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ABSTRACT

Further to the development of the inter-element contact model reported in Part I of this series (Dai et
al 2006), this paper reports the development of a mathematical (analytical) model and a computer
simulation (numerical) model of resin distribution. Based on theories of random coverage process and
stochastic system, resin distribution is analytically defined by the average and the variance of resin
coverage on constituent wood elements. To complement the analytical model, a numerical model using
image digitization and Monte Carlo technique is developed on a computer to visualize and simulate the
spatial variation of resin coverage. To validate the models, resin distributions on OSB strands are
experimentally investigated using an image analysis technique. The analytical and numerical models are
validated by close agreements with each other and with experimental results. It is proposed and modeled
that resin coverage is classified into area coverage and mass coverage. The former follows an exponential
relationship with resin content, while the latter has a linear relationship with resin content. Both area and
mass coverage are strongly affected by element/strand thickness and wood density. The resin area
coverage is further affected by resin spot thickness, density, and solids content. Resin spot size has no
effect on the average but strong effect on the variance of resin coverage. Implications of the model
predictions on improving uniformity and efficiency of resin application are also discussed.

Keywords: Wood composites, OSB, resin distribution, bonding, modeling, simulation.

INTRODUCTION

In the preceding paper of this series (Dai et al.
2006), a theoretical model and a computer simu-

lation model were developed to predict the con-
tact between constituent elements of wood com-
posites during mat consolidation. To further pre-
dict bonding performance, one needs to
characterize the resin distribution over the con-† Member of SWST.
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tacting element surfaces. Resin is probably the
most adjustable and one of the most significant
processing variables. It also represents a signifi-
cant cost to wood composite manufacturing.
Understanding the resin distribution is thus of
great importance to not only optimizing prod-
uct properties but also minimizing production
costs.

Resin distribution has been a subject of sev-
eral published studies, most of which were em-
pirical (Burrows 1961; Meinecke and Klauditz
1962; Lehmann 1965 and 1970; Hill and Wilson
1978; Kasper and Chow 1980; Furno et al. 1983;
Youngquist et al. 1987; Kamke et al. 1996;
Smith 2003; Xie et al. 2004). The most signifi-
cant work perhaps belongs to Meinecke and
Klauditz (1962), who conducted a comprehen-
sive study on the bonding physics and technol-
ogy of particleboard. They conceptualized the
structure of particleboard as a system of voids-
dispersed wood particles and the bonding being
related to the contact between particles and the
strength of single adhesive joints. The adhesive
joint strength was further governed by the con-
tinuity and uniformity of resin distribution. The
results from their well-designed experiments
showed that finer resin droplets and longer
blending time led to more continuous and uni-
form resin distribution, and hence greater bond-
ing strength. The similar effect of resin spot size
was reported in several other studies (Burrows
1961, Hill and Wilson 1978; Lehmann 1965 and
1970; Kamke et al. 1996; Smith 2003). To quan-
tify the resin distribution, various methods were
developed using X-ray scanning (Kasper and
Chow 1980; Xie et al. 2004) and image analysis
(Youngquist et al. 1987; Kamke et al. 1996;
Groves 1998).

While the above studies have provided gen-
eral knowledge, the literature to date has yet to
establish basic theories of resin distribution.
More rigorous approaches are also needed to
further understand the bonding mechanisms of
wood composites. With the goal of developing a
theoretical model for bonding, this paper has the
following objectives:

● To analytically model and numerically simu-
late resin distribution,

● To experimentally evaluate resin distribution
to validate the models, and

● To present typical predicted results of the
characteristics of resin distribution and the ef-
fects of key processing variables.

MODELING AND SIMULATION

Similarly to Part I (Dai et al. 2006), the resin
distribution is also investigated using both math-
ematical modeling and computer simulation.
While the mathematical model offers analytical
solutions, the computer simulation provides a
powerful tool to consider real variables that may
be too complex to be solved analytically.

Without losing generality, the constituent el-
ements of wood composites are referred to as
wood strands with defined length �, width �,
and thickness �. The resin distribution is defined
in terms of resin area coverage Ra and resin
mass coverage Rm. The area coverage Ra is the
percentage of projected area of resin spots in a
given area of strand surface. The mass coverage
Rm is the solid resin mass per unit area of strand
surface [g/m2].

Theory and analytical modeling

Conceptualization and assumptions.—While
the objective is to maximize resin coverage and
disperse resin spots as uniformly as possible, the
resin is normally applied in practice through a
spraying process. During blending, the liquid
resin is first atomized into streams of fine drop-
lets. The resin droplets then make contact, in the
spraying zone, with falling strands via a tum-
bling system (Meinecke and Klauditz 1962;
Smith 2005). A massive number of resin drop-
lets and strands are processed in a matter of
seconds. Such a process can only generate a
resin distribution that is random or at best uni-
formly-random. The spatial resin distribution
over strand surfaces should follow, in theory, the
law of the random coverage process. The ran-
dom coverage theory (e.g. Hall 1988) offers a
probabilistic description of random mechanism
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governing the positioning and configuration of
random flat sets (resin spots) in a two-
dimensional plane (strand surface). Indeed, the
distribution of resin spots on individual strands
should depend on the random formation of resin
droplets and the probability of strands passing
through the spraying zone.

We thus model the resin distribution as a ran-
dom coverage process. The following three gen-
eral assumptions are made:

1) Resin spots are discs of uniform diameter,
thickness, and density;

2) Resin spots are distributed independently of
each other and in a uniformly-random man-
ner, meaning that the probability of resin de-
position over a given strand surface is inde-
pendent and identical; and

3) Strand surfaces are dominated by those sided
by strand length and width, with negligible
edge surfaces.

Poisson resin coverage distribution.—Under
Assumption 2, the resin coverage is mathemati-
cally described by the well-known Poisson pro-
cess (e.g. Hall 1988). The Poisson distribution is
suited for characterization of random events tak-
ing place with a very large number of trials and
a very small probability of success. In a given
blending process, the total number of trials
(resin spots) Nr is enormous. Even the total num-
ber of resin spots per strand surface Nr,s is very
large. On the other hand, the probability of a
single resin spot landing on a given strand area
pr is very small due to the small resin spot size
in relation to the strand surface (Fig. 1). To be

exact, the probability pr is determined by the
area ratio of resin spot over strand surface, or:

pr =

�

4
d2

��
=

�d2

4��
(1)

where:
d � resin spot diameter [mm],
� � strand length [mm], and
� � strand width [mm].

When multiple resin spots are distributed, the
calculation becomes more complex due to ran-
dom overlaps between the resin spots (a resin
droplet may strike a previously deposited resin
spot, causing partial overlap). As shown in Fig.
1, some points on the strand surface are covered
with more than one resin spot, while others are
vacant. According to the Poisson coverage
theory, the average number of resin coverage nr

equals the probability of single resin coverage pr

multiplied by the total number of resin spots
Nr,s, or:

nr = prNr,s (2)
Since there are two main surfaces per strand, the
relationship between total number of resin spots
per strand surface Nr,s and that of a blend Nr is
defined by:

Nr,s =
Nr

2Nf
(3)

where: Nf � total number of flakes (or strands).
Assuming no resin loss during blending, Nr is
further determined by dividing the total mass of
resin mix by that of a single resin droplet, or:

Nr =

����sNfRc

�1 + MC�Rsolids

�

4
d2�r�r

=
4����sNfRc

�1 + MC��d2�r�rRsolids

(4)
where:

�, �r � thickness of strand and resin spot,
respectively [mm],

�s, �r � density of wood strands and resin
mix, respectively [kg/m3],

MC � moisture content of wood strands,

FIG. 1. Schematic of randomly-distributed resin spots
on a strand surface (Note that resin spots are enlarged in
relation to strand size).
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Rc � resin content on oven-dry weight
basis, and,

Rsolids � resin solids content.

Combining Eqs. (1), (3) and (4), Eq. (2) be-
comes:

nr =
��sRc

2�1 + MC��r�rRsolids
(5)

Equation (5) is the governing equation for cal-
culating the average number of resin coverage at
a given resin content, strand thickness, and wood
density. In fact, this relationship holds regardless
of resin distribution. Later we will discuss that
Eq. (5), in fact, defines the maximum possible
resin coverage under an ideal resin deposition
process in which resin droplets repel each other
and only strike vacant sites on strand surfaces,
resulting in no overlap between spots. Obvi-
ously in a real resin deposition process, the spot
overlap is inevitable and the local resin coverage
is a random number. According to the Poisson
distribution, the probability or percentage of a
given strand surface area covered by j resin spots
pr(j) is:

pr�j� =
aj

��
=

e−nrnr
j

j!
(6)

where: aj � total area of a strand surface cov-
ered with j resin spots. The Poisson distribution
is very simple to use because it is governed by
only one parameter, i.e. its average and also
variance nr (Eq. 5).

Resin coverage and content relationships.—
Of special interest concerning Eq. (6) is the case
where j equals zero, i.e. no resin coverage. The
probability or the percentage of a strand area
containing no resin pr(0) is simply:

pr�0� =
e−nrnr

0

0!
= e−nr (7)

Therefore, the resin area coverage Ra, which is
the opposite of vacant area, is determined by:

Ra = 1 − pr�0� = 1 − e−nr

= 1 − exp�−
��sRc

2�1 + MC��r�rRsolids
� (8)

where unity is the upper bound for Ra with Rc

approaching infinity. Equation (8) analytically
defines the relationship between resin coverage
and resin content and how this relationship is
affected by other variables. It reveals that the
resin coverage Ra increases exponentially with
strand thickness �, strand wood density �s, and
resin content Rc, and decreases with resin spot
thickness �r, density �r, and resin solids content
Rsolids. The establishment of this relationship is
essential to model bonding strength properties,
since the bonding is more directly linked to the
bonded area through the effect of resin coverage
rather than resin content.

In comparison, the relationship between mass
coverage Rm and resin content Rc is more
straightforward. According to the definition and
assuming no resin loss during blending, Rm

equals the total resin mass per strand surface
divided by the strand surface area, or:

Rm =

�d2

4
�r

�r

Rsolids
Nr,s

��
=

�d2�r�rNr,s

4��Rsolids
(9)

Also according to the definition, for a single
strand, Rc is the total resin mass on two major
surfaces divided by the strand mass (oven-dry
basis), or:

Rc =
2

�d2

4
�r

�r

Rsolids
Nr,s

����s

1 + MC

=
�d2�r�rNr,s�1 + MC�

2����sRsolids

(10)
Combining Eqs. (9) and (10), a linear relation-
ship between Rm and Rc can be readily obtained:

Rm =
��sRc

2�1 + MC�
(11)

It is clear from Eq. (11) that strand thickness and
density are the controlling factors in determining
the resin mass coverage. Thicker or denser
strands mean less surface area and therefore
greater resin mass coverage.

Variability of resin coverage.—The unifor-
mity of resin distribution can be evaluated in
practice by the standard deviation or the vari-
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ance of local resin coverage. At this stage, the
analytical solution to calculating the variance of
local area coverage is unknown. Here only the
mass coverage variance is derived based on the
spatial variability theory of stochastic systems
(Ghosh 1951; Dodson 1971; Dai and Steiner
1997). The basic concept is that a resin spot of a
certain size at a given point inevitably covers its
neighboring points. Thus the local resin cover-
ages are correlated from one point to another.
Depending upon the spot diameter d and the
distance between the points r, the autocorrela-
tion function for uniformly-random resin distri-
bution �(r, d) is given by:

��r,d� =
2

�
�cos−1� r

d
� −

r

d
�1 − � r

d
�2�

(12)

if r < d. Otherwise, �(r, d) equals 0. Equation
(12) suggests that the autocorrelation is in fact
dependent upon the ratio of point-to-point dis-
tance and resin spot diameter.

Denote R̂mas the local averages of resin mass
coverage [g/m2]. Its variance V(R̂m) [g2/m4] is
given by:

V�R̂m� = �r
2�r

2nr�0

�a2 + b2

��r,d�p�r;a,b�dr

(13)

where function p(r;a,b) is the distribution of ran-
dom distances between two points within the
rectangular sampling zone, and a and b are re-
spectively zone length [mm] and width [mm]
(Figs. 1 and 2). The random distance distribution
was originally developed by Ghosh (1951) and

applied for modeling mat formation by Dai and
Steiner (1997). According to Eq. (13), the vari-
ance of resin mass coverage increases paraboli-
cally with resin spot thickness and density, and
linearly with resin average coverage. It also in-
creases, in a more complex manner, with an in-
crease in resin spot size and a decrease in sam-
pling zone size.

More details of the above derivations (Eqs. 12
and 13) are given in the appendix at the end of
this paper.

Numerical modeling and computer simulation

A strand surface is digitized into pixels that
can be described by a large matrix j(ix, iy)
(Fig. 2). While x and y define the two-
dimensional coordinates, j indicates the number
of resin disc overlaps, specifically, 0 meaning no
resin coverage, and 1 or higher meaning one or
multiple coverage. The program simulates the
resin deposition process first by generating ran-
dom number for center coordinates of resin spot
cx and cy using the Monte Carlo technique. It
updates the matrix j(ix, iy) with each deposition
of a droplet by adding one to or maintaining the
previous cell values, depending upon whether or
not the droplet falls on the location (ix, iy). After
the deposition process, the program calculates
the local and global averages as well as their
variance or standard deviation.

The global average of resin area coverage Ra

is calculated by adding the total areas of pixels
covered with resin divided by strand surface
area:

Ra =

sp
2�

ix=1

��sp

�
iy=1

��sp

c�ix,iy�

��
(14)

where: sp � side length of each pixel (e.g. 0.01
mm), and

c(ix, iy) � resin coverage index which equals
1 if Pixel (ix, iy) is covered by resin or 0 if not.

The local averages of resin coverage R̂a(Ix, Iy)
are given by adding the total areas of pixels
covered with resin within a sampling zone di-
vided by zone area:

FIG. 2. Simulating resin distribution on a computer by
digitizing the resin spot and the strand surface and sampling
in segments.
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R̂a�Ix,Iy� =

sp
2 �
ix=�Ix−1�a+1

Ixa

�
iy=�Iy−1�b+1

Iyb

c�ix,iy�

ab
(15)

where: Ix and Iy � cell coordinates of sampling
zone, and

a and b � side lengths of sampling zone
(Fig. 2).

After obtaining the global and local averages,
the variance of the local coverage averages
V(R̂a) is readily given by the following standard
statistical relationship:

V�R̂a� =
�
Ix=1

��a

�
Iy=1

��b

�R̂a�Ix,Iy��
2

���a����b�
− Ra

2 (16)

Likewise, the local averages and their variance
of resin mass coverage can also be calculated.
The global average of resin mass coverage Rm is
calculated by:

Rm =

sp
2�r�r�

ix=1

��sp

�
iy=1

��sp

j�ix,iy�

��
(17)

The local average of resin mass coverage R̂m(Ix,
Iy) is calculated by:

R̂m�Ix,Iy� =

sp
2�r�r �

ix=�Ix−1�a+1

Ixa

�
iy=�Iy−1�b+1

Iyb

j�ix,iy�

ab
(18)

The variance of local resin content V(R̂m) is cal-
culated by:

V�R̂m� =
�
Ix=1

��a

�
Iy=1

��b

�R̂m�Ix,Iy��
2

���a����b�
− Rm

2 (19)

EXPERIMENTAL

The purpose of the experimental tests was to
determine the proper values of the input param-
eters for the models and to validate the model

predictions. The blending tests of phenol-
formaldehyde (PF) resin and commercial aspen
strands were conducted using an 8-ft diameter
OSB strand blender. The resin distributions were
analyzed using an image analysis system.

Image analysis system

A camera system was developed at Forintek
Canada Corp. to analyze the resin distributions
on OSB strands (Groves 1998 and 2000).
GluScan consists of a camera system, a PC, and
image analysis software. Figure 3 shows the
various components of the camera system,
which includes: sample holder, fluorescent light-
ing, color video camera, and camera stand. The
color video camera scans the surfaces of sample
strands and then sends the data to a computer to
automatically measure the following resin dis-
tribution features:

a) total resin coverage (% of image area covered
by resin),

b) average resin spot diameter (micro) and area
(micron2), and

c) total number of resin spots per image (spots/
image).

To recognize resin, GluScan relies on the color
contrast between resin and background wood.
Prior to measurement, the strands with PF resin
need to be heated in an oven to cure the resin,
giving it a distinctive dark red color, while
strands with MDI resin need to be either tagged
with a dye or sprayed with a chemical reagent to
observe the resin.

With appropriate contrast, the imaging soft-
ware can distinguish between the color of
stained or cured resin and the lighter color of
wood. If the wood is too dark and/or the resin is
not cured or stained properly, the system cannot
be used. Most commonly used OSB species
work well with GluScan. The detailed descrip-
tion of GluScan can be found in relevant reports
elsewhere (Groves 1998 and 2000).

Resin blending tests

Commercial aspen strands were air-dried,
screened, and the geometry of approximately
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2500 strands was determined. A total of 30 kg of
strands was blended with a fixed 1% (w/w) wax
(Cascowax EW-58S, 58% w/w solids content)
and various levels of PF resin (Cascophen LP02/
Borden Chemical, 55% w/w solids content). The
blender and the atomizer were run at 22.2 rpm
and 16000 rpm, respectively. The strands were
blended on the same batch sequentially with 7
different levels of phenol-formaldehyde (PF)
resin: 2%, 3%, 4.5%, 6%, 7.5%, 9%, and 18%
(all w/w) solids-based PF resin.

After each stage of adding PF resin, 0.5 kg of
resinated strands was retrieved, from which 100
resinated strands were randomly selected and
heated on wire racks in an oven at 175°C for 20
min for GluScan image analysis. After calibrat-
ing the camera system, five images were taken
from each surface of the cooked strands, each
image being from an area of 9.1 mm2 (3.5 mm ×

2.6 mm). A total of 1000 images per condition
were analyzed for resin area coverage (%), spot
diameter (micron), and spot area (micron2).

RESULTS AND DISCUSSION

Model validations and implications

Model input parameters.—Table 1 lists the
estimated resin spot size, spot thickness, resin
density, strand density and thickness. These are
the basic input parameters that the models re-
quire to predict the resin distribution. Although
the average resin spot size is very small, the
standard deviation (STD) is abnormally high. A
better parameter for indicating the spot size vari-
ability might be the coefficient of variation (ratio
of STD to average, or COV). Here the COVs are
up to 290%, which is extremely high compared

FIG. 3. Forintek’s GluScan camera system for measuring resin distribution on OSB strands (Groves 1998).
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to a 20% of a normally distributed variable. In-
deed as shown in Table 1, the small averages
result from mixes of very large and very small
spots. This reflected how nonuniformly the resin
was atomized by the spinning discs during
blending. The spot thickness was estimated by
fitting the experimental resin coverage with
Eq. (8). In doing so, parameter �r partially be-
comes a “fudge” factor, which allows for con-
sideration of such indefinable factors as resin
transfer due to inter-strand rubbing and resin
loss during blending. Here the spot thickness
was that of liquid resin before pressing and cur-
ing. It should be noted that our models do not
take into account the effect of pressing on lateral
resin flow and hence coverage. Data concerning
such an effect appear to be lacking in the litera-
ture. The consideration of press-induced resin
flow would likely lead to slightly greater resin
coverage in the finished panels than the model
predictions.

Spatial distributions.—To help appreciate its
random nature, the spatial resin distributions are
visualized by an image of a real resinated strand
(Fig. 4a) and the computer simulation (Fig. 4b).
The simulation appears to be very similar to the
real image in showing the discontinuous and
chaotic resin distribution. The resin area cover-
age varies considerably from one location to an-
other. The spatial correlation between the local

coverages is governed by the distance separating
the locations and the size of resin spots. Quan-
tification of the resin distribution has been tra-
ditionally relied upon the use of image analysis
methods (e.g. Youngquist et al. 1987; Kamke et
al. 1996; Groves 1998). Here the computer
simulation method is powerful not only for the
purpose of visualization, but also for quantifica-
tion of the resin distribution (Eqs. 14–19).

Relationship between area coverage and resin
content.—This relationship defines one of the
most essential characteristics of resin applica-

TABLE 1. Experimental data concerning resin distribution and strand dimensions.

Resin content (%)

Resin area coverage (%) Spot diameter (micron)

Average STD COV Min Max Average STD COV Min Max

2 18.3 14 0.8 2 74 51.9 143 2.8 2.6 1205
3 26 15 0.6 2 86 58.5 162 2.8 2.6 1248
4.5 27.6 16 0.6 4 86 61.7 169 2.7 5.5 1229
6 45.6 14 0.3 11 95 72.6 189 2.6 5.7 1123
7.5 51.7 16 0.3 11 95 69.4 199 2.9 5.7 1120
9 52.6 14 0.3 14 92 70.7 198 2.8 5.7 1144

18 74.3 10 0.1 8 98 — — — — —

Other Properties of PF Resin
Density 1200 kg/m3

Spot Thickness* 0.02 mm

Strand Dimensions (mm)
Length 77.3 24.2
Width 16.8 11.6

Thickness 0.65 0.18
* Estimated by fitting data to Eq. (8)

FIG. 4. Visualizing resin distribution: the spatial distri-
bution of resin spots on a strand surface from: a) image
analysis, and b) computer simulation.
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tion, because bonding between strands is af-
fected by resin content only through its effect on
resin coverage (Meinecke and Klauditz 1962).
To optimize performance and minimize cost, the
resin coverage should always be maximized at a
given resin content. Figure 5 depicts the rela-
tionships between resin area coverage and resin
content under ideal and realistic conditions.
Maximum resin coverage can be achieved in an
ideal case where resin spots are distributed in an
ordered manner with no overlapping. The rela-
tionship between maximum resin area coverage
and content is linear, according to Eq. (5). A
similar relationship was established by Mei-
necke and Klauditz (1962). In practice, however,
overlaps between resin spots are inevitable due
to the random distribution. As shown in Fig. 5,
the measured resin area coverage follows a non-
linear relationship with resin content. According
to Eq. (8), the relationship is in fact an exponen-
tial one. Indeed, close agreement can be found
between the model predictions and the experi-
mental observations.

The coverage appears to increase rapidly (al-

most linearly) with resin content when the resin
usage is low. This is attributed to the fact that
little or no overlap occurs when the total number
of resin spots is low. Specifically, when the resin
content is below 3%, the linear model seems to
provide a good approximate solution. As the
resin content increases, however, the discrep-
ancy between the linear model and the exponen-
tial model widens simply because of the in-
creased loss of resin coverage due to overlaps.
Figure 5 shows that as much as 40% of resin
coverage is lost at 11% resin content. From a
physics standpoint, the overlaps may result from
the natural attraction between the resin droplets.
Therefore, any process (e.g. electrostatics,
Groves 1997) that can generate repulsion be-
tween the resin droplets would help reduce the
overlaps and therefore improve the resin effi-
ciency. Moreover, the uniformity of resin distri-
bution should also be improved once resin drop-
lets repel each other. Finally, the model suggests
that one can manipulate the resin coverage by
adjusting such parameters as strand thickness
and resin solids content.

FIG. 5. Comparing resin area coverage between experimental data and model predictions, as well as random resin
distribution and ordered distribution.
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Variation of resin distribution.—Figure 6
compares the standard deviation (STD) of local
resin mass coverage between the analytical
model predictions (Eq. 13) and the computer
simulations (Eq. 19) (note that standard devia-
tion is the square root of variance). Again, very
close agreement can be found, which mutually
validates both the analytical and simulation
models. According to the models, the mass STD
is affected by many parameters including sam-
pling zone size, resin spots and resin content.
Figure 6 shows that the STD increases with resin
content. This relationship is valid in many sta-
tistical systems where the variation increases
with the average.

Contrary to resin mass coverage, however, the
STD of resin area coverage is much different. As
shown in Fig. 7, the area STD increases with
resin content at low dosage levels. It reaches a
maximum approximately at a resin content of
5% before slowly decreasing. Further increase in
resin content leads to lower coverage STD or
more uniformity. As one can imagine, the STD
would approach zero if the resin content be-
comes extremely high. At this stage, the analyti-
cal form for calculating the coverage variation is
unknown. However, the numerical solution via
computer simulation is well defined (Eq. 16).
This is a good example of the usefulness of nu-
merical/computer simulation to handle complex
problems.

While the simulation model predicted the
trend well, Fig. 7 also reveals that a large differ-

ence existed between the predicted STD and the
experimental data. The discrepancy likely comes
from two sources: systematic variation from the
blending process and variation of the resin spot
size (Table 1). In developing the models, we
assumed that the resin spots are uniform in di-
ameter and uniformly-random in placement. Un-
der these assumptions, the model predicted a
baseline variation of resin coverage that ap-
peared to be much lower than the real variation.
This result implies that uniformly-random dis-
tribution may indeed represent the best unifor-
mity and the real blending process is far from
being uniformly random. How to achieve uni-
formly-random blending in practice would defi-
nitely be worthy of further investigation.

Typical predicted results

Local resin coverage distribution.—Figure 8
depicts a family curve of the resin distributions
at varying resin contents, based on the predic-
tions from the simulation model. The model
computed the local averages of resin area cov-
erage in 3-mm × 3-mm-square zones (Eq. 15).
The local coverage follows approximately the
Poisson distribution, especially when the zone
size is small and/or the resin content is low.
More precisely, the Poisson distribution holds
only when the zone size approaches zero. For
bigger zones and/or higher resin contents, the
distributions should become more symmetrical
or closer to normal (Gaussian) distributions.

Resin area coverage vs mass coverage.—Fig-

FIG. 6. Comparing standard deviation (STD) of resin
mass coverage between the analytical model predictions and
the computer model predictions.

FIG. 7. Comparing standard deviation (STD) of resin
area coverage between the computer simulation prediction
and the experimental data.
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ure 9 compares typical variations of resin area
coverage and mass coverage with resin content.
The former follows an exponential relationship
(Eq. 8), while the latter is a linear relationship
(Eq. 11). At lower resin content, there is little
overlap between resin spots. Therefore, the area
coverage increases rapidly with resin content. At
higher resin content, resin spots start to overlap,
leading to a slower growth rate of resin cover-
age. In comparison, the resin mass coverage al-
ways increases with resin content regardless of
resin overlapping.

The differentiation between area and mass
coverage may help reveal different bonding
mechanisms between resin and wood elements.
Investigations on the effect of resin area and
mass coverage on bonding properties are under-
way. The results will be reported in our future
publications.

Effect of strand thickness and density on resin
coverage.—Strand thickness and density affect

resin coverage through their effects on specific
surface area. Thicker and/or denser strands have
less surface area and therefore result in greater
resin coverage than thinner and/or lower density
strands at a given resin content. Such relation-
ships were analytically defined by Eq. (8), and
the typical predicted results are plotted in
Figs. 10a and b. At lower resin content, the rate
with which the resin coverage increases is also
higher for the thicker strands (Fig. 10a) or
denser wood species (Fig. 10b).

Other factors affecting resin area coverage in-
clude resin spot thickness, resin density, and sol-
ids content. According to Eq. (8), the area cov-
erage can be significantly improved by reducing
the resin spot thickness, density and solids con-
tent. By taking into account blending efficiency
(resin loss), one may calibrate and use Eq. (8) to
predict the quantitative improvement of resin
coverage by modifying the resin mix and solids
content.

FIG. 8. A predicted family curve of local resin area cov-
erage distributions at various resin contents.

FIG. 9. Predicted resin area coverage and resin mass
coverage as a function of resin content.

FIG. 10. Predicted effects of key processing variables on
resin area coverage: a) Strand thickness, and b) Wood den-
sity.
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It should be noted that Eqs. (8) and (11) were
derived based on the assumption that strands are
very thin and their edge surface areas are negli-
gible compared to main face areas. Equations for
calculating resin coverage for particles or fibers
can be derived by considering a particle as being
spherical or a fiber being cylindrical.

Effect of resin content and sampling zone size
on resin coverage variation.—As shown in
Figs. 11a and b, the STDs of resin mass cover-
age and area coverage are highly dependent
upon the resin content and sampling zone size.
As discussed earlier, an increase in resin content
results in different responses in the variation of
resin area coverage (Fig. 11a) and mass cover-
age (Fig. 11b). However, in both cases, larger sam-
pling zone size always leads to smaller variation,
simply due to a greater averaging effect. This
result points to the random nature of resin dis-
tribution in terms of its relative uniformity on a
large scale but great variability on a small scale.
In practice, when using a camera to measure
resin coverage, one must pay attention to the
size of the inspection widow as it largely con-
trols the outcomes of measured resin variability.

Effect of resin spot size on resin distribution.—
Figure 12 depicts the predicted increases of resin
area coverage with resin content. Using the com-
puter simulation model, we varied resin spot di-
ameter from 0.04 mm to 0.64 mm and detected
no effect on resin coverage. Indeed as shown by
the analytical model (Eq. 8), resin spot size is a
non-factor. This finding contradicts an earlier
postulation that finer resin spots led to greater
coverage (Meinecke and Klauditz 1962). Based
on the computer simulation, the average resin
coverage is independent of resin spot size as
long as the resin is randomly distributed.

In contrast, the resin spot size has a significant
effect on the variation of resin coverage. Figures
13a and b show the predicted baseline resin
variation (STD), which is exclusive of system-
atic variation induced by the blending process.
The STDs of resin area (Fig. 13a) and mass cov-
erage (Fig. 13b) increase with resin spot size.
Larger spot size means fewer resin spots for ran-
domization. Moreover, a large spot covers a big-
ger area and therefore leads to stronger correla-
tions between local coverages. As a result, larger
resin spot size generates greater variation be-
tween local coverages. This finding is consistent
with the general belief that small resin droplets
are beneficial to improve resin coverage unifor-
mity and hence bonding strength properties
(Meinecke and Klauditz 1962; Burrows 1961;
Hill and Wilson 1978; Lehmann 1965 and 1970;
Kamke et al. 1996).

Better uniformity may not be the only reason
why bonding properties improve with finer resin

FIG. 11. Predicted effects of resin content and sampling
zone size on: a) Standard deviation (STD) of resin area
coverage, and b) Standard deviation (STD) of resin mass
coverage.

FIG. 12. Predicted effects of resin content and spot size
on resin area coverage.
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spot size. Closer distances between adjacent
resin spots resulting from finer spot size may
also be an important factor (Hill and Wilson
1978; Smith 2003). A model for predicting the
distribution of distances between resin spots is
nearly completed and will be published in a fu-
ture paper.

SUMMARY AND CONCLUSIONS

Assuming uniformly-random dispersion of
resin spots, analytical models and numerical/
computer simulation models were developed for
the first time to characterize resin distribution.
The models predicted the average and the vari-
ance of resin coverages. Experimental investiga-
tions were also conducted to validate the mod-
els. The predictions from the analytical and
computer simulation models agreed well with
the experimental data. The following conclu-
sions can be drawn from this study:

1. Resin distribution can be analytically pre-
dicted and numerically simulated. While the
analytical models can provide theoretical un-
derstanding, the numerical models are pow-
erful tools to simulate complex problems.

2. Resin coverages are differentiated by resin
area coverage and mass coverage. The former
has an exponential relationship with resin
content, while the latter has a linear relation-
ship with resin content.

3. The variability of resin area coverage is also
different from that of resin mass coverage.
The former peaks at a given resin content,
whereas the latter monotonically increases
with resin content.

4. Other variables affecting resin coverages are
strand thickness and density due to their ef-
fect on strand surface areas. Resin spot thick-
ness, resin density, and resin solids content
also affect resin area coverage, but not mass
coverage.

5. Resin spot size has no effect on the average
resin area coverage, but a strong effect on the
variation of local resin coverages because of
their spatial correlation. Finer resin spots re-
sults in less variations in both area and mass
coverage, and thus better uniformity.

6. Uniformity of the real resin distribution is
significantly lower than that of uniformly-
random resin distribution due to the system-
atic variation from the blending process and
random variation of the resin spot size.

This paper has demonstrated the usefulness of
theoretical and computer modeling for analyzing
multiple variables involved in the resin applica-
tion, which otherwise would be very difficult, if
not impossible, to evaluate using experimental
approaches. The proposed models may open a
door for systematic analyses of the physics of
blending process and the bonding mechanism of
wood composites.
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APPENDIX:
VARIATION OF LOCAL RESIN MASS COVERAGE

Point (maximum) variance.—Denote resin
mass coverage at a given point Ṙm[g/m2]. For a
single strand, the expected or average mass cov-
erage E(Ṙm) equals the total mass of resin spots
on one strand surface divided by the strand sur-
face area, or :

E�Ṙm� =

�d2

4
�r�rNr,s

��
= �r�rE�j� (20)

where E(j) is the expected or average overlap of
resin spots, which is the same as nr in Eq. (2).
Equation (20) allows the relationship between
the point mass coverage Ṙm and point overlap
number j to be established:

Ṙm = �r�rj (21)

Thus the variance of point mass coverage V(Ṙm)
is given by:

V�Ṙm� = �r
2�r

2V� j� = �r
2�r

2nr (22)

where V(j) is the variance of point resin overlap
number which, by the nature of the Poisson dis-
tribution, equals its average nr (Eq. 5). It repre-
sents the maximum theoretical variance of any
sampling zone where the zone shrinks to a point.
As the zone size increases, the variance will de-
crease because of the autocorrelation between
points within the zone.
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Autocorrelation.—Rewrite and organize the
relationship between the point variance V(j) and
the average E(j) as follows:

V� j� = E� j� =
�d2Nr,s

4��
=

�d2

4
� (23)

where � is the number of resin spot per unit area
or resin spot intensity: Nr,s/��. We can find that
the resin disc area �d2/4 in Eq. (23) is in fact the
center locus of resin spots bound to cover a
given point G (Fig. 14a). Thus, Eq. (23) implies
that the variance of resin coverage at Point G,
V(jG), equals the center locus of resin spots mul-
tiplied by the resin spot intensity. Likewise, the
variance for coverage at two given points G and
H, V(jGH), should be governed by the product of
the center locus of resin spots bound to cover

both G and H, aGH, and the spot intensity �. As
shown in Fig. 14b, it is not difficult to find that
the locus area is determined by:

aGH = 2��d2

4
−

dr sin���

4 � =
�d2

2
−

dr sin���

2
(24)

where � is the angle between radius and Line
GH, given by:

� = cos−1� r

d� (25)

Note also that r is the distance between G and H.
Thus the autocorrelation function is:

��r,d� =
V� jGH�

V� jG�
=

aGH�

�d2

4
�

=
2

�d
��d − r sin��

(26)
Combining Eq. (25) with (26), we can get
Eq. (12).

Variance of local averages.—Due to the au-
tocorrelation, the variance of the local averages
V(R̂m) is always less than the point variance
V(Ṙm). The relationship between the point vari-
ance and the local average variance is governed
by:

V�R̂m� = ��a,b,d�V�Ṙm� (27)
where �(a,b,d) is the variance function, which is
the weighted average of the autocorrelation
function for all the points within the sampling
zone of side lengths a and b, or:

��a,b,d� = �
0

�a2+b2

��r,d�p�r;a,b�dr

(28)
Here p(r; a, b) is the random distance function
(Ghosh 1951; Dai and Steiner 1997). By com-
bining Eq. (27) with Eqs. (28) and (22), we can
get Eq. (13).

FIG. 14. Schematic of the center locus of a resin spot
bound to cover: a) a given point G on strand surface, and b)
two points G and H separated by a distance r.
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