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ABSTRACT

An exact solution of the characteristic fourth-order partial differential equation for plane
orthotropic elasticity is obtained by using the Fourier method. Particular emphasis is

given to the orthotropic beam subjected to a concentrated load.

Stress distributions

calculated from the resulting series are compared with those given by elementary bending

theory.

INTRODUCTION

The first application of the Fourier
method to the solution of isotropic beam
problems was given by Ribiere in 1889,
Further progress in this area was con-
tributed by Filon (see Timoshenko and
Goodier 1951). In particular, Filon special-
ized in the calculation of stress fields in
isotropic materials subjected to symmetric
concentrated loads. Similar problems have
been discussed also by Timpe ( Timoshenko
and Goodier 1951). A study of the bending
stresses in an isotropic beam using Fourier
serics was made by Goodier (1932) and a
detailed discussion of the solutions is given
by Timoshenko and Goodier (1951). Pickett
(1944) has obtained a solution for the
rectangular isotropic plate under two types
of boundary loads: (1) loads that vary
parabolically, and (2) concentrated loads.
The general solution in Fourier series of
the bending of an orthotropic beam under
an arbitrary load distributed symmetrically
was given by Lekhnitskii (1947). In this
paper, we also take up the application of
the Fourier method to the orthotropic beam
problem—particularly, the simply supported
beam under a concentrated load acting at
arbitrary distance from the end of the beam.

I Rescarch reported in this paper was supported
by Mclntire-Stennis funds and administered by
the Institute of Forest Products, University of
Washington, Seattle, Washington 98195.

WOOD AND FIBER

The solution is exact, and the stresses are
expressed as a sine series convergent in the
limit. The coefficients of the terms in the
series are determined by using assigned
boundary conditions. Mathematical analyses
of stress distributions are illustrated. In
particular, the variation of normal stress
o141, over the cross section at various posi-
tions in a simply supported beam, long or
short, is compared with that given by the
elementary theory of bending.

BASIC EQUATIONS AND SOLUTION

The characteristic fourth-order partial
differential equation for the orthotropic
plane stress problem has the form (Jayne
and Hunt 1969):
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where K; is the compliances of the beam
defined as

Ky = 82022, K2 = 2(S1120 + 281912),
and Kg - 81111.

One of the general solutions of equation (1)
can be expressed in the form of a Fourier
series as
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where vy, = naw/l, and | is the length of
the beam,

. real or
imag.

and A,, B,, C,, D, are arbitrary constants
to be determined from boundary conditions.
It follows from equation (2) that the stress
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components are COS Yul1. (3)
o = &% Consider a simply supported orthotropic
U o beam subjected to a concentrated load
L afa y at an arbitrary point along the upper edge
= 3 yiled(Avcoshysars T Businhynara) o ohown in Fig. 1. The stress boundary
+ B*(C, cosh y,Bx» conditions for this type of loading are given
+ D, sinh y,8x.) | siny,x; by
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In these equations P is the total load and ¢
is the load intensity. These two parameters
are related by the expression 2aq =P as
a —0; the parameter m is a fraction less
than unity. Initially, we attempt to find an
expression for stress o. that satisfies the
boundary condition (4b). It is expressed in
the form of a sine series as

a, sin y,x;.

Ms

Oos — (5)
The unknown coefficients @, are deter-
mined by the usual methods of obtaining
the coefficients of a Fourier series. Using

n

1

1

the boundary conditions given by (4a) and
(4b), we obtain

o0

P . .
Oos = ——— 3 SIN NMT Sin Y, %,

99
- L=

(6)

where the equality P = 2aq has been used.
Since shear stress, o2, must be zero at the
edge x» = = h, for all values of x; it follows
that

- § V| (A, sinh y.ah + B, cosh y,ah)

) + B(C,, sinh y,8h + D, cosh y,8h) ]
X cos ynX1 = 0, (7)
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Fic. 1. Simply supported orthotropic beam

subjected to a concentrated load.
=3 vi*|a(~A, sinh y,ah + B, cosh y,ah)

+ B(-C, sinh y,8h + D, cosh y,8h)]

X cos ypx; = 0. (8)

Substituting o at xs = -h into the second
of (3) gives

- § Y2 [ A, cosh y,.ah — B, sinh y,ah

] + C, cosh y,8h — D, sinh y,8h|
X sin yyx; = 0. (9)
Finally, substituting o2, = —(2P/1) X

3 sin nmsin y,x; at x. = h into the sec-

=l
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In general, sin y,x; and cos y,x; are non-
zero. Therefore, if equations 7-10 are
solved simultaneously, the unknown con-
stants A,, Ba., C., and D, for each term of
the Fourier series can be determined. They
are as follows:
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Variation of o1, with thickness in a simply supported beam under concentrated load at I/4.
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tion as given by elementary bending theory
can be noted.

The variation of shear stress o2 with
both x; and x; is shown in Figs. 4, 5. The
shear stress distribution through the cross
section of the beam is modified substantially
from that predicted by elementary theory.
Furthermore, the variation of shear stress
with x; at constant x, is not linear as is
predicted by elementary theory. Finally,
Fig. 6 shows the variation of o, along the
x; axis of the beam. The reader is re-
minded that the results of o.: and the
effect of the length to the oy; are unavail-
able from elementary theory. The result of
the variation of o9 along the x; axis is in
general agreement with the result of an
isotropic beam as given by Timoshenko and
Goodier (1951).

CONCLUSIONS

For bending of an orthotropic beam un-
der an arbitrarily distributed load, one can
sometimes use the polynomial stress func-
tion. (Jayne and Tang 1970). If the load is
distributed in a more complicated manner,
however, especially in cases where the load
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Fic. 4. Distribution of ¢;: through the cross section of a beam (h/l = 1/50) under concentrated load.
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F1c. 5. Variation of ¢.. along x; axis of a beam (h/l = 1/50) under concentrated load.
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Frc. 6. Variation of ¢ along x axis at x. =

0 (l/2 =1/50).

extends over only part of the beam, such
as the concentrated forces considered in
this paper, the stress distribution can be
obtained readily with Fourier series. This
method will provide a solution that satisfies
all boundary conditions.

Elementary bending theory is based on
the assumption of a linear distribution of
normal stress oy at every section. It has
been shown in Figs. 2, 3 that the elemen-
tary Bernoulli-Euler theory of bending is
very accurate if the thickness of the beam
is small in comparison with its length. The
variation of normal stress oy, over some
cross sections of an orthotropic beam calcu-
lated from the first fifty terms of the series
is nonlinear. However the departure from
linearity is moderate and for most applica-

tions can probably be ignored. On the
other hand, the distribution of shear stress,
042, through the cross section of the beam
differs markedly from that predicted by
elementary theory. It may be necessary to
account for this difference in some type of
design. The normal stress component, g,
which is not accessible by means of elemen-
tary theory, exhibits an unusual variation
along the length of the beam. Although of
theoretical interest for most applications,
the variation of o can be ignored.
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