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Abstract. Presented here are the results of statistical analysis of length distribution of defect-free areas
(DFA) of pine, beech, and oak blanks. The investigated empirical distributions of the lengths of defect-
free areas nearly always exhibit right-side asymmetry and “heavy tails,” with high coefficients of
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variation (30% � c � 110%). Therefore, the arithmetic mean of these lengths is not an appropriate
measure for description of any of the investigated samples, and to describe the dimensional and
qualitative characteristics of blanks, not only characteristics of location must be used, but also the
relative characteristics of the dispersion. It is proposed that rather than use estimates of variability, to
apply an assessment of stability—the value inverse to the squared coefficient of variation, which allows,
with minimal computational cost, to correctly compare the lengths of DFA obtained from different
lumber and in different operating conditions. It is shown that the distribution of lengths of DFA for pine,
oak, and beech blanks can be only described entirely by two theoretical distributions—the Burr and log
logistic, with different parameters for different wood species and various sizes of defect-free areas.

Keywords: Wood, blank, defect-free area, distribution fitting, descriptive statistics, modeling, production
process.

INTRODUCTION

Modeling of production processes and optimiza-
tion of their key operating parameters as constit-
uents of the concept of virtual manufacturing is
a vital approach to effective design of these
processes and their implementation in a pro-
duction environment. This approach is an al-
ternative to the traditional empirical methods of
designing production processes. The tradi-
tional methods require a considerable number
of physical experiments to validate the as-
sumptions and hypotheses; therefore, they are
a priori ineffective (Altintas 2015). Instead, the
implementation of the virtual production con-
cept provides an opportunity to simulate a large
number of options in a virtual environment and
choose the best one with less time and cost. The
effectiveness of virtual production primarily de-
pends on the adequacy and accuracy of the
adopted mathematical models of manufacturing
processes.

The development of statistical models of pro-
cesses in the wood products industry is espe-
cially relevant. Wiedenbeck (1992) was one of
the first to quantify the relationship between
lumber length and grade yield, and to demon-
strate the advantages as well as the shortcomings
of using empirical data for simulation purposes.
Buehlmann (1998) discussed the stochastic
nature of parameters of wood as a raw material,
and summarized the different types of statistical
models used to analyze log and lumber yield.
Lamb (2002) cited the distribution of lengths/
widths as affecting the yield from a cutting bill,
and that shortest length in the cutting controls

yield—the shorter the length, the higher the
yield from the same grade mix. Buehlmann et al
(2008) performed statistical analysis of empir-
ical cut up simulations demonstrating that cut-
ting bill requirements, defined by length of parts,
impacts yield. However, simulation of lumber
breakdown and yield in dimension mill pro-
cessing has traditionally been limited to em-
pirical data simulation of scanned defects and
their relationship to the size of the board (eg, see
Thomas and Buehlmann 2002; Weiss and
Thomas 2005).

Simulation modeling of production processes
requires information on the statistical charac-
teristics of the input flows and parameters.
Stochastic process control models have been
demonstrated to be effective in reducing lumber
drying time over empirically derived kiln
control schedules (Gattani et al 2005), and
discrete-event simulation has been used to
simulate processing flow and machine down-
time to improve throughput in the context of
lumber cutting variability (Ray et al 2007).
Such process variability can be represented
either in the form of empirical data models as

Table 1. Characteristics of the studied samples of defect-
free areas.

Wood species

Width of
blanks
h, mm

Technologically acceptable
minimum length of defect-free

areas xmin, m

The
sample
size

Softwood Pine 90 0.20 191
50 0.20 256
78 0.15 1057

Hardwood Oak 90 0.20 133
50 0.20 229

Beech 40 0.10 285
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cited in the previous paragraph, or analytically
in the form of theoretical distributions. In the
first case, the simulation model can only re-
produce the history of an actual case-studied
process. Lacking any published research in-
dicating theoretical distribution of defect-free
area, Ray et al (2007) attempted to improve on
the limitations of empirical simulation by using
randomly generated uniform distributions to
represent part production in a hardwood di-
mension mill. Their conclusions that cutting bill
variability impacted production cycle time,
work in process, and throughput were based
then, on theoretical distribution assumptions of
the simplest type; that distances between de-
fects (as represented by parts produced in the
simulation) could be represented accurately by
uniform random numbers across species and
sawing conditions.

To improve on these simplistic assumptions,
a methodology is needed to determine the best
theoretical distribution for the entire range of
possible cutting yields, allowing the simulation
of a specific range of input flow and parameters.

In dimension mill processing, it can be shown
that one of the most important parameters of the
input flow of blanks is the distribution of
lengths of defect-free areas (DFA). No pub-
lished work to date has identified the relevant
theoretical laws of these distances, which limits
the use of simulation to empirical modeling
when designing automated process flow.
Therefore, our work set out to improve this
situation, at least for pieces of lumber of var-
ious wood species obtained by through and
through (also known as plain sawn or crown
sawn) sawing methods and which are fed to the
line of optimized crosscutting. In most of the
prior research cited, defect parameters, such as
knot type, size, density, and location are the
objects of focus, because the processing algo-
rithms are focused on identifying these defects.
However, for simulation of defect-free pro-
duction rates it is the distance between these
defects that is of importance.

Figure 1. Lengths (x) of defect-free areas.

Table 2. Defect-free parts length descriptive statistics for
softwood.

Statistic

Statistic value for different width h

h ¼ 90 mm h ¼ 50 mm h ¼ 78 mm

Sample size 191 256 1057
Range, m 3.485 4.460 0.490
Median, m 0.445 0.542 0.360
Mean, m 0.576 1.017 0.365
Variance, m2 0.231 1.350 0.010
Standard deviation, m 0.480 1.162 0.102
Coefficient of variation 0.834 1.142 0.279
Standard error 0.035 0.073 0.003
Skewness 3.266 2.002 0.109
Excess kurtosis 14.131 2.856 �0.657

Table 3. Defect-free parts length empirical distribution for
softwood.

Percentile

Percentile value, m for different width h

h ¼ 90 mm h ¼ 50 mm h ¼ 78 mm

Minimum 0.205 0.210 0.150
5% 0.220 0.227 0.200
10% 0.237 0.260 0.230
25% (Q1) 0.290 0.355 0.290
50% (Median) 0.445 0.542 0.360
75% (Q3) 0.625 1.019 0.440
90% 1.076 3.005 0.510
95% 1.526 4.061 0.540
Max 3.690 4.670 0.640

Table 4. Defect-free parts length descriptive statistics for
hardwood.

Statistic

Statistic value for different width h

h ¼ 90 mm h ¼ 50 mm h ¼ 78 mm

Sample size 133 229 285
Range, m 3.814 3.81 4.377
Median, m 0.760 0.940 0.800
Mean, m 1.098 1.338 1.125
Variance, m2 0.826 1.129 0.824
Standard deviation 0.909 1.063 0.908
Coefficient of variation 0.827 0.794 0.807
Standard error 0.079 0.070 0.054
Skewness 1.223 0.886 1.167
Excess kurtosis 0.728 �0.435 0.762
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Since the biological patterns of tree growth and
crown shaping are common to trees of any
species, it is possible to hypothesize about the
possibility of describing the distances between
the knots and other biological defects (defect-
free area length) by some theoretical law of
distribution with different parameters for dif-
ferent species and different size of defect-free
areas. Unlike other studies (Sandberg and
Holmberg 1996; Sandberg and Johansson
2006; Eliasson and Kifetew 2009; Eliasson
2008; Fredriksson 2011, 2012), the aim of
this study was not to investigate the life cycle of
lumber “from forest to finished product”
(Sandberg and Johansson 2006). This research
effort focused on recording the actual length of
defect-free areas of the blanks, regardless of the
origin and characteristics of tree stem and logs
from which they were obtained. However, since
the amount of biological defects and distance
between them depends on the lumber pro-
cessing method (Sandberg and Johansson
2006), we restricted ourselves to the blanks
obtained by through and through sawing.

MATERIALS AND METHODS

Material

We used two groups of data in our study, com-
piled and summarized in Table 1. The first group
of data, consisting of four samples (two samples
for hardwood and two for softwood blanks of
different widths), contains information about
the virtual length of the DFA, obtained using
internally developed software for simulation

modeling of the process of lengthwise cutting
of boards (Matsyshyn et al 2012). The structure
and process of verification of this software is
described in detail in Matsyshyn et al 2012.

The second group of data consists of two real-
world samples of DFA lengths for pine and
beech blanks, obtained by lengthwise cutting
of boards. The data were obtained by the au-
thors at various factories in Ukraine by mea-
suring the length x of defect-free areas of
various widths h of standard dimension mill
blanks (see Fig 1). The measurements were
carried out after completing four-side milling
prior to crosscutting.

Methods

To choose a theoretical distribution law based
on visual analysis of the histogram of the
empirical distribution, the null statistical hy-
pothesis H0 is traditionally used to clarify the
possibility of application of a theoretical law
(Law 2006). In this technique, for the chosen
significance level α (mostly taken as α ¼ 0.05),
the null hypothesis is tested with one of the
statistical criteria, usually Pearson’s criterion,
because it accounts for the decrease in the
number of degrees of freedom through the
evaluation of the study sample distribution
parameters. If the value of the calculated cri-
terion does not exceed the critical one, there is
no reason to reject the null hypothesis; other-
wise, the null hypothesis is rejected and the
alternative one is accepted because the investigated
sample cannot be described by the previously
accepted law of distribution. The disadvantage

Table 5. Defect-free parts length empirical distribution for
hardwood.

Percentile

Percentile value m for different width h

h ¼ 90 mm h ¼ 50 mm h ¼ 78 mm

Min 0.206 0.210 0.103
5% 0.220 0.247 0.200
10% 0.260 0.291 0.246
25% (Q1) 0.357 0.462 0.415
50% (Median) 0.760 0.940 0.800
75% (Q3) 1.570 1.954 1.725
90% 2.533 3.100 2.480
95% 3.093 3.135 2.854
Max 4.020 4.020 4.480

Figure 2. Example of distributions fitted for pine blanks
(h ¼ 50 mm) defect-free parts length.
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of this procedure is the subjective nature of the
proposal of the null hypothesis, because it relies on
the researcher’s personal knowledge about pos-
sible theoretical laws of distribution; moreover,
graphical interpretation of the probability distri-
bution functions (PDFs) for different theoretical
distributions can be very similar and close.

Therefore, to avoid this drawback, we have used
a different technique, in which none of the known
laws of distribution is given preference during
formulation of the null hypothesis. Instead, a se-
ries of hypotheses are consistently tested for the
possibility of our data description by each of the
well-known continuous theoretical distributions,
then one or more are chosen from those among
which there is no reason to reject the null hy-
pothesis (at the specified significance level).
Moreover, the selection criterion here is not

“precision” of describing a specific sample (Law
2011), but only a formal reason not to reject the
null hypothesis at a given significance level, even
though Pearson’s criterion is relatively close to
the critical value.

For the practical implementation of this tech-
nique, there are several specialized programs
(Law 2011; Mathwave 2015), from which we
used the EasyFit software (Mathwave 2015).
The main feature of this software is a knowl-
edge base of almost all currently known theoretical
distributions of random variables (Mathwave
2015), which makes it possible to automatically
check the ability to describe data by all known
distributions.

Therefore, by using Pearson’s criterion (Law
2006), we check the possibility of describing
empirical distribution of DFA lengths for each

Figure 4. Distributions fitted for pine blanks defect-free parts length.

Figure 3. Example of distributions fitted for pine blanks (h ¼ 90 mm) defect-free parts length.

WOOD AND FIBER SCIENCE, OCTOBER 2017, V. 49(4)400



sample by each of the continuous theoretical
distributions. Excluded are obviously unsuit-
able distributions (eg, for which there is no
variance). As a result, for each nth (n ¼ 1, 2, ...
6) sample we obtain a set An consisting of one
or more theoretical distributions, the hypoth-
eses of which are not rejected at a significance
level α ¼ 0.05. To identify the type of distri-
bution suitable for describing all samples, we
form a new set A consisting of nonrejected
theoretical distributions as the intersection of
the sets of distributions suitable to describe
each individual sample:

A¼ A1 \ A2 \ A3 \ A4 \ A5 \ A6: (1)

This procedure has a clear graphical interpreta-
tion in the form of Venn diagram (Weisstein
2016), as will be shown in the following Re-
sults and Discussion section.

RESULTS AND DISCUSSION

Descriptive Statistics

Statistical characteristics of the empirical samples
of DFA lengths, obtained with the application of
the EasyFit software, are presented in Tables 2-5
for softwoods and hardwoods, respectively. As
can be seen from the tables mentioned and Figs
2-7, the investigated empirical distributions of the
lengths of defect-free areas typically (with one
large sample-size exception) exhibit right-side
asymmetry and “heavy tails,” with high co-
efficients of variation (30% � c � 110%). These
results are confirmed by known data on
the distribution of DFA lengths for pine blanks
of various methods of sawing in Sandberg
and Johansson (2006), providing us with ac-
ceptable theoretical possibilities for these pub-
lished empirical distributions. Unfortunately,
only qualitative comparison with the Sandberg

Figure 5. Example of distributions fitted for oak blanks (h ¼ 90 mm) defect-free parts length.

Figure 6. Example of distribution fitted for oak blanks (h ¼ 50 mm) defect-free parts length.
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and Johansson data is possible since it uses
symmetrical confidence intervals for clearly
asymmetric distributions. For example, the av-
erage length of DFAs in the previous work is
more than 120-mm long obtained by “square
sawn” method of 417 � 321 mm. However,
neglecting the asymmetry of the distribution
leads to the fact that the confidence interval
includes values which, in principle, do not exist
in the sample (417–321 ¼ 96). In addition, the
use of the term “arithmetic mean” itself in the
case of very asymmetric distributions (far from
normal) is incorrect; in such cases, median
values should be used.

A similar situation is observed in our case—the
arithmetic mean of DFA lengths is not an ap-
propriate measure for description of any of the
investigated samples, except, perhaps, for the
largest sample of DFA lengths of pine wood
blanks of width h ¼ 78 mm (Tables 1 and 3). To
describe the dimensional and qualitative char-
acteristics of blanks, not only characteristics of
location must be used, but also the relative

characteristics of the dispersion. Perhaps in the
case of a very large sample size, the normal (or
other stable) distribution will be a better fit, and
the arithmetic mean may be a more appropriate
estimator.

To avoid the calculation of asymmetric confi-
dence intervals, it is possible to move from es-
timates of the dispersion parameters variability to
inverse characteristics of stability (invariability).
This assessment can be, by analogy with the
Sharpe ratio (Sharpe 1992; Lo 2002; Loth 2016;
Pav 2016), the value inverse of the coefficient of
variation. Or, by analogy with the theory of
automatic lines (Dudyuk et al 1998), the nearest
large entire quantity inverse of the squared co-
efficient of variation (Table 6). Since the squared
coefficient of variation is a measure of dispersion,
variability, then it is logical to call the inverse to it
as a “stability coefficient” K:

Figure 7. Example of distribution fitted for beech blanks (h ¼ 40 mm) defect-free parts length.

Table 6. Estimate of variability and stability of DFA length.

Estimation

Softwood Hardwood

h, mm h, mm

90 50 78 90 50 40

s 0834 1142 0279 0827 0794 0807
1/s 1199 0876 3584 1209 1259 1239�
1/c2

�
2 1 13 2 2 2

DFA ¼ defect-free areas.

Table 7. Distribution fitted for defect-free area lengths of
softwood blanks.

Blank width h, mm Distribution

Chi-squared

x2 x2
0:05

50 Burr 11.710 15.507
Frechet (3P) 14.127
Log logistic (3P) 14.692

90 Log logistic 9.647 14.067
Lognormal 10.644
Weibull (3P) 11.095
Dagum (4P) 13.048

78 Burr 16.174 18.307
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K¼
�
1
c2

�
¼ �

1
��

S
�
�x2
��¼

�
�x2

S

�
(2)

where c is the coefficient of variation, S is the
variance, x is arithmetic mean, and d$e is the nearest
large integer value.

This newly defined metric K makes it particularly
easy to compare the results obtained for sawn
timber of different origin, with different di-
mensional and qualitative characteristics, obtained
by different methods of sawing or of different
wood species. For example, in our case, one may
state that the average length of DFA obtained from
pine blanks of width 78 mm (Table 2) is less than
from blanks of any other width, but it is sub-
stantially more stable (by 13 times) than from
blanks of width 50 and 90 mm (Table 6). This is
attributable to a significantly smaller range of the

sample variation, which is due to the fact that the
blanks were cut out of very low-quality lumber
that did not have long defect-free areas.

Distribution Identification

Here we deliberately avoid the term “distri-
bution fitting” because our goal is not to find
the theoretical distribution that “best” de-
scribes specific empirical data, but to identify
the type of distribution that is equally suitable
for all data studied. The procedure of selection
of the theoretical distributions for each sample,
as mentioned earlier, is no more than a tool to
establish one or two types of suitable theo-
retical distributions. Following the above-
described methods, let us test the hypotheses
for the possibility of describing our data by
every known theoretical distribution. Partial
results are shown graphically in Figs 2-7.

The results are summarized in Tables 7-9, where
x2 is the calculated value of the Pearson’s cri-
terion, and x2

0:05 is the critical value of criterion
for significance level α¼ 0.05. It should be noted
that even in the case of a very large sample with
a small deviation (the lengths of DFA for pine
blanks of width 78 mm), a normal distribution

Table 8. Verification of statistical hypothesis about the
possibility of describing pine blanks defect-free area length
using normal distribution.

Deg. of freedom 10

Statistic (x2) 40787
P-Value 12306E-5

α 0,2 0,1 0,05 0,02 0,01
Critical Value x2

α 13442 15987 18307 21161 23209
Reject? Yes Yes Yes Yes Yes

Table 9. Distribution of defect-free area lengths fitted for hardwood blanks.

h, mm Distribution

Chi-squared

h, mm

Chi-squared

x2 x2
0;05 Distribution x2 x2

0;05

90 Exponential 3.8423 14067 50 Gamma (3P) 11.18 14.067
Johnson SB 4.7514 Log logistic (3P) 13.297
Loglogistic (3P) 6.3441 Lognormal (3P) 13.768
Pearson 6 (4P) 6.5463 40 Fatigue Life 10.5 15.507
Gen. Gamma (4P) 6.6763 Johnson SB 10.973
Lognormal (3P) 6.7614 Fatigue Life (3P) 10.992
Pearson 5 (3P) 8.0596 Dagum 12.52
Frechet (3P) 8.6369 Lognormal (3P) 13.729
Dagum 8.7995 Log logistic (3P) 13.823
Gamma 8.9089 Frechet (3P) 13.98
Gen. Gamma 9.6765 Inv. Gaussian (3P) 14.018
Gen. Extreme Value 11.357 Burr (4P) 14.227
Burr 11.59 Weibull (3P) 14.23
Frechet 11.743 Pearson 6 (4P) 14.792
Lognormal 12.825 Pearson 5 14.801
Erlang (3P) 13.544 Gamma (3P) 14.809
Exponential (2P) 13.545 Gen. Gamma (4P) 15.298
Log logistic 13.558 Pert 15.339
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(Fig 4) cannot be applied, since the calculated
value of Pearson’s criterion is higher than critical
for any level of significance (Table 8).

Thus (Tables 7 and 9), we can detect many
“suitable” theoretical distributions for each
sample. On finding the intersection of these sets,
it is possible to detect the distributions that are
suitable for all, or at least for most of the samples.

This procedure is graphically represented in Fig 8
in the form of a Venn diagram.

As can be seen from the Venn diagram (Fig 8), the
log-logistic distribution and the Burr distribution
(Tadikamalla 1980; Lindsay at al 1996; Al-Dayian
1999; Gove et al 2008) are always at the in-
tersection of all (both hardwood and softwood)
sets, that is why it is these distributions that should
be used for theoretical description of DFA lengths.
Moreover, where possible, preference should be
given to the log-logistic distribution, since its
parameters explicitly include minimum length of
DFA. Since analytical inverse functions are known
for both types of distributions (Mathwave 2015),
these distributions are easy to apply for the needs
of simulation modelers of crosscutting lumber into
defect-free areas.

PDF of these distributions are summarized
in Table 10 and distribution parameters in
Table 11.

CONCLUSIONS

Large variability in the lengths of defect-free
areas of blanks and different conditions of pro-
duction of blanks from various species of wood
perhaps make it impossible to uniquely specify
only one theoretical distribution law. But the
distribution of lengths of DFA for pine, oak, and
beech blanks can be only described entirely by
two theoretical distributions—the Burr and log
logistic, with different parameters for different
wood species and various sizes of defect-free
areas as determined in this study and provided
in Table 11.

For the average numerical characteristic of
DFA lengths, it is preferable to use the median

Table 10. Distributions of defect-free area length.

Distribution Parameters Probability density function, f(x)

Log logistic α: shape parameter (α > 0) α
β

	
x� γ
β


α� 1	
11

	
x� γ
β


α
� 2

β: scale parameter (β > 0)ss
γ: location parameter; γ � x < 1‘

Burr k: shape parameter (k > 0) αk
�x� γ

β

�α� 1

β
�
11

�x� γ
β

�α�k1 1α: shape parameter (α > 0)
β: scale parameter (β > 0)
γ: location parameter; γ � x <1‘

Figure 8. Venn diagram for distributions of defect-free area
lengths.
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value and “stability coefficient” of length (the
reciprocal to the squared coefficient of variation).
This will enable one to correctly compare sam-
ples obtained at different enterprises and from
different wood species, to evaluate the perfor-
mance of lines of the optimization crosscutting
and predict the structure (uniformity) of the al-
ready finished glued boards. The identified type
and distribution parameters for defect-free areas
are used (Matsyshyn et al 2014) for simulation
modeling and optimization of lumber crosscut-
ting operations.

Further research may be associated with pa-
rameterization of theoretical distributions of
DFA in terms of recording analytical expres-
sions for the density and distribution functions
directly through the dimensional characteris-
tics of DFA. It is obvious that the results ob-
tained here still cannot be extended to all
possible choices of the random distribution of
the lengths of defect-free areas, so the col-
lection and analysis of experimental data about
the lengths of DFA blanks from other species
of wood and blanks obtained by other methods
of cutting should be continued. In addition,
since the research concerned small sample
sizes, further studies of the behavior of DFA
length distributions with increasing samples
are needed.
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