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Abstract. Lumber is an indispensable raw material for people’s daily life. Drying process is a crucial stage in
lumber manufacture. As to ensure a suitable and usable end product of lumber, most of its MC must be removed
by drying. Improving the quality of lumber drying requires efficient control scheme. This article presents a design
of radical basis function (RBF) neural network–based sliding mode controller for lumber drying system. RBF
neural network is introduced to optimize the conventional slidingmode controller. The proposed strategy has been
theoretically and experimentally investigated to demonstrate the applicability for lumber drying process.
Comparative study of conventional sliding mode control (SMC) scheme and proposed control scheme is also
presented. It was found that the control performance of RBF-based sliding mode controller was superior to the
conventional slidingmode controller in computer simulation. Furthermore, in the field conditions, time and energy
consumption reduction were noticed with RBF-based sliding mode controller compared with conventional SMC
strategy using the same drying schedule, although the drying quality using the two control methods were similar.

Keywords: Lumber drying, RBF neural network, sliding mode control.

INTRODUCTION

Wood continues to be a principal raw material for a
large number of products as in building construc-
tion and furniture industry (Awadalla et al 2004).
Lumber drying, the final process before lumber
manufacturing, is significantly crucial in forestry
product industry (Yan et al 2001), for the com-
mercial value and usability of lumber mainly de-
pends on its drying quality. Under the same drying
schedule, drying quality and energy consumption
highly depends on control technique. Improving
drying quality can increase lumber use efficiency

and reduce waste of raw material as well. From the
perspective of dry-bulb temperature and EMC
control for drying kiln, lumber drying is a time
delay control process with parameter uncertainties
and external disturbances, which is always required
for better dynamic and steady behavior.

Meanwhile, various control methodologies for
lumber drying have been developed, including
immune PID control (Wang and Jia 2013), in-
telligent fuzzy-PID control (Xiong and Wang
2012), adaptive dead-beat control (Stanislav
and Radek 2015), and fuzzy logic control (Yan
et al 2001). In the previous studies, PID or
modified PID techniques are commonly noted* Corresponding author
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in the field of control system for lumber dry-
ing. Nonetheless, there seems to be room for
improvement in the respond time and control
precision of lumber drying system. Sliding mode
control (SMC) is a nonlinear control method that
alters the dynamics of a nonlinear system by
application of a discontinuous control signal.
The past years have witnessed successful appli-
cation of SMC in various areas (Wang et al 2018).
A fuzzy control–based SMC method was in-
vestigated for an uncertain active suspension
system (Wen et al 2017). An extended-state
observer-based second-order SMC method
was proposed for three-phase two-level grid-
connected power converters (Liu et al 2017).
SMC shows a better dynamic performance and
provides fast response with regards to trajectory
tracking and disturbance rejection in the recent
studies (Soltanpour et al 2014; Vaidyanathan and
Volos 2016; Vijay and Jena 2016; Fu et al 2019).
However, the limitation of the conventional SMC
controller for lumber drying can be found in the
study by Zhou and Wang (2018). A chatter in the
system phase locus can be noticed near the origin
point, which may stimulate unstable system dy-
namics, degrading the overall control perfor-
mance in real-time implementations.

In this study, a modified SMC, ie radical basis
function (RBF)–based sliding mode controller,
for lumber drying is proposed. A RBF network
is an artificial neural network that uses radial
basis function as activation functions. The output
of the network is a linear combination of radial
basis functions of the inputs and neuron pa-
rameters. RBF neural network is a universal
approximator (Cheng et al 2009), which has been
widely used to solve nonlinearities and uncer-
tainties for complex system (Cheng et al 2008;
Cheng et al 2010). Control parameters play a
crucial role for system stability and dynamic
performance of the switching function. RBF
neural network is concerned in approximating
the SMC output and compensating the distur-
bance. The switching function is considered as
the input of the RBF neural network in RBF-
SMC. To demonstrate the feasibility and validity
of the proposed strategy, numerical simulations

and experimental results has been carried out in
the study.

The remainder of this article is organized as fol-
lows. Section 2 builds the lumber drying model
and presents the RBF-SMC control scheme.
Section 3 illustrates the simulation results. Ex-
periment results are demonstrated in Section 4.
Finally, conclusions are derived in Section 5.

SLIDING MODE CONTROLLER DESIGN

Description of Lumber Drying Model

Modeling and control strategies for lumber drying
were widely shown in previous literature. An
extensive number of computing models have been
developed (Hasanand Langrish 2016; Berner et al
2017; Zadin et al 2015), which generally aimed at
explaining the physical phenomenon during dry-
ing, such as water migration, heat distribution, etc.
However, too many inputs exploited to build
theoretical models make it difficult to integrate
with real-time predictive control system. To
simplify the lumber drying model, mathematical
method such as artificial neural networks and
support vector machines have also been used to
build drying model because of their ability of
capturing nonlinearities (Ge and Chen 2014;
Nadian et al 2015). Because of the feasible pre-
dicting of the performance for lumber drying
process, the method of autoregressive model with
exogenous inputs (ARX) is used to describe the
system in this study. The ARX model specifies
that the output variables depend linearly on their
own previous values and are stochastic; thus, the
model is in the form of a stochastic difference
equation. A computational model of lumber dry-
ing process that integrated flexibility is presented.
Ignoring the constant velocity of air blowing
through the surface of the lumber sample, lumber
MC during drying mainly depends on the dry-bulb
temperature and EMC (Zadin et al 2015). Hence,
the MC and EMC were taken as outputs of the
control system. Because the dry-bulb temperature
and EMC are controlled by three valves, ie heater,
sprayer, and damper, installed in the drying kiln;
the opening degree of the three valves was taken as
input variables of the prediction model.
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The second-order ARX model built to describe
the lumber drying process is defined as follows:

yðtÞ¼ � a1yðt� 1Þ� a2yðt� 2Þ
þ b11u1ðt� 1Þþ b12u1ðt� 1Þ
þ b21u2ðt� 1Þþ b22u2ðt� 2Þ
þ b31u3ðt� 1Þþ b32u3ðt� 2Þ
þ vðtÞ; (1)

where, y(t), u(t), and v(t) are output, inputs, and
disturbance of the model, respectively. a1, a2, bmn
(m¼ 1…3, n¼ 1, 2) represent the coefficients for
the respective input variables.

Eq (1) can be rewritten in the matrix form as

yðtÞ¼wTðtÞθþ vðtÞ; (2)

where θ is the coefficient vector and wðtÞ is
the information matrices. θ is obtained using
RLS algorithm. Eq (2) can be simply written as
follows:

Yt ¼HtθþVt: (3)

The quadratic criterion function is defined using
least squares identification principle:

JðθÞ :¼VT
t Vt ¼ðYt �HtθÞTðYt �HtθÞ: (4)

According to the quadratic criterion function,
Eq (5), which is the RLS estimation of ARX
parameter vector θ is obtained. In the ARXwood-
drying process model, the initial value of P� 1ðtÞ
is P� 1ð0Þ¼Pl

0; $p
0 ¼ 106;

θ̂ðtÞ¼ θ̂ðt�1ÞþPðtÞwTðtÞ�yðtÞ�wTðtÞθ̂ðt�1Þ�;
P�1ðtÞ¼P�1ðt� 1ÞþwðtÞwTðtÞ;Pð0ÞþPl

0 > 0:

(5)

RBF-SMC Controller Design

Equivalent controller design. In this part,
a discrete-time sliding mode controller com-
bined with an RBF compensator is presented. The

second-order linear computational model built in
2.1 describing the dry-bulb temperature and EMC
for lumber drying is written as follows:

xðkþ 1Þ¼A1xðkÞþB1uðkÞ (6)

where

xðkÞ¼ �x1ðkÞ; x2ðkÞ�T:
Transform the discrete Eq (6) into discrete error-
state Eq (7), defined as follows:

xeðkþ 1Þ¼AexeðkÞþBeuðkÞþ f ðkÞ; (7)

where

f ðkÞ¼
� � rðkÞ�A12 _rðkÞþ rðkþ 1Þ

A22r
0ðkÞþ _rðkþ 1Þ

�
¼R1 �A1R;R¼ ½rðkÞdrðkÞ�T;

R1 ¼ ½rðkþ 1Þ drðkþ 1Þ�T:
Ae ¼A1;BeB1; xe ¼ ½eðkÞ deðkÞ�T:

Here, r(k) is position function, and its change rate
is dr(k); e(k) is error, and its change rate is de(k);
e(k) and de(k) are expressed as follows:

eðkÞ¼ rðkÞ� x1ðkÞ; deðkÞ¼ drðkÞ� x2ðkÞ: (8)

The switching function of sliding mode controller
is characterized as follows:

sðkÞ¼ ceðkÞþ deðkÞ¼CxeðkÞ; (9)

where C ¼ [c 1].

Using Eqs (7) and (9), we get

sðkþ1Þ¼Cxeðkþ 1Þ
¼CAexeðkÞþC½BeuðkÞþ f ðkÞ�: (10)

According to Eqs (9) and (10), the equivalent
controller is obtained:

ueqðkÞ¼ � ðCbÞ� 1½CðAe � IÞxeðkÞþCf ðkÞ�:
(11)
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RBF algorithm is adopted to improve the ro-
bustness of the system, the RBF-SMC control law
is designed as follows:

uðkÞ¼ ueqðkÞþ unðkÞ; (12)

where un(k) is the output of the RBF neural
network.

RBF controller design. The Gaussian func-
tion is given by

hj ¼ exp

 
�kX�Ck2

ab2j

!
; j¼ 1; 2/;m; (13)

where X¼ ½x1x2$$$xn�T is the network input, H¼
½h1h2$$$hj$$$hm�T is output of the network hidden
layer, Cj ¼ ½cj1$$$cjm�T and bj ¼ ½bj1$$$bjm�T are
the center vector and width vector of the jth neu-
ron in the RBF network, respectively, and m is the
number of hidden layer.

The weight vector yields

W ¼ �w1w2$$$wj$$$wm

�T
: (14)

The output of the RBF neural network is

unðkÞ¼w1h1 þw2h2 þ $$$þwmhm: (15)

The two inputs of the RBF network are

xnð1Þ¼ sðkÞ; (16)

xnð2Þ¼ sðkÞ� sðk� 1Þ: (17)

The RBF network learning index is defined in

EðkÞ¼ 1
2
s2ðkÞ: (18)

From Eqs (7) and (9), we can get

¶sðkÞ
¶unðkÞ¼Beð2Þ: (19)

The weight, the center vector, and the width
vector of the RBF network output are given by

Δwj ¼ � ¶EðkÞ
¶wj

¼ � sðkÞ ¶sðkÞ
¶unðkÞ

¶unðkÞ
¶wj

¼ � sðkÞBeð2Þhj; (19)

wjðkÞ¼wjðk� 1Þþ ηΔwj

þ α
�
wjðk� 1Þ�wjðk� 2Þ�; (20)

Δbj¼ � ¶EðkÞ
¶bj

¼ � sðkÞ ¶sðkÞ
¶unðkÞ

¶unðkÞ
¶bj

¼ � sðkÞBeð2Þwjhj

��xn �Cj

��
b3j

; (21)

Δcji ¼ � sðkÞ ¶sðkÞ
¶unðkÞ

¶unðkÞ
¶cji

¼ � sðkÞBeð2Þwj
xnj � cji

b2j
; (22)

cjiðkÞ¼ cjiðk� 1Þþ ηΔcji
þα
�
cjiðk� 1Þ� cjiðk� 1Þ�: (23)

Here, η is learning rate, α is inertia coefficient.

SIMULATION RESULT

In this section, the computer simulations are
conducted to validate the feasibility and effec-
tiveness of the proposed RBF-SMC strategy.
MATLAB® was used to simulate the control
curves of dry-bulb temperature and EMC of
lumber drying process. As the dry-bulb temper-
ature and EMC in each stage of the drying
schedule is different, the given position tracking
adopted step command. RBF-SMC controllers
with different key parameters were used to
control the system inmultiple experiments, which
are carried out in Figs 1-3. The simulation of
RBF-SMC controllers for dry-bulb temperature
and EMC are exhibited in Figs 4 and 5, which
were compared with the conventional SMC
method. In this case, three aspects of control
performance are considered, one was the re-
sponse time of reaching the set reference signal,
one was the overshoot of the control curve, and
the other involved the ability to track the set-
point.
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Figure 1 shows the results of the dry-bulb tem-
perature position tracking in the condition of
RBF-SMC control with c¼ 0.4, c¼ 0.9, and c¼
1.5 (η ¼ 0.1, α ¼ 0.5). As shown in Fig 1, the
response curve with c ¼ 0.4 has no overshoot,
and the adjusting time is the longest among the
three control responses. As regard to overshoot,
response time, and the stability of the system, the
parameters with c ¼ 0.9 and c ¼ 1.5 provides
better control performance than c ¼ 0.4. The
response time with c¼ 1.5 is shorter than c¼ 0.9;
however, the overshoot with c¼ 1.5 is larger than
c ¼ 0.9.

Figure 2 illustrates the simulation results of RBF-
SMC controllers for dry-bulb temperature with
η ¼ 0.1, η ¼ 0.8, and η ¼ 1.2 (c ¼ 0.9, α ¼ 0.5).

Among the three controllers, the controllers with
η ¼ 0.1 and η ¼ 1.2 achieve better dynamic
performance than the controller with η¼ 1.2. The
steady-state error is zero with η ¼ 0.1 and η ¼
1.2, an obvious chattering can be observed in the
early 180 s with η ¼ 0.8. The controller presents
the smallest overshoot with η ¼ 0.8 and largest
with η ¼ 1.2. The system response has a shortest
adjusting time with η ¼ 0.8 and longest with
η ¼ 0.1.

Figure 3 depicts the simulation results of dry-bulb
temperature controllers with α¼ 0.1, α¼ 0.5, and
α¼ 0.9 (c¼ 0.9, η¼ 0.1). It is manifested that the
response ability improved with the decrease of α;
the average stable time with α¼ 0.1 is the shortest
and α ¼ 0.9 is the longest. However, chatter

Figure 1. Simulation response of dry-bulb temperature with different c.

Figure 2. Simulation response of dry-bulb temperature with different η.

WOOD AND FIBER SCIENCE, JULY 2019, V. 51(3)304



occurs with the increased value of α, especially in
the early 180 s. The overshoot intends oppositely
to the response speed; the control curve with α ¼
0.9 has the smallest overshoot and α¼ 0.1 has the
largest. Figures 1-3 demonstrate that the proposed
method can precisely follow the reference signal.

Figures 4-5 demonstrate the simulation response
of dry-bulb temperature and EMC via RBF-SMC
method, which are compared with the tracking
performance of the conventional SMC algorithm.
The control parameters and indices of dry-bulb
temperature and EMC controllers are shown in

Tables 1 and 2, in which the response time and
overshoot are compared. As shown in Fig 4, the
RBF-SMC method leads to a more rapid tracking
response than SMC. The average overshoot of
RBF-SMC for the proposed method is 12.2%,
whereas that value for SMC is 48.13%. From Fig
5, there is no overshoot of SMC; the average
overshoot of RBF-SMC is 1.75%. The average
response times of RBF-SMC and SMC are 2.25 s
and 24 s, respectively. The results imply that the
RBF-SMC achieves a better dynamic perfor-
mance with a tolerant overshoot and fast response
than the SMC controller.

Figure 3. Simulation response of dry-bulb temperature with different α.

Figure 4. Simulation response of dry-bulb temperature.

Zhou and Wang—RBF-BASED SLIDING MODE CONTROLLER FOR LUMBER DRYING 305



EXPERIMENTAL RESULTS

In this section, experimental results are obtained
to test the performance of the proposed RBF-
SMC strategy, which is also compared with SMC
controllers. The experimental material was Jap-
anese cedar (Cryptomeria japonica D. Don); size
of the lumber sample was 2100 mm� 120 mm�
30 mm, the average initial MC was around 70%,
and the average density was about 0.334 g/cm3.
The whole drying experiment included two
stages, air-seasoning and kiln drying, and the
study focused on the control method for kiln
drying stage.

Dry-bulb temperature and EMC were the average
of the values measured by six temperature sensors
and six humidity sensors installed in the drying
kiln. Figure 6 shows the dry-bulb temperature and

MC curves via RBF-SMC compared with SMC.
The drying of the wood samples via RBF-SMC
and SMC, both starting with an initial dry-bulb
temperature with 40°C and finishing as 90°C,
took a total time of 46 h and 41 h, respectively,
which is also indicated in Table 3. As far as the
energy cost is concerned, the electricity con-
sumption adopting RBF-SMC controller had
59 kWh reduction compared with SMC. The
initial MC of SMC and RBF-SMC kiln drying
process were 13.84% and 13.47%. After the kiln
drying stage, the final MC of SMC and RBF-
SMC were found to be 7.28% and 6.66%,
respectively.

The specific indices of the MC are shown in
Table 3, in which drying time, average final MC
standard, mean square error (MSE) of MC, and
the quality standard are presented. According to

Figure 5. Simulation response of EMC.

Table 1. Control indices of dry-bulb temperature RBF-
SMC and SMC controllers.

Reference (°C)

Response time (s) Overshoot (%)

RBF-SMC SMC RBF-SMC SMC

10 7 11 23.3 92.1
20 7 11 11.7 46.3
30 7 11 7.8 30.9
40 7 11 5.8 23.2

Average 7 11 12.2 48.13

RBF, radical basis function; SMC, sliding mode control.

Table 2. Control indices of RBF-SMC and SMC controllers.

Reference (%)

Response time (s) Overshoot (%)

RBF-SMC SMC RBF-SMC SMC

3 2 24 3.3 —

6 2 24 1.7 —

9 2 24 1.1 —

12 3 24 0.9 —

Average 2.25 24 1.75 —

RBF, radical basis function; SMC, sliding mode control.
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China National Standards of Drying Quality of
Sawn Timber (GB/T6491-2012), the average
MC of RBF-SMC and SMC have achieved first-
class and second-class MC standard, re-
spectively. MSEs of MC are 0.32% and 0.20%
via SMC and RBF-SMC strategy, respectively;
both achieved the first-class MSE standard.
Statistics of MC deviation and residual stress of
the lumber samples are shown in Table 4. The
MC deviation and average residual stress of
the lumber sample drying in the condition of
SMC and RBF-SMC method achieve first-
class standard. Visible flaws, including sur-
face checks, internal checks, end checks, color
changing, and collapse, are shown in Table 5. The
drying process via SMC, surface checks, end
checks, and collapse were found in 2%, 2%, and
4% of the total samples, and internal checks and
color changing was not found. As for the drying
process used RBF-SMC, end checks and collapse
both occurred in 2% in the lumber samples, and

there was no surface checks, internal checks, and
color changing.

The indexes shown in Tables 3-5, which are
applied to evaluate the quality of lumber drying
process, indicated that the same (first) class was
achieved for both of RBF-SMC and SMC.
However, better results were obtained with RBF-
SMC algorithm, especially in terms of drying
time, energy consumption, and final MC.

CONCLUSIONS

Sliding mode control algorithm combined with
RBF neural network is demonstrated in this
lumber drying system study. The proposed
method is verified by simulation and experiment
results. Influence of RBF parameters on system
control behavior was examined. Dynamic and
steady-state performance with the proposed
control scheme was studied, which demonstrates
that the proposed method can precisely follow the

Figure 6. Dry-bulb temperature and MC curves of RBF-SMC and SMC controllers.

Table 3. Statistical results of MC.

Algorithm
Drying
time (h)

Average
final

MC (%)

Average
final MC
standard

MSE
(%)

MSE
standard

SMC 46 7.28 II 0.32 I
RBF-SMC 41 6.66 I 0.20 I

RBF, radical basis function; SMC, sliding mode control; MSE, mean square
error.

Table 4. MC deviation and residual stress of the lumber
samples.

Algorithm

Average MC
deviation

(%)

MC
deviation
standard

Average
residual
stress (%)

Average
residual
stress

standard

SMC 1.33 I 0.42 I
RBF-SMC 1.50 I 0.41 I

RBF, radical basis function; SMC, sliding mode control.
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reference signal. The optimal RBF parameters for
lumber drying system in this study was c ¼ 0.9,
η ¼ 0.1, and α¼ 0.5. The simulation comparison
between RBF-SMC and conventional SMC in-
dicates that the proposed method led to a more
accurate tracking result and faster convergence
than conventional SMC scheme. In field expe-
rience, the proposed technique had a better per-
formance with regard to the final MC, drying
time, and energy consumption, although the
drying quality was similar.
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