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ARSTRACT 

TIVO strategies are considered whereby the full sample need not bc destroyed to obtain 
c.stimatec1 of low-order percentiles. The properties are examined by Monte Carlo methods. 
One strategy, based on a proof-loading concept, appears to have practical value, particularly 
\\.hen nsc~d in conjunction with a non-destr~lctively-deternlined conconlitant variable. Even 
\vhen the concomitant variable has a fairly low correlation with the property of interest, 
thr numbcr of san~ples destroyed is apprccial~ly red~lced. This number is, however, a 
rando~n variable. The second strategy, which again uses a concomitant variable, fixes 
the nnlnber ~lestroyed, but in other respects is less satisfactory; for reliable results the 
1untl11)er destroyed will be uncomfortably high unless the variables are very highly correlated. 

T l ~ e  use of a subjective ranking rather than a measured conconlitant variable, to reduce 
the ntunber of specinlens destroyed, is considered. I t  is seen that, under some circurnstanccs, 
snbjective ranking, or even allocation into ordered groups, will be cost-efficient. 

Atltlitional ke!ytuorcl.u: Monte Carlo sim~llation, statistical methods, cost efficiency, con- 
co~nnit;~nt variables. 

I N T H O I ) U ~ I O N  the case. When the taking of an observation 

It is often the case that whell the mea- i"v"lves the destruction of a perhaps ex- 

surelllellt of a certairl requires pe"sivc specinlen, the method tends to 10% 
the destnlctio,, the specimen whatever attraction it might otherwise have. 

the parameter of interest is not the popula- There are situations, however, where the 

tio,, llleall lIut some low.order percentile. first M order statistics can be deternlined 

A familiar example collcen,s the determilla- without having the actual observations on 
ti011 of product strength for qllality control "'1 "cci"le1ls. For example, if the obser- 

purposes. vations were time to failure, then inclivid- 

perhaps the relialIle way of esti- ualssurviving after a certain test period 

,nating a low.order percentile, such as the need not be left to fail (provided the period 
fifth, is to fit a sluooth cul.ve, by eye, in the hasheen chosen so that the minilnun1 re- 
regioll tile to the elllpirical q ~ ~ i s i t e  number do, in fact, fail). Likewise, 
distril~ution function constructed hy order- in the testing of lumber for some strength 
iug the ollservations of a large random Sam- P'oPertY, a certai~l "proof" load could be 

pic. Such procedure is distributioll.free, applied so that only a fraction of the sanlple 

there lIeing llo possibility of bias froln the would bc broken, the remainder having 
fittillg all inappropriate function if strength greater than that corresponding to 
the sample is sufficiently large, thc precision the prescribed load. 
should be high. In practice, however, we do not neces- 

'rhe drawllack of such a system is that sarily have sufficient knowledge to de- 
the salllple lllust large, direct termine in advance the suitable test period 

rise is made of a relatively small pro- 0' 1 ~ 0 0 f  Ioatl. 111 what follows we shall 
poltioll of tllc. ()bservatiolls that have bee,, consider SOIIIC strategies that embody the 
lllade on the entire sample for correct order- a1x)ve philosophy, but overcome this diffi- 
i ~ g .  The larger ol3servations are necessary culty. For convenience the methods will be 
only to ensurc that if we say that \ye have describecl in the terminology of luinber- 
thtl first M order statistics, i.e. the lowest M strength testing, but clearly can be related 
values properly ordered, then this is indeed to other circumstances. 
\ \ ( ) ( ) I >  *\XI) F113b:I\ 178 FALL 1975. 17. 7(:1) 
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TLBLE 1 Mortte Carlo generated expected nlcin- 
hcrv of s l~~cirnens  clestroyecl, D, under Strategy A 
f o r  cc~lectetl bulttes of A4 (N = 200) 

'4 

1 0  2 0  30 40  

Average D 39 .73  6 4 . 4 6  8 6 . 3 6  103 .95  

Variance o f  I) 26 .60  27 .04  26 .78  35 .72  

S t d .  error of  D 0.52 0.52 0.52 0 . 6 2  

STRATEGY A 

Let the sarnple size be N and suppose 
that we wish to determine the lowest M 
values. Select M, at random, from the N 
specinlens and test to destruction. Select 
another specimen at random and apply a 
load equivalent to the inaxiinum of the M 
values ol~tained (the "current proof" load). 
If the specimen fails, it must be weaker than 
at least one of the M values. I t  then must 
join the set of lowest M values and the 
previons maximum must be removed from 
the set. The proof load is then reduced to 
the new maximurn. If the specimen does 
not fail, it has strength greater than the 
proof load and no change is required. An- 
other specimen is selectcd at random and 
thc procedure repeated until all N speci- 
inens have been examined. 

This strategy ensures that the lowest M 
out of the N will be found, but actual num- 
ber I) of specimens destroyed is not known 
in advance and is, in fact, a random vari- 
able. 

Given N and M, it is a straightforward 
matter to examine the properties of D by 
Monte Chrlo methods1. Since only order is 
relevant, it follows from the probability 
transforlnatioll (see, e.g. Kendall and Ruck- 
land 1971) that, with no loss of generality, 
the strengths can bc assumed to be uni- 

51 

' Click (in press) shows that E ( D )  = 2 l / i ,  
1 

thus provicling confirn~ation of our Monte Carlo 
tlerived values. Thc analytical procedcre, however, 
t1oe.s not rradily extend to the case of prior ordering 
o n  a colicomitant variable considered in the follo\v- 
ing section. W e  tlierefore c4ect to l l s r  31lonte C;irlo 
~rlcthods t h r o ~ ~ g h o l ~ t .  

formly distributed; any convenient uniform 
pseudo-random number generator can then 
be used. The algorithm is outlined in Ap- 
pendix 1. 

For 100 trials with N = 200 at each level 
of M for M = 10,20, 30, 40, the results given 
in Table 1 were obtained. Histograms are 
given in Fig. 1. 

We see, for example, that if our objective 
is to determine the lowest 20 out of a sample 
of size 200 then under this strategy we 
would break on the average about 64 speci- 
mens, although we would also have about 
a 1-in-20 chance of breaking 73 or more. 
That is, if this procedure were repeated 
independently a large  lumber of times, then 
on the average only one time in twenty 
would 73 (or  more) specimens be broken. 

[Note that although percentiles will often 
be closely approximated by mean * I( 
(standard deviation) with K obtained from 
standard normal tables, the distribution of 
the l~umber broken is non-normal, and, in 
general, 11on-symmetric. If the direct csti- 
mate of a percentile, i.e. the appropriate 
point on the histogram, differs appreciably 
from the calculated approximation, the 
direct estimate, if based on a sufficiently 
large number of trials, would be preferred]. 

While strategy A could be applied to 
existing procedures, for example the distri- 
bution-free inethod of ASTM D2915, with 
the algorithm as here presented, such ex- 
plicit usage is irrelevant to the immediate 
purpose. Strategy A is sirnply pieseilted as 
a definitive method for determining the 
lowest M from a sample of size N. 

STRATEGY A EXTENDED 

I t  nlay happen that there is a quantity 
which can be measured non-destructively 
and which is correlated with the strength. 
I t  is clear that the number of specimens 
broken would be reduced if, instead of 
being taken in random order, the specimens 
were arranged in approximate order of mag- 
nitude by the use of such concomitant 
variable(s). For example, in determining 
inodulus of rupture one snight use a non- 
destructively-deter11ii11ecl modulus of elas- 
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T,\I\LE 2. Monte Carlo generated expected number3 of rl)ecimens destroyed under Strategy A Extended 
for bariorrc degrees of correlation, p,  on a concomitant tiariahle and selected zjalzies of M ( N  = 200) 

M 

10 20 30 40  

hv. D Var. D Av. D Var. D Av. D Var. D Av. D Var. D 

ticity or specific gravity, or even a visual 
ranking. 

To gain some idea of the degree of re- 
duction possible, we shall extend the 
Monte Carlo study. Let us denote the 
strength by Y and assume a single con- 
comitant variable X, and suppose that 
(X,Y) has a bivariate normal distribution. 
With no loss of generality, we may take 
the means of X and Y to be zero and the 
variances to be unity. The correlation be- 
tween X and Y is denoted by p. For a given 
X, it follows that Y has a normal distribution 
with mean pX and variance 1-p2. Accord- 
ingly, we may use a normal pseudo-random 
number generator to produce N values of X, 
which we then arrange in ascending order. 
We then proceed with the algorithm as be- 
fore, but with the strengths obtained by a 
normal pseudo-random number generator 
scaled so as to have mean pXi and standard 
deviation d 1-p2, where Xi denotes the ith 
value of X selected in order that XI < Xz 
< . . . < X K .  

If the correlation is perfect ( p = I) ,  then 
D is identically equal to M. The case p = 0 
corresponds to the sih~ation already con- 
sidered (i.e. random order). One hundred 
realizations were therefore carried out for 
N = 200, and each combination of M = 10, 

20, 30, 40 and p = 0.1, 0.2, . . . . , 0.9 with 
results as given in Table 2 (some additional 
cases with p > 0.9 and M = 20 are in- 
cluded). 

Plots of average D against p are given in 
Fig. 2. With the exception of values of p 
close to unity, the trend is approximately 
linear. To illustrate, with a correlation of 
0.7, to obtain the lowest 20 out of 200 we 
would break, on the average, about 39 speci- 
mens; however only about one time in 
twenty would we break more than 45, com- 
pared with 64 and 73, respectively, for the 
same case with no concomitant variable. I t  
wol~ld appear that appreciable reduction in 
the number destroyed can be achieved even 
by the use of an only moderately correlated 
concomitant variable. 

In practice, the distribution of (X,Y) is 
unlikely to be bivariate normal (e.g. the 
marginal distribution of Y may well be 
better represented by a Weibull form). 
However, the average number destroyed at 
p = 0 and at p = 1 are independent of dis- 
tributional form, and it seems reasonable to 
conjecture that the trend as indicated would 
not be departed from substantially for any 
reasonable distrihutioil of the strength and 
concomitant variables. 
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l"~c. 2. Relationship between expected number destroyed and degree of correlation for strategy A 
\\,it11 a conconlitant variable. 

The above method requires that all N 
specimens be tested to some degree. As an 
alternative, again suppose that the speci- 
mens have been ordered by means of the 
concomitant variable, but we test to destruc- 
tion the lowest P (2 M )  so indicated, the 
remainder being untested. The number P 
is fixed, and determined so that the prob- 
ability is sufficiently high that the M lowest 
values (out of the N specimens) are con- 
tained within these P. The price paid for 
knowing in advancc how many will be de- 
stroyccl is some uncertainty that the actual 
hl lowest vallies will be found. 

Monte Carlo methods have again been 
employed to study this situation. Bivariate 
normal random variables have been gen- 
erated as described in the previous section, 
but the remainder of the algorithm is now 
simpler. The P values obtained by ordering 
on the concomitant variable are then or- 
dered by strength and the Mt" strength 
value determined. The number of the re- 

maining N-P strength values greater than 
the hiIttl are then counted. If the M lowest 
values are contained within the chosen P, 
then this count will be zero. Accordingly, 
the probability of this happening will be 
estimated by the proportion. q, of the Monte 
Carlo trials in which the count is indeed 
zero. From plots of q against P (see Fig. 
3 ) ,  we may estimate the number of tests 
required to achieve a specified value of q, 
say 95%. With only 100 realizations this 
cannot be done very precisely; however the 
trends are clearly indicated. The estimates, 
rounded to the nearest multiple of 5, are 
given in Table 3. 

I t  would appear tlxlat this strategy is 
advantageous only when the correlation be- 
tween strength and the concomitant vari- 
ab le(~)  is very high. Of course, the proof- 
loading" strategy could be applied within 
the lowest P specimens to reduce the num- 
ber destroyed (which then becomes a ran- 
dom variable), but this would likely have 
little saving over proof loading thc whole 
sample (of N )  and, of course, does not 



SA~II'LIIVG STRATEGIES 183 

Fee:. 3. Relationship l)ct\vce~l thc prol)al)ility of ol~taining thc lowest M (= 10) when P specinlens 
drstroyed ( N  200) for different lcvcls of correlation on a concomitant variable; Strategy B. 

change the risk of not obtaining the lowest 
AT. 

I t  may be possible to tolerate a snlall error 
in the determination of the lowest M, i.e. 
work with a sct that contains at most O I I ~  

or two specinienc; that should not be in it. 
This would permit some reduction in P, but 
exploratio~l of the technical conrequences 
of inaccurately determining the lowest M 
relative to the value of any test specimens 
not destroyed is too con~plex a subject for 
con\ideration here. 

taking values 1, 2, 3, . . . . N, and from past 
work we may have reasonably good knowl- 
edge of the magnitude of this correl a t ' ion. 
( I t  is assumed that the ranking is done by 
the same person, 01- 1)y different people 
working to well-defined rules-that is, we 
are dealing with a stable situation). How- 
ever, without further investigation, we can- 

TAI~I,E 3. Approxirnute number of tests required 
to achieve q = 0.95 for ~electerl values of M and p 
( N  = 200) 

A SOTE ON SUBJECTIVE RANKING 

Let 11s return to the extension of strategy 
A, but where the prior ordering is based on 
a subjective, or visual, ranking rather than 
the actual measurement of an associated 
property. I t  is possible to compute the 
linear correlation betwecn strength (or  life 
span, etc.) and the rank order, the latter 



184 W. G. WARREN 

not assmne that the expected number de- 
stroyed will be reasonably approximated 
by the computational procedures that led to 
Table 3, when this form of correlation is 
used in place of the correlation between 
co~itinnous random variables. We here at- 
tempt, therefore, to obtain some idea of the 
magnitude of the error that would arise 
from such substitntion. 

It  will be assumed that behind the rank- 
ing there exists a quantitative variable, the 
magnitude of which is not known explicitly. 
We shall call this the implied variable. Such 
assumption may not be unrealistic; when 
people rank objects they cominonly make 
slich quantification, although perhaps sub- 
co11scio11sly. 

The implied variable is then assumed to 
11al.e a bivariate normal distribution with 
the strength (or life span, etc.). The prob- 
lem is to determine the relationship be- 
tween the correlation parameter ( p )  of the 
"implied" bivariate normal distribution and 
the correlation, 7) say, between strength and 
rank order, the latter obviously being a 
function of sample size ( N ) .  This is a 
prob1c:m in mathematical statistics, a solu- 
tion to which is outlined in Appendix 2. 

It  turns out that, as N increases, 7 ap- 
proaches p and, even for N as small as 20, 
7 is approximately 0.95~. Accordingly, 
there appears to be no error of practical 
consequence if a well-determined value of 
7 is used in place of p for the purpose of 
estimating the expected number of speci- 
mens destroyed by the extension of strategy 
A. 

I t  should be noted, however, that whereas 
for a given sample, the value of the cor- 
relation between strength and a measured 
concomitant variable is unique (provided, 
of course, that the illeasureinents are care- 
fully made) even the same person will not 
necessarily place the members in the same 
order were he to carry out the subjective 
ranking more than once. Mathematical 
questions aside, it is clear that the estimates 
of 7 will exhibit greater variation than the 
estimates of p, so that, although a subjective 
ranking of the sample may well cost less 
than n ranking by measurement of a con- 

comitant variable, a greater effort may be 
required to obtain an estimate of 7 which 
has precision equivalent to an estimate of p. 

In practice it is not necessary to have a 
full ranking of the complete sample by 
either obiective or subiective methods. I t  
may be sufficient to allocate the material 
to one of two groups, one "low," the other 
"high." Our ability to group correctly is, of 
course, related to our ability to rank. Such 
allocation into groups can obviously reduce 
greatly the number of specimens that must 
be destroyed and provides a potentially 
comparable reduction in the cost of the test- 
ing program. Thus, while the introduction 
of 7 may be an artifact, it does lead to valid 
information on the possible advantage of 
employing strategy A with the material in 
other than random order. 

DISCUSSION 

Obviolisly a comprehensive study of the 
possible combinations of M and N by the 
methods here presented would be a mam- 
moth undertaking, although the algorithms 
can be readily applied to any particular case 
of interest. The results from the few cases 
considered above, nevertheless give some 
feeling for the situation. I t  can be con- 
cluded that the "proof-loading" method can 
give substantial reduction in the number of 
specimens destroyed, cspecially if used in 
conjunction with an even moderately cor- 
related conconlitant variable or subjective 
ranking. The actual number destroyed is, 
however, a random variable. Unless it can 
be shown that some small level of inaccu- 
racy in the determination of the set of lowest 
values is inconsequential, it would appear 
that the risk of such inaccuracy under the 
destructive testing of a fixed number of 
specimens, selected on the basis of an even 
fairly highly correlated concomitant vari- 
able, is unacceptable under most practical 
conditions. 

In practice, one must also consider the 
question of cost, which would include com- 
ponents for labor, machine time, and related 
supplies as well as that of the test speci- 
mens. Each situation has to be examined 
on its own merits. Indeed, there may well 
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1)c situations in which it is more economical 
to proof-load the whole sample than to mea- 
sure the concomitant variable(s), i.e. the 
cost of obtaining the concomitant variables 
might csceed the value of the number of 
pieces saved from destruction. There are 
other situations where the concomitant vari- 
ables will be obtained as an integral part of 
the study, and it is in these or in the cases 
of spccirnens of high value that the strategy 
will be most attractive. 

Throughout the above, it has been tacitly 
assumed that no damage has resulted from 
proof-loading a specimen that has not vis- 
il~ly failed-in other words, that surviving 
specimens would withstand future applica- 
tion of the same load. This is not neces- 
sarily the case although definitive results 
on this topic appear to be lacking. Obvi- 
o11sly there is little purpose to strategy A 
unless the unbroken material has some resid- 
ual worth; for example, it might possibly 
be used safely in a lower grade application. 
Such considerations must be incorporated 
into the questions of cost. 
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Ot~tline of Algorithm for Strategy A. 
1. Generate and sort into ascending order 

11 uniform pseudo-random variables 
XI < Xn d XR . . . < XJ1. It  is conve- 
nient to define X,, = O and Xal+l to 
which a value is not yet ascribed. 

2. Set counters C = 0, D = M 
3. Set C = C $- 1 

4. If C > N-M, then terminate; total num- 
ber of specimens destroyed is given by 
D. 

5. Generate a new uniform pseudo-ran- 
dom variable, X. 

6. If X > Xlf, then go to step 3. 
7. Set D = D + 1 
S. Set j = M - 1 
9. If X < Xi, then set j = j - 1 and repcat. 

10. Let k = M + 1; ( i t  is established that 
Xj < X < Xj+l)  

11. If k < j + 2 then set Xk+l = X and go 
to step 3. 

12. Set Xk = Xk-l  
13. Let k = k-1 
14. Go to step 11 

APPENDIX 2 

Let XI, X2 . . . .X, be the ordered values 
of the implied variable, i.e. X1 < Xz < . . . . 
< XN, and let Y1,Y2 . . . .Y, be the associated 
strength values. Note that the Yi will not, in 
general, be in ascending order. 

We assume 

With no loss of generality we may take 

whence 

where E(ei) = 0, Var(ei) = 1 - p2, Cov(ei,ej) 
= 0, and the Xi are independent of the ei. 
The problem is then to compare p with E(rl) 
where 

Note that Z(Yi - P) is independent of the 
ordering of the Yi. 

- 
Let us write 7 = rl(u,v) = u/CN\/ v 
where Cx = [S(i - (N + 1)/2)2] % 

= \/ (N  - l)N(N + 1) /2  
u = X(i - (N + 1)/2)Yi, v = S(Yi - P)2. 

Then E(u) = p E(8iXi) and E(v) = n - 1. 
As a first approximation to E(?l) we have 
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TAULE A l .  First order analytic a))~)roxilrution to E(v) 

E(v) = E(~,(u,v)) 21 v(E(u), E(v)) The adjustment is then, approximately, 
= p E(ZiX,)/C, \/ N - 1 p (p2 - 1/2)E(8iXi)/2C,-(N - 1)3/2 

where E(SiXi) = BiE(X,) can be readily de- that the refined estimate is 
terilli~ecl from tables of the expected value 
of normal order statistics (e.g. Teichroew, 
1956). Values of this approximation are 
given in Table A1 for N = 3(1)10,15,20. 

The approximation can be improved by 
the addition of the tern1 

' '": [[ 'I  Values of the refined estimate for selected a v 
values of N and p are given in Table A2. 

where the second partials are evaluated at Monte Carlo methods have been used to 
E(u),E:(v). The adjustment is then investigate the adequacy of the above ap- 

proximations. Full details are available in 

, p E ( . 7 i X i )  the Western Forest Products Laboratory file 
-- - .- a - +I 
"N ( N - 1  1512 ( N - l )  

L 2 ]  report. Satisfactory agreement between the 
analytical and Monte Carlo approximations 
was achieved; in particular the same trends 

where 2, = Var(v) = 2(N - 1) and v,, - on N and p were observed. For practical 

p(2 - p2)E(BiX,). purposes the first-order analytical approxi- 
mation would appear to be adequate, espe- 

(Verification of this approximation for u,, cially for p in the range where the reduction 
is givt.11 in a Western Forest Products Lab- in the number of specimens destroyed 
oratory file report available from the author would offset the expense of ranking, say 
011 rccluest ) . p > 0.6. 




