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Abstract. This paper describes the development of creep models for glued laminated bamboo (GLB)

using the time-temperature superposition principle (TTSP). Creep (15 min) and recovery (45 min) data

were obtained at constant temperature levels ranging from 25 to 65�C. The moisture contents of specimens

for testing were dry, 7% and 12%. The individual curve at each temperature was plotted against the log-time

axis to obtain a master curve. A nonlinear regression analysis was used to estimate the model parameters.

Then the individual temperature master curves were shifted again to a reference MC to construct an overall

master curve using time-temperature-moisture principle. The relation of temperature and moisture shift

factors loga (T, M) to temperature (T) and MC (M) was analyzed. The results show that the TTSP was

successfully applied to GLB tested at different moisture contents.
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INTRODUCTION

Glued laminated bamboo (GLB) are being
increasingly used in different engineering fields
due to their inherently high specific mechanical
properties, however, widespread use has been

limited due to an insufficient understanding of
time-dependent behaviors, attributing to their vis-
coelastic nature. Creep, in particular, represents
the long-term physical properties critical to prod-
uct acceptance in many engineering applications.

To determine the long-term behavior of GLB,
one can either conduct experiments for an* Corresponding author
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extended period of time or use the principle of
time-temperature superposition principle (TTSP)
to construct a master curve from a number of
short-term creep tests at different temperatures
(Williams et al 1955). The basis of the principle
is that temperature accelerates the time-dependent
response of the material. The time-dependent
material properties are determined at different
temperature levels and shifted horizontally along
the log-time axis through a time multiplier (shift
factor), until a smooth curve is created. It is
called “master curve”, which describes the time
dependence of the investigated property at a ref-
erence temperature. Many studies have adopted
this method for wood and wooden composites
(Salmén 1984; Samarasinghe et al 1994; Sun
and Frazier 2007; Engelund and Salmén 2011).

A theoretical basis has been developed based on
free volume theory for TTSP (Ferry 1980). The
temperature shift factors can be calculated based
on the free volume concept. When the glass
transition temperature of the polymer is chosen
as the reference temperature, the temperature
shift factor can be determined below Tg by an
Arrhenius-type equation (Aklonis and MacKnight
1983; Tissaoui 1996):

log aT ¼ � �E

2:303R

1

T
� 1

T0

� �
ð1Þ

where log aT is the horizontal displacement of
each curve; aT is the shift factor; DE is the acti-
vation energy (kcal/mole); R is universal gas
constant (1.987 cal/mole/K); T0 is the reference
temperature and T is the temperature (K) at
which the shift factor is desired.

It is known that the relationship between the
plateau modulus and temperature is linear:

E1 T0ð Þ
E1 Tð Þ ¼ r0T0

rT
ð2Þ

Using TTSP, the plateau modulus can be
expressed as

E1 T0; lg
t

aT

� �
¼ r0T0

rT
E1 T; lg tð Þ ð3Þ

Then, the vertical shift factor (av) can be
defined as

av ¼ r0T0=rT ð4Þ
Unlike rubber, modulus of elasticity of wood,
bamboo, and other engineering materials
decreased with the temperature increased (Wang
2005). So the modulus should be changed:

E1 T0; lg
t

aT

� �
¼ rT

r0T0
E1 T; lgtð Þ ð5Þ

The density changes little with temperature
when the range of experimental temperature is
not so wide, so the vertical shift factor (av) can
be defined as (Zhang 2010)

av ¼ T=T0 ð6Þ
Ferry (1980) summarized several criteria in the
application of TTSP:

1. The shapes of the adjacent curves at different
temperatures must match over a substantial
range of frequencies/time.

2. The same values of shift factors must super-
pose all the viscoelastic functions.

3. The temperature dependence of the shift fac-
tor must have a reasonable form consistent
with experience.

Consequently, the objective of this study is
to evaluate the feasibility of this accelerated
method and to verify the Arrhenius equation
by conducting a series of creep tests under vari-
ous temperatures and moistures to construct
master curves.

MATERIALS AND METHODS

GLB is made by gluing together strands of
bamboo to form rectangular cross sections sim-
ilar in shape and size to conventional lumber
(Fig 1). Production of programs can be divided
into four sections: dried, dipped, group billet,
and pressure solidified. To apply, a commercial
urea formaldehyde resin was used for the com-
posite fabrication. The press temperature was
95�C. The lumber is 300 mm � 100 mm �
10 mm. Creep analysis was performed on a TA
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instrument DMA Q800 using a dry-air purge,
and in dual cantilever bending (distance between
clamping midpoints ¼ 17.5 mm). Specimens
were machined to: 60 mm � 10 mm � 3 mm.
All specimens were placed with the veneers
perpendicular to the load. They were conducted
within the linear response region. Specimens
were subjected to isothermal creep segments
(15 min in creep; 45 min in recovery; stress ¼
3.5 MPa) at three MC levels (dry, 7%, 12%)
in the temperature range from 25 to 65�C at
10�C intervals; 5 min equilibration periods were
inserted between creep segments. Over-dried
specimens were dried by oven, and then placed
in the dryer for 7 da. The specimens of 7%
were placed in the constant temperature and
humidity equipment for 7 da. It is hard to reach
the MC of 12% through the constant humidity
equipment for GLB. Therefore, the specimens
were soaked in the water for 2 da at first, and
then equilibrated for 1 da.

The separate curves measured at different tem-
peratures, but at common MC, were shifted on
the log-time axis to a reference temperature of
25�C. The individual temperature master curves
were shifted again to a reference MC of 7% to
construct an overall master curve. Six specimens
(460 mm � 20 mm � 20 mm) were prepared for

testing modulus of elasticity and rupture (MOR)
in three-point bending (GB/T 17657-2013).
They are summarized in Table 1.

RESULTS AND DISCUSSION

Creep and recoverable compliances at each
temperature were plotted against log-time (loga-
rithm to the base 10) as shown in Fig 2a-b for
a typical specimen. Figure 2a-b indicate that the
rates of change of creep and recovery increase
with temperature. The data for 35�C overlapped
with the data for 25�C, which means the differ-
ences of effect between the two temperatures are
very small.

Creep and recovery compliance master curves,
applicable to 25�C, were formed for each

Figure 1. Cross section of glued laminated bamboo.

Table 1. Material properties of accelerated test specimens.

Specimen Specific gravity (g/cm3) Young’s modulus (GPa) MOR (MPa)

GLB 0.67 9.14 117.91
Figure 2. Creep test curves for a typical specimen at MC

of 7%: (a) creep and (b) recovery.

Ma et al—DEVELOPMENT OF CREEP MODELS FOR GLUED LAMINATED BAMBOO 143



specimen with different MC levels. Creep and
recovery master curves are shown in Fig 2. Master
curves of Fig 3 were formed by successive join-
ing of creep (or recovery) curves in regions
where the slopes were equal by horizontal and
vertical shifting. The master curves for a typical
specimen indicate that the TTSP can be used to
develop long-term creep curves, but not recov-
ery curves. It should be noted that the recovery
master curve is not smooth, and it does not meet
the criteria for an application of the TTSP.

Since the predicted long-term response was within
the glassy response region of wood, the horizon-
tal shift factor should follow the Arrhenius for-
mulation expressed by Eq (1), which states that
the relationship between logaT and 1/T is linear.
Also, the vertical shift factor follow Eq (6),
which shows that the relationship between av
and T is linear. It can be seen in Fig 4 that the
two linear regression analyses of MC of 7%. The
coefficients of determination (R2) for creep
behavior of horizontal shift factor at three mois-
ture contents are 0.97. The slope from this line
can be used to obtain an estimate of activation
energy DE. The values are presented in Table 2,
and it can be seen that DE increased with the rise
of humidity. These results indicate that the
Arrhenius formulation was satisfied for creep
behavior of GLB.

The creep and recovery master curves were fitted
to the power law equation (Eq 7) using a non-

linear fitting procedure (OriginPro 8.5, American
OriginLab Corporation) (Bond et al 1997):

D ¼ D0 1þ btk
� � ð7Þ

where D0 is the initial compliance, b and k are
estimated parameters, t is the time. The model
parameters are presented in Table 2.

Then, the individual temperature master curves
were shifted again to a reference MC of dry to

Figure 3. Master curves and power law fit of MC of 7%.

Figure 4. Temperature shift factors for 7% MC.

Table 2. Model parameters and activation energy for creep.

MC (%)

Creep master curve

D0 (mm2/N) b k DH (kcal/mole)

Dry 135.05 0.31 1.11 30.57

7 160.69 0.08 1.92 31.33

12 158.21 0.23 1.69 37.06
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construct an overall master curve (Fig 5). It cre-
ated by the time-temperature-moisture superposi-
tion allows the prediction of the creep compliance
(Maksimov et al 1974; Wolcott 1989). Further-
more, with the experimentally derived tempera-
ture and moisture shift factors (loga [T, M],
Fig 6), the master curve can be shifted to differ-
ent temperature and moisture levels with the
reduced variable principle. The shifted master
curve can predict the viscoelastic properties of
the flakes at varying conditions. The fitted tem-
perature and moisture shift factor surface is
shown in Fig 6.

CONCLUSIONS

(1) The TTSP can be used to develop creep
master curves for predicting of GLB, but
not recovery curves. The creep compliance
curves were plotted against log-time. All
compliance curves required vertical shifting
in addition to the horizontal shifting. The
selected master curves were represented by
power functions using a nonlinear regression
analysis technique.

(2) The activation energy of creep of specimen
within the temperature range of 25-65�C
was 30.57 and 37.06. The values increase
with the rise of humidity.

(3) With temperature and moisture shift factors,
an overall master curve can be shifted to
different temperature and moisture levels.
The time, temperature, and moisture effects
on the GLB were included in this curve.
The shifted master curve can predict the
viscoelastic properties of the flakes at vary-
ing conditions.
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