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Abstract. Thermogravimetric analysis was used to study the thermal behavior of Acacia mangium
wood under inert atmosphere at heating rates ranging from 5 to 15�C min�1, from room temperature to

800�C. Weight losses of A. mangium wood in inert atmosphere were found to occur in three stages. These

three states are generally associated with the decomposition of the three main components of the ligno-

cellulosic materials. Most decomposition occurred in the range of 300-400�C (80% weight approximately).

The kinetic parameters of the process were evaluated using the independent parallel reaction model,

attributed to the three main components of lignocellulosic materials: hemicelluloses, cellulose, and

lignin. The values of activation energy, preexponential factor, and contribution factor were similar to

those reported in other studies for this type of biomass. The model proposed predicted an acceptable

correlation between the experimental and the calculated curve to the decomposition of A. mangium, with
an error of less than 3% of deviation in the temperature range studied.
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INTRODUCTION

The forest products industry generates residues
in the form of some of the most socially and
environmentally beneficial biomass resources.
Energy crops, harvested solely for their energy
content, present additional fuel resources with
total biomass energy potential. As long as forest
products industries grow new plants at a rate
greater than or equal to the harvest rate and
thereby produce residues and energy crops
in a sustained manner, no increase in atmo-
spheric CO2 is associated with their use as a fuel
(McKendry 2002).

Biomass is currently a promising renewable
energy and is potentially neutral in relation to
global warming. Plant materials can be used
with thermochemical conversion processes aimed
at the production of fuel gases, chemicals, and
energy (Senelwa and Sims 1999).

In its strategy for 2020, Cuba’s forest policy
takes into account the use of tools for new forest
plantations, including using fast-growing spe-
cies for energy purposes on 500 kha, allowing
the area to raise forest cover from 21% to 29%,
which means moving from 2.4 to 3.08 Mha of
forest (Herrero 2010).

The development of tropical tree plantations has
been on the rise in recent decades, presumably
to meet the ever-increasing demands for timber
and firewood. A wide spectrum of tree species,
usually described as multipurpose trees (MPT),
is often involved in such programs. Important
attributes of MPT include rapid juvenile growth,
efficient dry matter production in terms of water
and nutrient inputs, crown characteristics to maxi-
mize interception of solar radiation, and ease of
regeneration by coppicing (Fege 1981).

Among the fast-growing species is Acacia
mangium, introduced in Cuba, which may be
a promising species for energy production. This
species has been planted extensively in the
humid tropics of southeast Asia because of its
fast growth in a wide range of sites, including
degraded land, and acceptable quality of wood
for pulp and paper (Turnbull et al 1988). This

plant would be a possible alternative to wood
for short rotation forestry.

During recent decades, extensive research has
been carried out in the field of biomass pyrol-
ysis. Thermal decomposition of the major con-
stituents (cellulose, hemicellulose, and lignin)
has been extensively studied (Szabó et al 1996;
Caballero et al 1997; Meszaros et al 2004; Abreu
Naranjo et al 2012). The weight loss was gen-
erally attributed to moisture loss, hemicelluloses
and cellulose decomposition, and lignin decom-
position during the slow pyrolysis of lignocellu-
lose materials in inert atmosphere (Jeguirim and
Trouvé 2009). Other investigations on thermal
decomposition of the basic constituents of wood
have reported that there were temperature inter-
vals at which the decomposition of the single
constituent was dominant (Gronli et al 2002).
According to results, thermal decomposition
of these chief components took place in the
following temperature intervals: at T < 230�C,
the decomposition of the hemicelluloses domi-
nated; at 230�C < T < 260�C, the hemicellu-
loses as well as the cellulose were decomposed;
at 230�C < T < 290�C, the dominant decomposi-
tion corresponded to the cellulose; and at T >
290�C, the cellulose, as well as the lignin, was
decomposed. However, the decomposition range
can vary according to the nature of material,
experimental heating rate, and other factors
(Meszaros et al 2004; Branca et al 2005).

Thermal decomposition reactions play a crucial
role during several of the biomass utilization
processes. Thermogravimetric analysis (TGA) is
a high-precision method for the study of pyrol-
ysis under well-defined conditions in the kinetic
regime. It has been widely used to characterize
forest residues. It can provide information about
the partial processes and reaction kinetics. The
biomass fuels and raw materials contain a wide
variety of pyrolysate species (Bridgwater 2003;
Czernik and Bridgwater 2004).

Acacia mangium has great potential as an energy
crop because it is a fast-growing species that does
not require annual reseeding and agricultural
inputs. It can grow in poor soils and low fertility.
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However, for the development of technically
and economically feasible systems for the con-
version of A. mangium by thermochemical pro-
cesses, it is fundamental that knowledge of
the kinetic behavior be obtained. In general,
the design of pyrolysis units depends on the
residence times required for complete conversion
of biomass particle feed. The residence time is, in
its turn, the result of heat, mass, and momentum
transfer and solid degradation rate in the reacting
environment. Of course, this can be predicted
only if the chemical kinetics are known (Di Blasi
and Lanzetta 1997).

The purpose of this study was to investigate
the thermal behavior of A. mangium, includ-
ing a kinetic approach by means of thermo-
gravimetric measurements and determination
of kinetic parameters.

MATERIALS AND METHODS

Equipment and Procedures

The samples were obtained from a short rotation
forestry plantation in Pinar del Rı́o, Cuba. The
samples originated from young A. mangium and
were milled to an average size of 2.36-0.04 mm
in accordance with ASTM (2007b).

Proximate and ultimate analyses were carried
out to characterize the samples of A. mangium.
These were done by the methods described by
the appropriate standards (Table 1).

Lignin (Klason lignin) and cellulose contents
were determined according to Kürshener and
Höffer methods (Browning 1967). Thermo-
gravimetric analyses were carried out with a
thermo balance (TGA-TA Instruments 2050, New

Castle, DE). These analyses were carried out at
heating rates of 5, 10, and 15�C min�1 under
argon flux of 100 mL min�1 from room tempera-
ture to about 800�C. Mass of the initial samples
was approximately 8 mg. A small mass was used
to decrease the heat and mass transfer effects, in
the kinetic control (Branca et al 2002).

Kinetic Model for Pyrolysis

Determining the kinetics of biomass thermal
decomposition is difficult because of the large
number of reactions involved. Therefore, sim-
plified kinetic models are generally applied. In
this study, the pyrolysis process is described
by a three independent parallel reaction model.
This is considered the most realistic approach
in the case of lignocellulosic materials (Orfão
et al 1999; Caballero and Conesa 2005). Accord-
ing to this model, the decomposition of biomass
is associated with its chief pseudo-components,
hemicellulose, cellulose, and lignin (Caballero
et al 1997; Várhegyi et al 1997; Orfão et al
1999; Gronli et al 2002). In this way, the
following scheme was assumed to model the
kinetic parameters:

Fi ® (1� si)Vi þ siSii ¼ 1,2,3 ð1Þ
where Fi represents different fractions or pseudo-
components of the solid material, Vi are vola-
tile and condensable gases released in the
corresponding reactions (i ¼ 1-3), and Si is
charcoal formed from the decomposition of
each Fi (i ¼ 13).

With respect to an nth order kinetic decomposi-
tion, the equation for the pyrolysis can be stated
as follows:

� dwsi

dt
¼ kiw

ni
si

ð2Þ

or

dVi

dt
¼ ki Vi1 � Við Þni ð3Þ

Weight loss can be expressed as the ratio
wf

wo(weight fraction).

Table 1. Standards used for determining the parameter in the

proximate and ultimate analyses of Acacia mangium samples.

Standard Parameter

ASTM-E1757-01 (2007b) Preparation of biomass

ASTM-E777 (2006a) Carbon and hydrogen

ASTM-E778 (2006b) Nitrogen

ASTM-E871-82 (2006c) Moisture

ASTM-D1102-84 (2007a) Ash

ASTM-E872-82 (2006d) Volatile matter
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To the kinetic constant, the Arrhenius equation
is applied as follows:

Ki ¼ Kio exp � Ei

RT

� �
i ¼ 1,2,3 ð4Þ

Replacing 4 into 2 and expressed as a function
of temperature gives the following:

dwi

dT
¼ �Kio

b
exp�

Ei
RT wni

i ð5Þ

Integrating,

f (W,T) ¼ Wi(To þ�T)

¼ Wi(To)��T
Kio

b
exp�

Ei
RT wni

i ð6Þ

The kinetic model was simultaneously adjusted
using data at the three heating rates, which were
studied under dynamic conditions to decrease
compensation in the estimation of kinetic param-
eters. The calculated values were obtained from
Eq 6, by applying an integral method or numeri-
cal method, specifically the integration method
Runge–Kutta 4th order (Caballero and Conesa
2005). The time intervals considered were small
for the error to be negligible.

The Solver function in Excel was used to mini-
mize the difference between experimental and
calculated curves. The minimized objective func-
tion is expressed as

O:F ¼
X
j

X
i

dw

dt

� �
exp

� dw

dt

� �
cal

 !

max
dw

dx

� �
j exp

2
66664

3
77775

2

ð7Þ

where i represents the experimental data in time t

to the heating rate j and the values of
dw

dt

� �
exp

and
dw

dt

� �
cal

are the derivatives with respect to

experimental and calculated weight loss, respec-
tively. The denominator in Eq 7 is the maximum
experimental value of each heating rate and is
considered to minimize the differences in the
optimization process (Gullón et al 2004; Moltó
et al 2009).

The deviation between the experimental and cal-
culated curve is defined in correspondence to
previous studies (Gronli et al 2002; Branca et al
2005; Abreu Naranjo et al 2012).

fitð%Þ ¼

ffiffiffiffiffiffiffi
S
�
N

s

max
dw

dtj

� �
exp

� 100 ð8Þ

S ¼
X
j¼1,N

dw

dtj

� �
exp

� dw

dtj

� �
cal

" #2
ð9Þ

where N is number of experimental points or
measures.

RESULTS AND DISCUSSION

Chemical–Physical Characterization

of A. mangium Wood

The volatile matter, fixed carbon, and ash
content values obtained from the elementary
analysis for the studied species (Table 2) were
similar to those reported for Dichrostachys
cinerea (77.3%, 19.4%, and 3.4%), Leucaena
leucocephala (79.9%, 17.7%, and 2.4%), and
Lysiloma latisiliqum (77.8%, 20.7%, and 1.5%),
although that of ash content was lower in
A. mangium compared with the three species
cited (Suárez et al 2000; AbreuNaranjo et al 2010).

Nevertheless, a marked similarity was found
with the values reported by Gronli et al (2002)
to the redwood sample, with volatile matter and
fixed carbon contents of 82.3% and 17.5%,
respectively, but not the same result for the
ash content of 0.2%, which is lower that the
obtained for the A. mangium samples. Also,

Table 2. Proximate and ultimate analyses of Acacia
mangium.

Ultimate
analyses Mass (%)

Proximate
analyses Mass (%)

C 45.45 � 0.24 Moisture 3.78 � 0.16

H 6.30 � 0.08 Ash 0.97 � 0.05

N 0.23 � 0.01 Volatiles 82.43 � 0.38

Oa 48.26 � 0.34 Fixed Carbon 17.57 � 0.40
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the wood composition varied depending on the
species, and even within the same species, it
can vary according to habitat, age, soil, and
location in the tree (trunk, branches, and roots)
(Pereira 1988). Proximate and ultimate analy-
ses and the chemical composition values of the
main components are summarized in Table 2.

With respect to the polysaccharide content, cel-
lulose yielded the highest percentage, followed
by xylans (which has been used as a represen-
tative of hemicellulosic materials) (Bilbao et al
1989). A smaller proportion correspond to
arabinans (a pentose that occurs as one of the
sugar units in some hemicelluloses), which con-

stitute 15-35% of the weight of most woods.
They include several components such as xylose
and mannose (which are the prevalent monomers
for hardwoods and softwoods, respectively), glu-
cose, galactose, arabinose, and other polysac-
charides (Di Blasi and Lanzetta 1997). Similar
values have been reported by other researchers
for hardwoods (Carballo et al [2004] in Corymbia
citriodora and Orea et al [2004] in Eucalyptus
saligna and Eucalyptus pellita). The lignin con-
tent was also within the ranges reported by these
researchers for hardwood (Table 3).

Thermogravimetric Analyses of

A. mangium Sawdust

Figure 1 shows the mass loss and the derivative
of mass loss curves obtained during the pyro-
lysis of A. mangium under inert atmosphere at
a heating rate of 5-15�C min�1. According to
Fig 1, the pyrolysis curve of A. mangium fol-
lows the usual shape for lignocellulose mate-
rials (Orfão et al 1999). As for biomass, its
thermal degradation can be divided into three
stages: moisture drying, main devolatilization, and
continuous slight devolatilization. Initial weight
loss of the A. mangium sample was caused by a

Table 3. Chemical composition of the main components

of the Acacia mangium wood.

Polysaccharides (%) Cellulose 44.05 � 0.3

Xylans 14.05 � 0.07

Galactans 0.55 � 0.07

Mannans 1.30 � 0.14

Arabinans 0.25 � 0.07

Lignins (%) Insoluble 28.25 � 0.21

Soluble 1.45 � 0.07

Total 29.70 � 0.14

Extractable substances¼ ([alcohol:toluene 1:2],

[alcohol] y [hot water])

4.45 � 0.07

Figure 1. Thermal analysis of Acacia mangium heated (a) 5�C min�1, (b) 10�C min�1, and (c) 15�C min�1.
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loss of moisture starting at about 30�C and
continuing up to about 130�C. Similar results
were obtained by Angelini et al (2009) and
Jeguirim and Trouvé (2009). The A. mangium
samples started to decompose and release vola-
tiles at about 200�C. The thermogravimetric
curves of the sample clearly showed changes
in the slope of the curves. This behavior of
dynamic decomposition for this type of mate-
rial is principally attributed to the three main
pseudo-components of the lignocellulosic mate-
rial (hemicellulose, cellulose, and lignin) as
explained in previous studies (Orfão et al
1999; Manyà et al 2002). Most decomposition
occurred in the range of 300-400�C (approxi-
mately 80 wt %). The first peak was attrib-
uted to the decomposition of hemicellulose
and the second to that of cellulose. Lignin is
characterized by a wide range of decomposi-
tion throughout the process, because of the
great complexity of the molecule in relation to
the other constituents of the biomass (Meszaros
et al 2004; Di Blasi 2008). Also, lignin decom-
position started, spanned a wide temperature
interval, and was overlapped by decomposition
of the other components. But lignin decomposi-
tion is essentially a predominant step at higher
temperatures at which it is characterized by its
low devolatilization rates. This was explained in
previous studies (Gronli et al 2002; Meszaros
et al 2004).

The process of biomass decomposition occurs
in three basic parts, which is in line with previ-
ous results for this kind of lignocellulosic mate-
rial (Gronli et al 2002; Meszaros et al 2004;
Jeguirim and Trouvé 2009) (Fig 1).

Several studies for modeling and determining
kinetic parameters for various lignocellulosic
materials were published in the last decade.
Theywere generally based on a kinetic mechanism

of three parallel reactions associated with the
three main pseudo-components, hemicellulose,
cellulose, and lignin (Orfão et al 1999; Gronli
et al 2002; Meszaros et al 2004; Di Blasi 2008;
Mahanta et al 2009). The inclusion of various
heating rates in the kinetic analysis of biomass
devolatilization is important from both theoreti-
cal and practical points of view. The evaluation
of multiple curves was proposed by Caballero
and Conesa (2005) to avoid the compensation
effect of the parameters.

The kinetic parameters are summarized in
Table 4. Values of activation energy for the
three fractions were less than the ranges reported
in the literature: 80-116 kJ mol�1 for hemicel-
lulose, 180-286 kJ mol�1 for cellulose, and
18-65 kJ mol�1 for the lignin (Gronli et al 2002;
Meszaros et al 2004; Mahanta et al 2009). The
contribution factor of each component as well as
the correlation factor are summarized in Table 5.

The values of the component contribution cal-
culated as a percentage of the total mass fraction
agree with the ranges reported in the litera-
ture: 20-30% for hemicelluloses and 28-38% to
10-15% for cellulose and lignin for this type of
lignocellulosic material (Di Blasi 2008). The
proportions of these constituents and the pres-
ence of inorganic ions can cause the characteris-
tics of decomposition to vary from one species
to another, even within the same species (Gronli
et al 2002; Meszaros et al 2004; Várhegyi et al
2004). Another influencing factor is the heating
rate at which the experiments were carried out
(Branca et al 2005). Figure 2 shows the experi-
mental and calculated curves of the biomass
decomposition at 10�C min�1. It also shows the
evolution of the curves for each of the separate
fractions by model and kinetic parameters esti-
mated in the study. The simulated evolution for

Table 4. Pyrolysis kinetic parameters of Acacia mangium.

Fraction k0/min�1 E/kJ mol�1

Hemicellulose 4.70 � 105 79.04

Cellulose 1.02 � 1015 181.59

Lignin 14.55 30.80

Table 5. Parameters estimated for the main components

at the heating rates studied.

Heating rate/�C min�1

Contribution factor of each component

Fit (%)Hemicellulose Cellulose Lignin

5 0.18 0.42 0.23 2.31

10 0.25 0.41 0.14 2.30

15 0.27 0.36 0.17 2.31
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the hemicellulose, cellulose, and lignin agreed
with studies for these components separately
(Varhegyi et al 1989; Antal and Varhegyi
1995). A good correlation between the experi-
mental curves and those simulated by the model
is shown in Fig 2.

CONCLUSIONS

The thermograms show that the pyrolysis process
of A. mangium highlights three areas of decay,
mainly associated with its three main compo-
nents: hemicellulose, cellulose, and lignin.

The proposed model predicts the curves of bio-
mass pyrolysis of A. mangium with a deviation
of less than 3% between calculated and experi-
mental curves at the heating rates studied. This
confirms that the process of pyrolysis of lig-
nocellulosic materials can be explained by a
kinetic mechanism of three independent parallel
reactions. The values of the calculated kinetic
parameters, (activation energy, preexponential
factor, and contribution factor for each of the
pseudo-components (hemicellulose, cellulose,
and lignin)) are consistent with those reported

by other researchers for this type of lignocellu-
lose material.
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