASTM 
standard size specimens. The line of buckling failure, as viewed on the tangential 
face, made an angle of 45 to 60 degrees with the grain or axial direction of the 
specimen. Round specimens, 1 cm in diameter, fail with a single line of buckling 
at approximately the same angle as in the square or rectangular cross-section 
samples. 

Specimen preparation 

Three hardwood species and one softwood were selected for the study. The 
hardwoods were chosen from the species grown on southern pine sites. Included 
wcre red oak, sweetgum and hickory. Diffuse- and ring-porous woods were rcp- 
resented in the selection. Southern pine, species undetermined, was chosen to 
represent the softwoods and as a comparison in ultrastructural interpretation. 

The compression parallel to the grain test specimens were I cm in cross-section. 
They were cut 3 cm in length. The round cross-section specimens for the compres- 
sion test were also 3 cm long and 1 cm in diameter. 

For the shear tests, the specimens were 1 cm and 2.5 X 2.5 cm. The shear plane 
was oriented either tangentially or radially as required. 

Samples for the tensile test, parallel to the grain, needed to be long enough to 
provide adequate gripping surface. Also, in order to provide a relatively long, 
straight-grained region in the necked-down portion, the overall length needed to 
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F .  I .  In this micrograph of swcctgum that failed in tangential shear, both transwall (TW) and 
intrawall (IW) failure can be noted in adjoining cells. The ray parenchyma cell wall has delaminated 
(arrow). The lumen lining layen (S3) appear to be intact in cells at both right and len extreme edges 
of this micrograph. Intercell failure appears at upper center at the vessel and fiber interface. 

Symbols used onfrgures.-F = Fiber; FL = Fiber lumen; IC = Intercell failure; 1W = Intrawall fail- 
ure; ML = Middle lamella; RP = Ray parenchyma; SI = Outer layer of secondary wall; S2 = Middle 
layer of secondary wall; S3 = Inner layer of secondary wall; SIIS2 = Interface of SI and S2; S21S3 = 
InterFam of S2 and S3; TW = Transwall failure: V = Vessel. 



G r i  and H ~ ~ ~ ~ - C H A R A C T E R I S T I C S  OF WOOD FRACTURE SURFACES 139 

RI; .  2 .  'I'nngcntial surracc ofrcd oak compression trst specimen showing thc start ofgross huckling 
and the initiation of separation in the vicinity of rays. Intercell failurc proceeds above or hclow the 
rays, but appears to have started at fiberfray interface in most cases. Arrow indicates area enlarged 
in Fig. 3. 

be 15 cm. This provided a stress-concentration area 3 cm long and 2 X 3 cm in 
cross-section. 

All of the samples were tested at the nominal moisture content of 8 to 10%. 
No attempt was made to build an environmental chamber around the test area 
of the testing machines. Although strength values were noted, testing to failure 
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Flu. 3. Areaindicatcd by armw in Pig. 2 was rccordcd aflcr inverlingthc compression tcsl specimcn 
and increasing the magnification approximately tenfold. The buckling of fibers and the separation of 
fibers from the ray parenchyma tissue in intercell failure arc emphasined. 

was purely qualitative with the objective of creating fracture surfaces for exam- 
ination and analysis. 

Microscopy 

The scanning electron microscope was selected as the ideal instrument for this 
study. Specimens could be examined in some instances with no chance of mechan- 
ical damage or artifact production since the entire test specimen would fit into 
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FK;. 5. Tangential view of  a sweetgum specimen testcd in compression parallcl to the grain. The 
extreme buckling even at this microscopic level results from separation of  cells ahove and below the 
buckling zone. Both intercell and intrawall failure can be seen in this micrograph. 

the square cross-section specimens were so processed. Radial and tangential sur- 
faces were produced by microtoming so that clear observations in both aspects 
would be possible. 

The tensile test specimens were prepared by simply cutting off a 1- to 2-cm 
portion of the necked-down region, with the fracture zone left untouched at the 
end. The cut end was then attached to the specimen holder after oven-drying. 
Matching ends were mounted separately, but it proved to be impossible to find 
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I .  9. lnterccil hilure in the huckling zonc o fa  southern pine compression test spcoimrn is more 
obvious when the microtomed surt'dcc is recorded with a minimum of tilt. 

Terminology 
Unless one is accustomed to dealing with wood structure at the sub-light micro- 

scopic level and using the specialized terminology that has developed in this area, 
it can be difficult to describe failure phenomena or to understand the descriptions. 
Most wood cell walls consist of three-layered structure in the secondary wall and 
an outer primary wall envelope, which is in contact with intercellular substance 
called the middle lamella. The secondary wall layers have been designated SI. 
S2, and S3 for convenience. These symbols refer to the outer, middle, and inner 
secondary wall layers, respectively. 
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I .  0 .  lntrawall failure predominates in the thick-walled cells ofthis hickory spccimcn that hilcd 
in tangential shear. 7'hc S2 and thc SI arc the more prominent layers visible in this micrograph. 
lntrawall failure takes place within either the S1 or the S2, or at their interface, the SIlS2. The single 
ray parenchyma cell, lower left, cxhibits transwall fracture. 

When failure occurs, three types of breaks can be recognized: intercell, intrawall, 
and transwall. Intercell failure occurs at the middle lamella and is simply the 
separation of cells at this junction. IntrawaN failure refers to failure within the 
secondary wall and in most instances it is at the Sl/S2 interface or close to it. 
When rupture of the wall is complete (when the fracture path cuts across the wall) 
the failure is described as transwall. 
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Fla. I I .  A fracture surface very similar to that in Fig. 10 is produccd in radial shear tesling as in 
this red oak specimen. lntrawall failure of the longitudinal elements involves thc S1 or the S2, or their 
mutual interface. This micrograph resembles that of Fig. 10 except that one fiber lumen was left intact 
(center), presumably because of transwall failure. 

Figure 1 has been labeled to illustrate each of the above types of failure: IC 
refers to intercell failure, IW is intrawall failure, and TW is transwall failure. In 
this case the ray parenchyma cells were sheared off in transwall failure as was the 
double wall of the vessel (V) and the adjoining fiber (F). Intrawall failure took 
place within the fiber wall apparently at the Sl/S2 interface. 
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FII;. 15. Radial shear in southern ~ i n e ,  when viewed at low magnification, reinforces the concept 
of cell-wall thickness as the determining factor leading to intrawall vs. transwall failure. This stereo 
pair makes it easier to compare the fracture zones in earlywood (E) and latewood (LA and LB). 

line makes with the axial direction of the wood is very clear as it is in Fig. 8, 
which was recorded at 700X. In the latter micrograph the "domino effect" of the 
buckling failure can be observed through the characteristically compressed or 
crimped cell walls. 

At the same magnification, the compound cell walls (two adjoining tracheid 
walls with middle lamella) (Fig. 9) show little rupture, but there is considerable 
intercell failure. Microtoming was necessary to reveal the detail in the compression 
parallel to the grain specimens. 

Shear parallel to the grain 

When hardwoods are subjected to shear stresses parallel to the grain, there are 
similarities in the nature of the failure in the radial and tangential modes. In 
species of relatively high specific gravity, the microfibrils of the thick S2 cell-wall 
layer resist the shear stresses because of their orientation. Consequently, the intra- 
wall failures occur at the SI/S2 interface in both modes of testing. For example, 
Fig. 10 is a hickory specimen tested in the tangential plane. Fragments of the S1 
layer with more or less horizontal orientation are tom away from the S2, which 
exhibits fibrillar orientation of approximately 60' or 70' from the horizontal (20' 
or 30" from the axial). In Fig. 11, which is a red oak radial shear specimen, the 
fiber walls fail in much the same pattern. 

In species with a lower specific gravity, the S2 layer is greatly reduced in thick- 
ness and therefore the failures tend to be transwall. Figure 12 is a specimen of 
sweetgum that failed in tangential shear, and the failures in this case are largely 
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F .  6 .  When southcrn pine was suhjecled to tangential shear, the fracture xonc was gcncrally in 
the earlywood. The cell-wall hilures were of the transwall type. In this micrograph there are a few 
"flags" of secondary wall, which peeled out of the tracheids. Evidently there was intrawall failure at 
the SI/S2, which resulted in S2IS3 layen pulling out of the fracture plane. 

transwall since vessels predominate. Where there are fibers, intrawall failure can 
be observed. 

When viewed at the macroscopic level, the fracture plane is also seen to pass 
through the areas of least resistance. In radial shear this zone of weakness is 
through the rays. In Fig. 13, radial shear in red oak, the fracture plane has pro- 
ceeded in a steplike manner from the plane of ray A to the plane of ray B to the 
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FII.. 18. In a wood of highcr specific gravity such as red oak, tensile test spccimcns hrcak with a 
less "brash type of failure. Many individual fibers extend out ofthe failure zone. Clearly, intrawall 
failure predominates as SI and S2 microfibrillar orientation can be seen throughout the micrograph. 

ray A was the determining factor in the latewood, while ray B was the zone of 
weakness in the earlywood. 

With respect to tangential shear, the failure plane generally was found in the 
earlywood region with the failures being transwall. In some cells, however, there 
was a separation at the Sl/S2 interface which resulted in the S2-S3 layers peeling 
out (Fig. 16). 
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I .  I .  Thcsc lihcrs in a tcnsile test spccimen or hickory exhibit intrawall failure in which all 

three secondary wall layers can he identified through their orientation. Obviously transwall failure 
occurred ultimately as well. 

Tension parallel to the grain 

In hardwoods, tensile failure parallel to the grain resulted in an extremely 
complex fracture surface (Fig. 17). As a general rule tensile failure produced a 
transwall failure, which followed the S2 fibrillar angle in those cells having a thick 
S2 cell-wall layer. This "unwinding phenomenon" was probably the result of 
slippage between the microfibrils (Figs. 18, 19, 20). Also, within the same cells, 
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F I ~  20. Thc unwinding phenomenon discussed in the text appears in this specimen 01' hickory 
tested in tension parallel to the grain, as it has in several other instances. lntrawall failure at the SII 
S2 predominates, while transwall failure is most evident at the S2 regions of the cell walls. 

there was intrawall failure in the S1, which allowed the fiber core (S2 and S3) to 
pull out (Figs. 18, 19, 20). Conversely, in those cells with a diminished S2 cell- 
wall layer, the failure was of an abrupt transwall type (Fig. 21). There were, 
however, many instances where abrupt transwall failure was found in cells with 
a thick S2 (Fig. 20) and failures that had followed the S2 fibrillar angle were found 
in cells with a thin S2 (Fig. 17). 

The failure patterns in softwood as represented by southern pine were surpris- 
ingly similar to the hardwoods. The thick-walled latewood tracheids failed with 
a transwall fracture, which followed the S2 microfibrillar orientation. This is 
illustrated in Fig. 22. 

In earlywood tracheids that are thin-walled and punctuated by bordered pits, 
abrupt transwall fracture is typical. The relationship of the fracture zone to the 
location of bordered pit pairs in the compound cell walls was noted to be con- 
sistent. The stress concentrations invariably followed the edge or annulus region 
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1:~;. 21. In this stereo pair ofa  red oak tensile test specimen, an area from the carlywood has been 
selected to illustrate the abrupt transwall failure of the fibers as well as the vcsscl wall. Vcry few traces 
of long projections of cell wall can be found. 

of the pit rather than traversing it. Several examples of this behavior can be seen 
in Fig. 23. 

Thick-walled tracheids did fail in an abrupt transwall pattern in some instances 
such as in the area shown in Fig. 24. In other cases in latewood, the S2 layers 
pulled out of the S1 and then unwound as fracture proceeded. In Fig. 25, the 
unwinding phenomenon is more distinct than in the hardwoods because of the 
less sculptured wall structure of tracheids. Since virtually all of the longitudinally 
oriented elements are tracheids, the repetitive pattern of failure can be observed 
more readily. 

The use of scanning microscopy to examine the anatomical and ultrastructural 
aspects of wood failure under mechanical test has been shown to be a valid and 
useful approach to a clearer understanding of the failure phenomena. A few general 
observations can be offered in summary of the findings detailed above. Also, 
suggestions are made for extension of this work in the future. 

On the basis of the evidence presented and discussed in this report as well as 
on the large number of observations made in the course of this study, certain 
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FK;. 23. Although much as been mentioned in the lituraturc about the role of bordered pits in 
cell-wall failure in conifers, this is one ofthe few clear examples of their resistance to transwall failure. 
Instead, the fracture lines in these earlywood tracheids of southern pine follow the rim or annulus of 
the bordered pit pain in several cases. 

example, in tangential shear tests of ring-porous woods, the plane of fracture 
follows the earlywood vessels that are thin-walled and have wide lumens. The 
very large oak-type rays affect the fracture path in all the test modes. Normal rays 
have a major role in radial shear parallel to the grain since they represent a plane 
of weakness and step-wise failure results. However, even in compression parallel 
to the grain, the ray/longitudinal element interface represents a weak zone where 
intercell failure concentrates. 
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FIG. 25.  In  lhis example of  southern pine lalcwood Ihat iiilcd in tension. cvidcntiy thr S? layrrs 
pulled out of the SI. which would presumably hc found in thc matching end of Ihc test specimen. 
Thc unwinding phenomenon seen in hoth hardwoods and softwoods is found throughout this fracture 
surface and consists of S2 with only traces of the other layers. 

propagation in tests of wood to failure was found to influence the nature of the 
fracture surface. In the work reported here, normal loading rates were used. It 
would be desirable to extend this research to samples produced at faster loading 
rates to compare the resulting fracture surfaces. 

As suggested by the work of Kloot (1952) on micro-testing of wood, the prep- 
aration of even smaller test specimens for future research could lead to fruitful 
results. For example, the specimen could be limited to the earlywood or latewood 
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zone ofa single growth ring. This would allow comparison of properties of samples 
taken from growth rings produced following certain silvicultural treatments. In 
adopting this approach, the increased probability and importance of artifact pro- 
duction during specimen preparation would require careful consideration as noted 
by Keith and CBt6 (1968). 
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