HYDROGEN BONDING IN WOOD-BASED MATERIALS: AN UPDATE

D. J. Gardner*t

Professor of Forest Operations, Bioproducts and Bioenergy
E-mail: douglasg@maine.edu

M. Tajvidit

Assistant Professor

School of Forest Resources
Advanced Structures and Composites Center
Forest Bioproducts Research Institute

University of Maine

Orono, ME 04469
E-mail: mehdi.tajvidi@maine.edu

(Received November 2015)

Abstract. The contribution of hydrogen bonding to wood science and technology has been well recog-
nized over the past century. The hydrogen bond is an important chemical characteristic contributing to
wood-based material behavior and it also provides an important contribution to processing features
of wood. However, the current understanding of hydrogen bond strength as a contributor to wood-based
material behavior has not been updated in the wood literature. Wood-based material literature typically
report hydrogen bond strengths ranging from 12.6 to 25.2 kJ/mol (3-6 kcal/mol) while newer data from
the general chemistry field report hydrogen bond strengths up to 189 kJ/mol (45 kcal/mol), which are
characteristic of covalent bond strength. In light of these new data regarding hydrogen bond strengths, it
provides impetus to discuss the new understanding of hydrogen bond strength relative to wood-based
material behavior. Recent developments in nanotechnology of renewable materials leading to the produc-
tion and applications of cellulose nanomaterials with much higher surface areas and hydrogen bonding

capacity also mandate revisiting our knowledge of the hydrogen bonding mechanism and strength.
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INTRODUCTION

The role of hydrogen bonding in wood-based
materials has been long recognized, and as such
is a fundamental topic of discussion relative to
their material property characteristics including
cell wall architecture, interactions among cell
wall chemical components, and especially wood-
water relations (Stamm 1964; Panshin and
DeZeeuw 1980; Skaar 1988). The hydroxyl func-
tional group that is contained in the primary cell
wall chemical components (cellulose, hemicellu-
lose, and lignin) as well as a range of secondary
components (extractives) plays a major role in
the hydrogen bonding behavior of wood-based
materials. Hydrogen bonding among wood cell
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wall components and/or water contributes to
wood strength (Winandy and Rowell 1984),
viscoelastic behavior (Kelly et al 1987), adhesion
(Gardner et al 2008; Gardner et al 2014) as well
as processing characteristics of wood (papermak-
ing, preservation, machining, drying, etc.) (FPL
2010). The historical view of hydrogen bond
strength in materials like wood and cellulose
describes hydrogen bond strength as relatively
low energy (Bochek and Petropavlovsky 1993).
Recent evidence supports that hydrogen bond
strengths can be considerably larger than earlier
believed and approach the bond strength of
covalent bonds (Gilli and Gilli 2009). With this
in mind, it is the purpose of this paper to explore
the current understanding of hydrogen bonding
from both theoretical and experimental stand
points and how these relate to wood-based mate-
rials properties and behavior. It should be pointed
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out that the concepts being presented here rela-
tive to hydrogen bonding in wood may not be
universally accepted and may also be considered
somewhat controversial. However, it is hoped
that the concepts presented in this paper will spur
a healthy dialog among wood scientists in aug-
menting our basic understanding of wood cell
wall behavior.

Hydrogen Bond Definition

“The hydrogen bond is an attractive interaction
between a hydrogen atom from a molecule or a
molecular fragment X-H in which X is more
electronegative than H, and an atom or a group
of atoms in the same or a different molecule,
in which there is evidence of bond formation.
A typical hydrogen bond may be depicted as
X-H---Y-Z, where the three dots denote the
bond. X-H represents the hydrogen bond donor.
The acceptor may be an atom or an anion Y, or a
fragment or a molecule Y-Z, where Y is bonded
to Z. In some cases, X and Y are the same.
In more specific cases, X and Y are the same
and X-H and Y-H distances are the same as
well leading to symmetric hydrogen bonds.
In any event, the acceptor is an electron-rich
region such as, but not limited to, a lone pair of
Y or m-bonded pair of Y-Z. The evidence for
hydrogen bond formation may be experimental
or theoretical, or ideally, a combination of both”
(Arunan et al 2011).

In wood, X-H---Y-Z can be represented by
O-H---O-C for interactions between hydroxyl
groups of one chemical component and the
hydroxyl of another chemical component or water
or between two molecules of the same component.
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Current State of the Art regarding Hydrogen
Bond Strength

Recent references from the chemical literature
define hydrogen bonds in to three types: weak,
moderate, and strong (Table 1) (Steiner 2002;
Parthasarathi et al 2006; Gilli and Gilli 2009).
The weak hydrogen bond exhibits characteris-
tics of electrostatic bond behavior and bond
energy of 4.2-16.8 kJ/mol (1-4 kcal/mol), the
moderate hydrogen bond exhibits characteristics
of both electrostatic and covalent bond behav-
ior with bond energies ranging from 16.8 to
63 kJ/mol (4-15 kcal/mol), and the strong
hydrogen bond exhibits mostly covalent bond
behavior and bond strengths ranging from 63 to
189 kJ/mol (15-45 kcal/mol).Hydrogen bonds
feature binding energies and contact distances
that do not simply depend on the donor and
acceptor nature. Rather the hydrogen bonding
chemical context can lead to large variations
even for the same donor-acceptor molecules.
Hydrogen bonds vary in bond length and hydro-
gen bond strength increases with increase in elec-
tron density and decreased bond distance (Fig 1).
For comparison purposes, the bond strength
of various types of chemical bonds and inter-
molecular forces are listed in Table 2. As such,
the strong hydrogen bond strength overlaps with
the bond strength of covalent bonds. As will be
discussed later, the hydrogen bond strength for
cellulose fibril bonding has been experimentally
shown to fall in the moderate range.

Hydrogen Bond Strength for Isolated
Wood Components

Considerable research effort has focused on the
material property behavior of individual wood

Table 1. Some properties of weak, moderate, and strong hydrogen bonds (H-bond).*

H-bond Weak H-bond Moderate H-bond Strong H-bond
D-H:--:A bond Electrostatic Electrostatic covalent Mostly covalent
Bond lengths (nm) 0.22-0.4 0.15-0.32 0.12-0.25
D-H-A angle (°) 90-150 130-180 165-180
Bond energy, Eyp (kcal/mol) 1-4 4-15 15-45
Bond energy, Eyp (kJ/mol) 4.2-16.8 16.8-63 63-189

* Adapted from Table 2.4 (Gilli and Gilli 2009).
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Figure 1.
et al 2006).

chemical components to ascertain the material
properties of wood. Analytical techniques to
study hydrogen bonding include Fourier trans-
form IR spectroscopy (FTIR), carbon 13 nuclear
magnetic resonance spectroscopy (C-13 NMR),
as well as molecular modeling. Indirect methods
to study the impact of hydrogen bonding include
X-ray diffraction (XRD), swelling studies in
various solvents with different hydrogen bond-
ing character, thermal analysis methods like
dynamic mechanical analysis, and differential
scanning calorimetry.

Because of its importance to wood-based material
behavior, cellulose has received much attention.
The hydrogen bonding that occurs among cellu-
lose molecules is depicted in Fig 2 (O’Sullivan
1997). A common view of hydrogen bond strength
behavior in cellulose suggests that the energy of
hydrogen bonds in cellulose is up to 25.0 kJ/mol

Hydrogen bond energy as a function of functional group electron density. Adapted from Figure 1 (Parthasarathi

and because the energy of hydrogen bonds in
water ranges from 18.0 to 21.0 kJ/mol, cellulose
is insoluble in aqueous media (Bochek and
Kalyuzhnaya 2002). In highly crystalline cellu-
lose, it is necessary to break both intermolecular
hydrogen bonds and most intramolecular hydro-
gen bonds to dissolve cellulose and each cello-
biose unit will have a pair of hydrogen bonds
between them in the repeating cellulose chains or
a moderate hydrogen bond strength of 50 kJ/mol
(12 kcal/mol) for each cellobiose unit (Bochek and
Petropavlovsky 1993). A recent review discussing
proposed mechanisms for cellulose microfibril
coalescence in chemical pulp fibers during chem-
ical treatments summarizes the debate surround-
ing this topic relative to hydrogen bonding (Ponni
et al 2012). The creation of irreversible hydrogen
bonds between hydroxyl groups among cellulose
microfibrils has been surmised going back 50 yr

Table 2. Bond strength of various types of chemical bonds and intermolecular forces.*

Chemical bond or intermolecular force

Bond strength (kcal/mol) Bond strength (kJ/mol) Bond length
Electrostatic (ionic) 100 418 0.1-1 um
Lifshitz-van der Waals 2-5 8.4-21 0.5-1.0 nm
Covalent bonding 35-150 147-628 0.1-0.2 nm
Hydrogen bonding (new)” 1-45 4.2-188 0.15-0.45 nm
Hydrogen bonding (old) 3-6 12.6-25.1 0.1-0.3 nm

* Adapted from Gardner et al 2014.
® Adapted from Gilli and Gilli 2009.
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Figure 2. Hydrogen bonding pattern for cellulose I.
Adapted from O’Sullivan (1997).

although the scientific basis has never been
fully elaborated (Ponni et al 2012).

The organized structure of repeated hydrogen
bonding within crystalline regions may be
sufficient to account for the irreversible hydro-
gen bonding in cellulose. Indeed, irreversible
hydrogen bonds are evident in crystalline cellulose
especially characteristic of cellulose nanocrystals
(CNC) isolated from wood pulp during the acid
hydrolysis process. Certain drying conditions for
cellulose either in the pulp fiber form or the nano-
scale fiber form like CNC can lead to the forma-
tion of “hornified” pulp fibers or agglomerated
CNC particles that exhibit the well-known charac-
teristic of irreversible hydrogen bonding (Higgins
and McKenzie 1963; Peng et al 2012). The irre-
versible hydrogen bonds in cellulose are difficult
to disrupt through chemical, mechanical, and
thermal means. Bond accessibility is important in
breaking chemical bonds but bond strength is
as important.

Because of the hydrogen bonding that occurs
among cellulose chains and the propensity to
form highly crystalline structure, cellulose has a
subtle glass transition temperature behavior as
determined by differential scanning calorimetry
(Szczesniak et al 2008). In essence, cellulose
behaves like a thermosetting polymer because
of the strong hydrogen bonding cross-links and
this supports the long-known thermal degrada-
tion and crystallinity characteristics of cellulose
(Peng et al 2013). Cellulose does not exhibit
substantial softening behavior prior to thermal
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degradation and cellulose isolated from wood
can exhibit crystallinity up to 80% on the nano-
scale. Recent molecular modeling work using ab
initio calculations has documented theoretical
hydrogen bond strength between paired cellu-
lose chains with a degree of polymerization of
7 at 202 kJ/mol (48 kcal/mol) (Qian 2008). From
the molecular modeling simulations, the cumula-
tive cooperative hydrogen bonding energy in a
paired cellulose chain is much larger than the
corresponding isolated cellulose chain. The coop-
erative hydrogen bonding energy is significant
and offers convincing evidence as to the recalci-
trant nature of crystalline cellulose to chemical
hydrolysis or solubilization and supports the
long-known observations concerning the thermal
properties and strength behavior of cellulose.

Theoretical measurements of hydrogen bond
strength in lignin and hemicellulose are not cur-
rently available but there are studies examining
hydrogen bonding behavior of isolated lignin and
hemicelluloses as well as model compound and
composite studies. Model compound studies on
lignin indicate stronger hydrogen bonding in
the aliphatic side chain hydroxyl groups as com-
pared with phenolic groups and softwood lignin
appears to have greater intensity of hydrogen
bonding than hardwood lignin (Kubo and Kadla
2005). During the drying of nanofibrillated
pulp composites, the presence of hemicelluloses
impedes the formation of irreversible hydrogen
bonds between nanofibrils by physically inhibit-
ing their direct contact facilitating mechanical
defibrillation (Iwamoto et al 2008). Lignin and
hemicellulose exhibit more amorphous character
than cellulose and this has been well documented
in studies that examined the solubility behavior
and swelling behavior as well as viscoelastic
behavior of wood (Kelly et al 1987; Mantanis
et al 1994a, 1994b; Hansen and Bjorkman 1998).
Lignin and hemicellulose display definite glass
transition temperatures and they are strongly
influenced by solvents that have similar solubility
parameters as water. Both hemicellulose and
especially lignin influence the hygrothermal soft-
ening of wood, which is a characteristic property
of wood and is used in wood material processing,
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Figure 3. Main-valence chains going through more than
one micella. Adapted from Mark (1940).

eg, thermomechanical pulping and steaming logs
prior to veneer cutting.

Cell Wall Models

Models of the cell wall architecture have been
around since the middle of the last century with
the description of the fibrillary structure of cel-
lulose by Mark (1940) (Fig 3). Model descrip-
tions of the cell wall have been refined with
improvements in analytical instrumentation over
the years from the electron microscopic studies
during the 1950s and 1960s (Cote 1967) up to
the present with applications of atomic force
microscopy and nanoindentation (Wimmer and
Lucas 1997; Zimmermann et al 2006). The nano-
structure of cellulose microfibrils in wood is
fairly well described (Fernandes et al 2011).
Applications of genetics and genomics have been
important tools in providing a better understand-
ing of the formation and growth of the plant cell
wall (Mellerowicz et al 2001; Cosgrove 2005).
Model refinements have allowed the study of
topics including: wood cell wall mechanical
behavior (Saavedra Flores et al 2011), reaction
wood (Barnett and Bonham 2004), swelling
behavior during drying (Yamamoto et al 2001),
adhesion measurements (Gustafsson et al 2012),
and degradation behavior based on lignin chem-
istry (Grabber 2005).

Do We Need to Augment Our Interpretation
of Wood Cell Wall Molecular Structure
and Behavior?

If one considers that hydrogen bond strength
within and among cell wall chemical compo-
nents may indeed be much larger than previ-
ously thought, do we need to augment our
interpretation of wood cell wall molecular struc-
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ture and behavior? The organizational hierarchy
of polymers within the cell wall is relatively
well understood from the nanoscale through the
macroscale (Fig 4). Based on the premise of
stronger hydrogen bonds, it is proposed that the
cellulose molecules contained within the ele-
mentary fibrils can now be considered a cross-
linked polymer structure within the crystalline
regions and an agglomeration of linear mole-
cules within the amorphous regions. Within the
fibril-matrix structure length scale of the cell
wall layers, the wood cell polymers could be
considered as a network of highly cross-linked
cellulose fibrils that are interdispersed with a
partially cross-linked lignin-hemicellulose com-
plex (Lawoko et al 2005). As such, the fibril-
matrix structure of wood on the nanolength scale
meets the definition of an interpenetrating poly-
mer network (IPN) (Sperling 2012).

The IUPAC defines an IPN as “A polymer com-
prising two or more networks which are at least
partially interlaced on a molecular scale but not
covalently bonded to each other and cannot be
separated unless chemical bonds are broken.” A
more detailed description of IPNs can be found
in Sperling 2012. With the above description,
the wood cell molecular architecture fits the
specific definition of a “sequential interpen-
etrating polymer network: which is an Inter-
penetrating polymer network prepared by a
process in which the second component network
is formed following the formation of the first
component network.” Since lignification in the
secondary cell wall of wood occurs after the
secondary cell wall is formed, the definition of a
sequential IPN is very compelling for the inter-
pretation of cell wall molecular structure, and was
described as such by Funaoka et al (1995). A
recent model depicting the wood polymer assem-
bly during the secondary wall formation also sup-
ports this interpretation (Fig 5) (Ruel et al 2006).

Contribution of Hydrogen Bonding to
Adhesion in Wood-Based Composites

Studying the theories or mechanisms responsi-
ble for wood adhesion is an important aspect of
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wood science and technology research. It is
anticipated that improvements in the under-
standing of wood adhesion mechanisms have
the potential to result in better adhesive systems
and more efficient and effective processing
methods for the wide array of wood and wood-
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Figure 5. Proposed schematic representation of polymer
assembly during the secondary wall formation. Adapted
from Ruel et al (2006).

BN :
Figure 4. Schematic of wood hierarchal structure. Adapted from Moon et al (2006).
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based composite materials. For wood adhesive
bonding, studying adhesion theories requires an
understanding of wood material characteristics,
surface science, and the interactions between
adhesives and wood surfaces. At present, no
practical unifying theory describing all adhesive
bonds exists, although a unified adhesion theory
has been proposed. Chung (1991) proposed an
approach to consolidate adhesion theories related
to chemical bonding/intermolecular forces into
one coherent concept. The maximum attractive
force between two molecules is derived from
the Lennard-Jones potential function and calcu-
lated with measured bond length and bond
energy. Two criteria are required for strong
adhesion: intimate molecular contact of closer
than 0.9 nm (necessary condition) and maxi-
mum attractive force with minimum potential
energy (sufficient condition). Hydrogen bonds
meet the criteria of intimate molecular contact
and maximum attractive force (Table 2) and
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can be therefore assumed to contribute much to
the adhesion strength.

The state-of-the-art categorizes adhesion theo-
ries or mechanisms in seven models or areas
as follows:

Mechanical interlocking theory

Electronic or electrostatic theory

Adsorption (thermodynamic) or wetting theory
Diffusion theory

Chemical (covalent) bonding theory
Acid-base theory

Theory of weak boundary layers

NN AE PN =

These adhesion theories have been used to
describe wood adhesion behavior (Gardner et al
2014), and several of the theories (chemical
bonding theory and acid-base theory) can incor-
porate hydrogen bonding in describing adhesion
behavior. A chemical or covalent bond is a bond
where two atoms share an electron pair and is
believed to improve the bond durability between
wood and an adhesive. Recent research in wood-
adhesive covalent bonding focused on poly-
meric isocyanate (PMDI)-based adhesives, since
they are most likely to form urethane (or carba-
mate) bonds with wood polymers and are shown
to penetrate the wood cell wall and intimately
associate with wood molecules (Wendler and
Frazier 1996; Marcinko et al 1998). It is very
unlikely that covalent bonds form in any signif-
icant amount under conditions characteristic of
thermosetting wood adhesive applications, even
though the formation of covalent resin-substrate
bonds has been demonstrated to exist. Hydrogen
bonds that were shown earlier to approach the
strength of covalent bonds are very likely to
dominate the chemical bonding character of
wood adhesive bonds.

According to Fowkes (1983) and van Oss et al
(1987), the total work of adhesion in interfacial
interaction between solids and liquids can be
expressed as the sum of the Lifshitz-van der
Waals (LW) and the Lewis acid-base (AB) inter-
actions, viz.

W, = WY e (1
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where W, is the total work of adhesion and W-W
and W2B are work of adhesion Lifshitz-van der
Waals and the Lewis acid-base, respectively.

Hydrogen bonding is considered an important
subset of the acid-base component contribution.
The separation of the work of adhesion into LW
and AB components is also applicable to the
surface free energies as demonstrated in

%= R (2)

The acid-base theory plays a critical role in sur-
face chemistry and adhesion and it has been
exploited broadly on different materials (Mittal
and Anderson 1991; Mittal 2000). Several models
of calculating the surface energy of solids
have been proposed where acid-base theory is
applied, including Fowkes’s method, Good’s
method, van Oss’s method, and Chang’s method
(Etzler 2013). For chemically heterogeneous
materials like wood, the acid-base approach is a
valuable method because it can provide the most
detailed information about the surface chemistry
including the values of Lifshitz-van der Waals
(dispersion) and Lewis acid-base (polar) compo-
nents of surface free energy (Gardner 1996).
Extractives are the dominant factor influencing
the acid-base properties of wood (Walinder and
Gardner 2002). Wood surfaces with extractives
exhibit less acidic (electron-accepting) character
and greater basic (electron-donating) character
and the Lifshitz-van der Waals (dispersion)
surface free energy component increases after
removal of extractives from wood (Walinder
and Gardner 2000).

Most adhesives used to bond wood have strong
hydrogen bonding functionalities (Pizzi 2015).
The common exterior adhesives used in wood
composite production include phenol-formalde-
hyde (PF), and polymeric methylene diphenyl
diisocyanate (pMDI). Both PF and pMDI have
functional groups that will hydrogen bond with
the hydroxyl groups present in wood. Interior
adhesives including urea-formaldehyde (UF),
protein adhesives, and poly vinyl acetate all
have functional groups capable of hydrogen
bonding formation. It is suggested that the
hydrogen bond may significantly contribute to
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the chemical bonding adhesion mechanism in
wood-based materials.

Contribution of Hydrogen Bonding to the
Swelling and Dissolution of Wood

It is well known that chemical bonds indeed
need to be broken to separate the wood cell wall
polymers. Strong acids or bases used in pulping
and ionic liquids can disrupt the bonds among
wood polymers. The swelling of wood and
cellulose is reported to be well correlated with
hydrogen bonding capacity of the swelling liquid
(Bochek and Petropavlovsky 1993; Mantanis
et al 1994a, 1994b). However, recent studies on
the dissolution of cellulose emphasize the role of
cellulose charge and concomitant ion entropy
effects as well as hydrophobic interactions hav-
ing the largest effect on cellulose dissolution
(Lindman et al 2010; Medronho et al 2012;
Medronho and Lindman 2014). The authors of
these more recent papers did not consider the
newer findings regarding hydrogen bond strength
as they reported hydrogen bond strengths of only
21-24 kJ/mol (5.0-5.7 kcal/mol). This suggests
that solvent behavior in disrupting hydrogen
bonds as an important part of swelling and/or
dissolution of wood can be more comprehen-
sively explained with an expanded consideration
of hydrogen bond strength.

Importance of Hydrogen Bonding in
Nanocellulose Production and
Cellulose Nanocomposites

Recent developments in nanotechnology of
renewable materials leading to the production
and applications of cellulose nanomaterials with
much higher surface areas and hydrogen bond-
ing capacity also mandate revisiting our knowl-
edge of hydrogen bonding mechanism and
strength. The aqueous counter collision (ACC)
technique for the production of cellulose nano-
fibrils (CNFs) developed by Kondo et al (2008)
is in fact based on the fact that high-energy
water jets can disrupt hydrogen bonding within
cellulose structure to split microfibrils into their
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nanoscale components. Details on the process
are found in Kondo et al (2014) but briefly
high-pressure (around 200 MPa) jets of a water
suspension containing a cellulose suspension
collide at an angle to generate enough energy to
break up cellulose fibrils. It is claimed that the
ACC process can only disrupt weak hydrogen
bonds and van der Waals forces up to about
14 kJ/mol, thereby producing amphiphilic CNFs
(Kondo 2016).

Nanocellulose films are of much interest now-
adays because they provide an alternative renew-
able substrate for printed electronics and food
packaging. The exceptional strength and barrier
properties of microfibrillated cellulose films are
attributed to hydrogen bonding (Syverud and
Stenius 2009). In all-cellulose magnetic nano-
composites produced through partial dissolution
by ionic liquids such as 1-butyl-3-methylimi-
dazolium chloride (BMIMCI), the tensile strength
of the nanocomposites was shown to be directly
related to the hydrogen bonding index calculated
from FTIR spectra (Mashkour et al 2014).
Because BMIMCI mainly dissolves cellulose
by breaking down the hydrogen bonds, partial
dissolution might decrease the diameters of the
cellulosic fibrous components more than it does
to their lengths leading to anisotropic shrinkage
reported by Mashkour et al 2014. Finally, obser-
vations made by the authors while developing
new applications for CNFs as binder in adhesive-
free particleboard panels show that hydrogen
bonding between CNF and wood particles plays
an important role in the dewatering of the com-
posite mat making it possible to remove a con-
siderable amount of water by a simple dewatering
step from an otherwise tenaciously water con-
taining CNF (Tajvidi et al 2016).

CONCLUSIONS

As the fundamental understanding of hydrogen
bonding has evolved over the past several
decades with hydrogen bond strength comparing
favorably with covalent bonds, the diffusion of
this knowledge into the material science arena
especially lignocellulosic materials is helping
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scientists to better describe the material behav-
ior of wood. The contribution of greater bond
strength of the hydrogen bond in lignocellulosic
materials provides an additional piece of the
puzzle to an improved understanding of wood
cell wall behavior and can augment the interpre-
tation of wood’s chemical, mechanical, and
physical properties; viscoelastic behavior; adhe-
sion; and the development of novel materials as
well as the processing characteristics.
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