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Abstract. The modulus of elasticity (MOE) and modulus of rupture (MOR) of graded lumber populations
are commonly modeled by normal, lognormal, orWeibull distributions, but recent research has cast doubt on
the appropriateness of these models. Such modeling has implications for ultimate performance and effi-
ciency of resource use. It has been shown mathematically that the distribution of MOR in a graded
subpopulation does not have the same theoretical form as the full, ungraded (or “mill-run”) population from
which it was drawn; rather, its form is pseudo-truncated, exhibiting thinned tails. Although the phenomenon
of pseudo-truncation in graded populations has been well substantiated, the form of the underlying full
distribution—an essential factor in characterizing the distribution of the graded population—remains
unsettled. The objective of this study was to characterize the distributions of both MOE and MOR in four
diverse mill-run lumber populations to determine if and to what extent the distributions of strength and
stiffness in mill-run lumber are similar from mill to mill. The authors collected a mill-run sample of 200
southern pine 2 � 4 specimens from each of four sawmills, for a total of 800 test pieces. After measuring
MOE and MOR, they fit candidate distributions to those data by mill and evaluated each distribution for
goodness of fit. Results suggest that perhaps none of the traditional distributions of normal, lognormal, or
Weibull is adequate to model MOE or MOR across all four mills; rather, MOE and MOR in full lumber
populations might be better modeled by skew normal or mixed normal distributions.

Keywords: Full lumber population, mill run, modulus of elasticity, modulus of rupture, normal distri-
bution, Weibull, pseudo-truncated.
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INTRODUCTION

Modulus of elasticity (MOE) and modulus of
rupture (MOR) in graded structural lumber
populations are commonly modeled by normal,
lognormal, or Weibull distributions (Green and
Evans 1987; Evans et al 1997; ASTM 2017a,
2017b). Research by Verrill et al (2012, 2013,
2014, 2015) has cast doubt on the appropriateness
of these models. They noted that the distribu-
tional form of MOR in a graded lumber sub-
population depends on the MOR distribution of
the full (or “mill-run”) lumber population from
which it is drawn. They demonstrated mathe-
matically that the distribution ofMOR in a graded
subpopulation does not have the same theoretical
form as the distribution for the corresponding full,
ungraded population; rather, the subpopulation
form is pseudo-truncated, exhibiting thinned
tails. (For example, if the full population were a
two-parameter Weibull distribution, the graded
subpopulationwould be a pseudo-truncatedWeibull.)
They also presented empirical evidence (Verrill
et al 2013, 2014, 2019) that ignoring this pseudo-
truncation can yield reliability calculations that
seriously over- or underestimate the probability
of lumber failure in service.

Although Verrill et al (2012, 2013, 2014, 2015)
predicted and observed the phenomenon of
pseudo-truncation in graded subpopulations, the
exact form(s) of the underlying full distribution(s)—
an essential factor in characterizing the distributions
of the graded subpopulations—remains unsettled.
Using MOE as a grading variable, Verrill et al
(2012, 2015) derived a pseudo-truncated Weibull
distribution for the MOR of a graded lumber
subpopulation under the assumption that the
MOE distribution of a full lumber population is a
Gaussian (ie normal) and the MOR distribution
is a two-parameter Weibull. This assumption of
a Gaussian–Weibull bivariate distribution was
investigated by Verrill et al (2017) and Owens
et al (2018) on 200 mill-run specimens of
southern pine 2� 4 lumber sampled from a single
mill on a single day. Results of the goodness-of-
fit tests of this pilot study failed to support the
Gaussian–Weibull bivariate distribution hypoth-
esis. Whereas the MOE data were well fit by a

normal distribution, theMORdatawere notwell fit
by a two-parameter Weibull distribution; rather,
the MOR data were well fit by both a skew normal
distribution and a mixed normal distribution.

Because a definitive conclusion cannot be drawn
on the basis of a single sample, the authors ex-
panded this investigation by adding three sam-
plings of 200 pieces each from three newmills for
a total of 800 specimens, including the original
pilot sample of 200. If the distributional fits
among the four mills are similar, it might be
possible to identify a single appropriate form for
the pseudo-truncated distributions of the graded
subpopulations. For example, if MOE and MOR
for the mill-run populations are well fit by normal
and skew normal distributions, respectively, then
it might be appropriate to assume an underlying
Gaussian–skew normal bivariate distribution that
yields a pseudo-truncated skew normal distri-
bution on grading by MOE binning. If the fits
differ, it could suggest that mill-run distributions
differ from mill to mill, which would mean that
the associated pseudo-truncated distributions for
the corresponding graded lumber subpopulations
would also differ.

The objective of this study was to characterize the
distributions of both MOE and MOR in four
separate mill-run lumber populations to determine
if and to what extent the distributions of strength
and stiffness in mill-run lumber are similar from
mill to mill. If distributions of full lumber pop-
ulations can be more appropriately characterized
and ultimately generalized, it may be possible to
derive better models for graded lumber strength
distributions and, thus, improve and enhance ef-
ficiency, safety, and resource conservation.

MATERIALS AND METHODS

Sampling

Amill-run sample of 200 pieces of 2� 4 southern
pine (Pinus spp.) dimension lumber was acquired
from each of four large Mississippi sawmills for a
total of 800 specimens. Rough and kiln-dried, all
specimens measured approximately 1.7 � 3.7 in.
(4.32 � 9.40 cm). Their nominal length was 8 ft
(244 cm), with roughly 2.5 cm of overlength.
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The 200 specimens from the first mill (hereafter
referred to as “Mill 1”) were procured in the
summer of 2016 for a pilot study. The sampling
scheme is detailed in Owens et al (2018). Mill 1
produces 2 � 4 through 2 � 12 southern pine
dimension lumber. For the purposes of this study,
it was classified as a “full-complement mill” (ie a
mill that produces a full range of sizes).

Three new samplings of 200 pieces were con-
ducted in the summer of 2017, each from a
different sawmill, for a total of 600 additional
specimens. In an attempt to account for variability
among manufacturers, effort was made to sample
from mills with a range of production profiles
(Table 1). The second mill (hereafter “Mill 2”)
primarily procures small-diameter round wood
and manufactures a preponderance of 2 � 4
lumber. For the purposes of this study, it was
classified as a “small log mill.” Like the mill from
the pilot study, the third mill (hereafter “Mill 3”)
produces 2� 4 through 2� 12 lumber. It too was
classified as a “full-complement mill.” The fourth
mill (hereafter “Mill 4”) purchases relatively
large logs and saws few 2 � 4s. It was classified
as a “large log mill.”

At each sawmill, a kiln package was randomly
selected based on the weekly kiln output. The top
course of lumber was removed. Then, the sub-
sequent 200 pieces were collected sequentially
and designated as test specimens. Finally, the
remainder of the kiln package, along with its top
course, was returned to production. The test
specimens were removed from the production
line after kiln-drying, but before the planing and
grading stations. All materials were of sufficient
character to make it through the optimizing edger
and trimmer without breaking. Subject only to
this condition, the quality of the pieces was un-
restricted. That is, the pieces were drawn from the
full lumber population rather than from a single

grade. Each sampling of 200 pieces constituted a
mill-run lumber sample. Although the material
was not pulled in accord with a random sampling
scheme, we believe that the mechanical shuffling
of lumber before the unscrambler and the kiln
stacker randomized the pieces. It can be argued
that the material from a given mill represents a
random sample from several hours of a day’s
production from that mill.

The material was transported to Mississippi State
University where it was planed on all four sides to
final dressed dimensions of 1.5 � 3.5 in. (3.81 �
8.89 cm). Although the material was pulled from
production and tested as mill-run lumber, the
material was graded after planing by a Southern
Pine Inspection Bureau-certified inspector to
provide additional data for future analyses. A
visual grade was recorded for each piece. Each
board was labeled with a unique identification
number and premarked to indicate the random-
ized positioning of the specimen within the third-
point bending fixture used in destructive testing.
First, the positioning of the 59.5-in. (151.13 cm)
test span within the 8-ft long specimen was de-
termined by a randomly generated number and
marked on the top edge of each test piece. This
action ensured random placement of the maxi-
mum bending moment along the length of each
specimen. Then, the corresponding load head
positions were marked. Finally, the lumber was
stacked unwrapped outside on wooden saw
horses under a covered breezeway to protect it
from the elements, aid in moisture equalization,
and minimize further drying that is often asso-
ciated with interior storage.

Testing

The MOE and bending strength (MOR) of each
specimen were determined for subsequent

Table 1. Production profiles of each sawmill sampled.

Typical log size Primary lumber dimensions

Mill 1 (pilot mill) Full range (small to large) 2 � 4 through 2 � 12
Mill 2 Small diameter 2 � 4
Mill 3 Full range (small to large) 2 � 4 through 2 � 12
Mill 4 Large diameter Wide dimensions (few 2 � 4)
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analysis. Each specimen was subjected to both
nondestructive evaluation and a static bending
test. The nondestructive testing devices used were
fibre-gen’s Director HM2001 (hereafter Director)
and Metriguard’s E-computer Model 3402

(hereafter E-computer).

The Director is a handheld device that estimates
MOE by measuring the acoustic velocity (in feet
per second or meters per second) of a longitudinal
stress wave traveling through a specimen. For the
Director test, each specimen was supported in a
flatwise orientation by two sawhorses, thereby
allowing approximately 30 cm of specimen
overhang on each end. The device’s sensor was
held against one end of the specimen while a tap
was administered to the same end with a hammer.
The device generated an acoustic velocity output
in feet per second (subsequently converted to
meters per second) from which a dynamic MOE
value in pascals was calculated with the following
Eq 1, where E is the elasticity, ρ is the density,
and V is the acoustic velocity (Ross 2015). The
final value was converted to gigapascals and
recorded for subsequent analysis.

E¼ ρV2 (1)

The E-computer device estimates MOE by mea-
suring the transverse vibration of each piece. For
the E-computer test, each specimen was supported
near its ends by two metal tripods. One tripod is
topped with a transducer connected by a cord to a
laptop computer. The transducer measures the
transverse vibration of the test piece. All pieces
were tested in a flatwise orientation. The endswere
aligned with the tops of each tripod allowing for a
2.5-cm overhang at each end. The tripod measured
and recorded the weight. Oscillation was initiated
by lightly tapping each specimen near its mid-
length. The transducer sensed the vibration, and
the laptop generated a dynamic MOE output in
million pounds per square inch (subsequently
converted to gigapascals). The software calcu-
lates the elasticity value based on the following

Eq 2, where E is the MOE, f is the frequency of
the specimen’s vibration, W is the weight of the
specimen, S is the span, C is a constant, I is the
moment of inertia, and g is the acceleration due to
gravity (Ross 2015).

E¼ �
f 2WS3

��ðCIgÞ (2)

Each static bending test was performed on an
Instron universal testing machine as per the
flexure test method under ASTM D 198-15
(ASTM 2015) (Fig 1). The specimens were
loaded in an edgewise orientation. Although
third-point loading and a span-to-depth ratio of
17:1 were used (59.5 in., or 151.13 cm) (Fig 2),
the test pieces were not trimmed to this length.
Instead, the specimens were placed in the fixture
such that the randomly determined span bound-
aries and corresponding load head placement
markers lined up with the reaction supports and
load heads, respectively. Whatever overhang
there was on either end was allowed to remain as
per the ASTM guidance. The MC of each piece at
the time of testing was measured from its face
approximately halfway between the load head
markings with a Wagner L601-33 handheld
moisture meter. Before the zeroing of the ex-
tensometer (used to measure deflection), each
specimen was loaded with approximately
222.4 N (50 lbs.) to ensure proper placement and
seating of the load heads. The test was then
applied until full rupture. The average length of
time until rupture was approximately 5 min.

One lumber specimen from one of the mills had
been sawn with a large knot occupying almost the
entire width of the test piece at the midpoint. The
specimen broke during handling and could not be
tested. The piece was eliminated from the anal-
ysis by listwise deletion.

The testing resulted in four datasets for each mill:
MOE values from the static bending test (here-
after “static MOE”) in gigapascals, MOR values
from the static bending test in megapascals, MOE
values from the Director test (hereafter “Director

1 Fibre-gen Limited, Christchurch, New Zealand. www.
fibre-gen.com
2 Metriguard Inc., Pullman,Washington, USA. www.metriguard.
com

3 Wagner Electronic Products Inc., Rogue River, Oregon,
USA. www.wagnermeters.com
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E”) in gigapascals, and MOE values from the
E-computer test (hereafter “E-computer E”) in
gigapascals. Before analysis, all MOR and MOE
values for all datasets were adjusted as per ASTM
D 1990-16 (ASTM 2016) to make them com-
parable at a common 15% MC. The average MC
before adjustment was 12.8% (SD 1.56).

Statistical Methods

Distributions were fit to each of the four datasets
and evaluated for goodness of fit. Candidate
distributions were selected based on previous
research. Normal, lognormal, two-parameter
Weibull, and three-parameter Weibull appear
widely in the literature (Galligan et al 1986;
Green and Evans 1987; Evans et al 1997; ASTM
2017a, 2017b). Skew normal and mixed normal
distributions showed good fit in a previous study
by the current authors (Verrill et al 2017; Owens

et al 2018). The probability density functions of
the distributions are provided in the Appendix.
The normal and lognormal fits and the
Shapiro–Wilk tests of normality (and lognor-
mality) reported in this article were performed in
the R programming environment (R Core Team
2013) and made use of the nortest package (Gross
and Ligges 2015). The maximum likelihood fits
and goodness-of-fit tests for the other four dis-
tributions were performed primarily via Fortran
programs written by the authors. (See http://
www1.fpl.fs.fed.us/4mills.html for listings of
these programs.) The Cramér–von Mises and
Anderson–Darling goodness-of-fit tests for log-
normal and normal distributions were based on
Section 4.8 of D’Agostino and Stephens (1986).
The Cramér–von Mises and Anderson–Darling
goodness-of-fit tests for two-parameter Weibull
distributions were based on Sections 4.10 and
4.11 of D’Agostino and Stephens (1986). The
simulation-based Cramér–von Mises goodness-
of-fit p-values for the skew normal, mixed nor-
mal, and three-parameter Weibull distributions
were obtained via a “parametric bootstrap” (a
particular type of computer simulation). For the
two-parameter Weibull goodness-of-fit tests, we
also made use of the EWGoF package (Krit 2017)
in the R programming environment (R Core
Team 2013).

RESULTS

Probability plots and histograms for the 96 cases (4
mills� 4 variables � 6 distributions) can be found
at http://www1.fpl.fs.fed.us/4mills.plots.html. The
results of the goodness-of-fit tests for Mills 1-4
appear in Tables 2-5, respectively. Tables 2-5 are
further summarized in Table 6. For each of the four
properties (static MOE, E-computer E, Director E,
andMOR), Table 6 presents the number of mills for
which a distribution was rejected by a goodness-of-
fit test at a 0.05 significance level. This number can
range from 0 to 4. Low numbers for a distribution
suggest that it might be a good model for both
stiffness and strength at multiple mills. The Table 6
results indicate that skew normal and mixed normal
models perform relatively well, and, eg the two-
parameter Weibull model does not.

Figure 2. Third-point loading with a span-to-depth ratio of
17:1.

Figure 1. Static bending test setup as per ASTM D198-15.

Owens et al—DISTRIBUTIONS OF MOE AND MOR IN FOUR MILL-RUN LUMBER POPULATIONS 187

http://www1.fpl.fs.fed.us/4mills.html
http://www1.fpl.fs.fed.us/4mills.html
http://www1.fpl.fs.fed.us/4mills.plots.html


DISCUSSION

For all three measures of elasticity (static MOE,
E-computer E, and Director E), the normal distri-
bution yielded poor fits to themill-run data formills 2
through 4. Thus, these datasets suggest that an as-
sumption of a Gaussian (normal) mill-run MOE
distribution is not justified. If one were to rank the

distribution models from best to worst based on the
number of mills for which they provided a reasonable
fit (Table 6), they might be ordered as skew normal
and mixed normal (a tie); lognormal; three-parameter
Weibull; normal; and two-parameter Weibull.

For MOR, the two-parameter Weibull distribu-
tion seemed a poor fit for the mill-run data for

Table 2. Goodness-of-fit p-values for Mill 1 (full-complement pilot mill).

Property GOF test

Distribution

Normal Lognormal Two-par Weibull Three-par Weibull Skew normal Mixed normal

Static MOE Shapiro–Wilk 0.371 <0.001 — — — —

Cramér–von Mises 0.054 0.040 0.002 — — —

Anderson–Darling 0.095 0.015 0.006 — — —

CVM simulationa — — — 0.017 0.129 0.104
E-computer E Shapiro–Wilk 0.318 <0.001 — — — —

Cramér–von Mises 0.252 0.018 0.006 — — —

Anderson–Darling 0.202 0.011 0.003 — — —

CVM simulationa — — — 0.040 0.481 0.498
Director E Shapiro–Wilk 0.185 <0.001 — — — —

Cramér–von Mises 0.011 0.007 <0.001 — — —

Anderson–Darling 0.024 0.004 <0.001 — — —

CVM simulationa — — — 0.001 0.020 0.506
MOR Shapiro–Wilk 0.001 <0.001 — — — —

Cramér–von Mises <0.001 <0.001 <0.001 — — —

Anderson–Darling <0.001 <0.001 <0.001 — — —

CVM simulationa — — — 0.001 0.277 0.584
a In cases where critical values for the Cramér–von Mises test were not available in D’Agostino and Stephens (1986), they were determined by simulation.
N ¼ 200. Bold values indicate that a test failed to reject a distribution at a 0.05 significance level. GOF, goodness of fit; par, parameter; E-computer E, dynamic

MOE as tested with the E-computer device; Director E, dynamic MOE as tested with the Director HM200 device; CVM, Cramér–von Mises; “—,” the test was not
performed.

Table 3. Goodness-of-fit p-values for Mill 2 (small log mill).

Property GOF test

Distribution

Normal Lognormal Two-par Weibull Three-par Weibull Skew normal Mixed normal

Static MOE Shapiro–Wilk <0.001 0.350 — — — —

Cramér–von Mises <0.001 0.328 <0.001 — — —

Anderson–Darling <0.001 0.357 <0.001 — — —

CVM simulationa — — — 0.018 0.167 0.920
E-computer E Shapiro–Wilk <0.001 0.093 — — — —

Cramér–von Mises <0.001 0.250 <0.001 — — —

Anderson–Darling <0.001 0.196 <0.001 — — —

CVM simulationa — — — 0.030 0.098 0.436
Director E Shapiro–Wilk <0.001 0.013 — — — —

Cramér–von Mises <0.001 0.043 <0.001 — — —

Anderson–Darling <0.001 0.028 <0.001 — — —

CVM simulationa — — — 0.029 0.087 0.245
MOR Shapiro–Wilk <0.001 0.146 — — — —

Cramér–von Mises <0.001 0.311 0.001 — — —

Anderson–Darling <0.001 0.273 0.001 — — —

CVM simulationa — — — 0.108 0.567 0.598
a In cases where critical values for the Cramér–von Mises test were not available in D’Agostino and Stephens (1986), they were determined by simulation.
N ¼ 199. Bold values indicate that a test failed to reject a distribution at a 0.05 significance level. GOF, goodness of fit; par, parameter; E-computer E, dynamic

MOE as tested with the E-computer device; Director E, dynamic MOE as tested with the Director HM200 device; CVM, Cramér–von Mises; “—,” the test was not
performed.

WOOD AND FIBER SCIENCE, APRIL 2019, V. 51(2)188



all but one mill. At least in the case of these
datasets, it seems that the assumption that mill-
run MOR is distributed as a two-parameter
Weibull distribution is not justified. If one
were to rank the distribution models from best to
worst based on the number of mills for which
they seemed a reasonable fit (Table 6), they
might be ordered as skew normal; mixed normal;

normal and three-parameter Weibull (a tie); and
lognormal and two-parameter Weibull (a tie).

These results suggest that bivariate mill-run
MOE-MOR distributions are not Gaussian–
Weibulls, and, thus, the MOR distributions of
graded subpopulations are not pseudo-truncated
Weibulls. Instead, given the results from this

Table 4. Goodness-of-fit p-values for Mill 3 (full-complement mill).

Property GOF test

Distribution

Normal Lognormal Two-par Weibull Three-par Weibull Skew normal Mixed normal

Static MOE Shapiro–Wilk <0.001 0.392 — — — —

Cramér–von Mises <0.001 0.365 <0.001 — — —

Anderson–Darling <0.001 0.463 <0.001 — — —

CVM simulationa — — — 0.080 0.181 0.088
E-computer E Shapiro–Wilk <0.001 0.724 — — — —

Cramér–von Mises 0.008 0.997 <0.001 — — —

Anderson–Darling 0.002 0.976 <0.001 — — —

CVM simulationa — — — 0.469 0.942 0.764
Director E Shapiro–Wilk <0.001 0.597 — — — —

Cramér–von Mises <0.001 0.727 <0.001 — — —

Anderson–Darling <0.001 0.723 <0.001 — — —

CVM simulationa — — — 0.111 0.563 0.404
MOR Shapiro–Wilk 0.104 <0.001 — — — —

Cramér–von Mises 0.737 <0.001 0.784 — — —

Anderson–Darling 0.423 <0.001 0.770 — — —

CVM simulationa — — — 0.405 0.332 0.521
a In cases where critical values for the Cramér–von Mises test were not available in D’Agostino and Stephens (1986), they were determined by simulation.
N ¼ 200. Bold values indicate that a test failed to reject a distribution at a 0.05 significance level. GOF, goodness of fit; par, parameter; E-computer E, dynamic

MOE as tested with the E-computer device; Director E, dynamic MOE as tested with the Director HM200 device; CVM, Cramér–von Mises; “—,” the test was not
performed.

Table 5. Goodness-of-fit p-values for Mill 4 (large log mill).

Property GOF test

Distribution

Normal Lognormal Two-par Weibull Three-par Weibull Skew normal Mixed normal

Static MOE Shapiro–Wilk 0.024 0.217 — — — —

Cramér–von Mises 0.020 0.340 0.002 — — —

Anderson–Darling 0.023 0.419 0.002 — — —

CVM simulationa — — — 0.094 0.314 0.075
E-computer E Shapiro–Wilk <0.001 0.777 — — — —

Cramér–von Mises 0.003 0.846 <0.001 — — —

Anderson–Darling 0.001 0.706 <0.001 — — —

CVM simulationa — — — 0.272 0.766 0.306
Director E Shapiro–Wilk <0.001 0.621 — — — —

Cramér–von Mises 0.006 0.551 <0.001 — — —

Anderson–Darling 0.002 0.420 <0.001 — — —

CVM simulationa — — — 0.382 0.339 0.040
MOR Shapiro–Wilk 0.064 <0.001 — — — —

Cramér–von Mises 0.197 <0.001 0.019 — — —

Anderson–Darling 0.144 <0.001 0.030 — — —

CVM simulationa — — — 0.013 0.096 0.004
a In cases where critical values for the Cramér–von Mises test were not available in D’Agostino and Stephens (1986), they were determined by simulation.
N ¼ 200. Bold values indicate that a test failed to reject a distribution at a 0.05 significance level. GOF, goodness of fit; par, parameter; E-computer E, dynamic

MOE as tested with the E-computer device; Director E, dynamic MOE as tested with the Director HM200 device; CVM, Cramér–von Mises; “—,” the test was not
performed.
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mill-run study of four mills, one might speculate
that the underlying mill-run MOE and MOR dis-
tributions are skew normal or mixed normal, and
that the derived MOR distributions for graded
lumber subpopulations might be pseudo-truncated
skew normal or pseudo-truncated mixed normal.

The authors note, however, that skew normal dis-
tributions are theoretically constrained to have
skewnesses that lie between�1 and 1. In 3 of the 16
cases in this study (4 mills � 4 variables), sample
skewnesses were larger than 1. In 4 of the 16 cases
in this study (3 stiffness, 1MOR), the p-value of the
skew normal goodness-of-fit test was less than 0.10.
In 4 of the 16 cases in this study (3 stiffness, 1
MOR), the p-value of the mixed-normal goodness-
of-fit test was less than 0.10. Thus, one cannot be
fully confident that skew normal or mixed normal
distributions are always appropriate. The authors
note that Verrill et al (2018) conducted detailed
analyses of the Mill 1 (pilot mill) data that strongly
suggest that the mill-run stiffness–MOR data sets
can bewell modeled asmixtures of bivariate normal
distributions which would be in accord with sep-
arate univariate mixed normal models for mill-run
stiffness and MOR distributions.

The authors are currently engaged in analyzing new
data from the same fourmills. These datawere taken
in the “winter” rather than the “summer” so that the
stability of stiffness and strength distributions over
time could be investigated. Analyses of these new
data sets should help researchers gain (or lose)
additional confidence in pseudo-truncated skew
normal and pseudo-truncated mixed normal models
for the MOR distributions of grades of lumber.

CONCLUSION

The objective of this study was to investigate the
distributions of bothMOE andMOR in four diverse

mill-run lumber populations to determine if and to
what extent the distributions of MOR and MOE in
mill-run lumber are similar from mill to mill. The
authors collected a mill-run sample of 200 southern
pine 2 � 4 specimens from each of four sawmills,
for a total of 800 test pieces. After measuring MOR
and MOE, they fit candidate distributions to those
data by mill and evaluated each distribution for
goodness of fit. Results suggest that perhaps none
of the traditional distributions of normal, lognormal,
or Weibull is adequate to model mill-run MOE or
MOR across all four mills; rather, MOE and MOR
in full lumber populations might be better modeled
by skew normal or mixed normal distributions.
We are currently analyzing additional data to see
whether these models are stable over time.
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APPENDIX—PROBABILITY DENSITY FUNCTIONS

NORMAL DISTRIBUTION

The normal probability density function is
given by

f ðx; µ ; σÞ¼ 1ffiffiffiffiffi
2π

p 1
σ
exp

�
�ðx� µ Þ2

.�
2σ2

��

for x 2 (�‘, ‘), where µ is the mean and σ is the
standard deviation. This distribution is denoted
by the notation N (µ, σ2).

LOGNORMAL DISTRIBUTION

The lognormal probability density function is
given by

f ðx; µ ; σÞ
¼ 1ffiffiffiffiffi

2π
p 1

σ
1
x
exp

�
�ðlogðxÞ� µ Þ2

.�
2σ2

��

for x 2 (0, ‘), where µ is the mean and σ is the
standard deviation of the log of the original data.

SKEW NORMAL

The skew normal distribution has a probability
density function

f ðx; ξ;ω; αÞ¼ 2
ω
�f

�
x� ξ
ω

	
�Φ

�
α
�
x� ξ
ω

		

for x2 ð�‘;‘Þ; where w denotes the probability
density function of a standardized normal; Φ
denotes the cumulative distribution function of
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a standardized normal; and ξ;ω; and α are the
parameters of the skew normal.

MIXED NORMAL

In this article, a “mixed normal distribution”
refers to a mixture of two normal distributions.
Such a mixture results when specimens are drawn
with probability p from an N (µ1, σ12) distribution
and with probability 1-p from an N (µ2, σ22)
distribution. In this case, the probability density
function is given by

f ðx; µ 1; σ1; p; µ 2; σ2Þ
¼ p� 1ffiffiffiffiffi

2π
p 1

σ1
exp

�
�ðx�µ1Þ2

.�
2σ21

��

þð1� pÞ� 1ffiffiffiffiffi
2π

p 1
σ2

exp
�
�ðx�µ2Þ2

.�
2σ22

��

for x 2 (�‘, ‘).

TWO-PARAMETER WEIBULL

The two-parameter Weibull has a probability
density function

f ðw; γ; βÞ¼ γββwβ�1exp
�
�ðγwÞβ

�

for w2 ½0;‘Þ;where β is the shape parameter and
γ is the inverse of the scale parameter.

THREE-PARAMETER WEIBULL

The three-parameter Weibull has a probability
density function

f ðw; γ; β; cÞ¼ γββðw� cÞβ�1exp
�
�ðγðw� cÞÞβ

�

for w2 ½c;‘Þ;where β is the shape parameter, γ is
the inverse of the scale parameter, and c is the
location parameter.
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