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ABSTRACT 

The S, distribution can fit a much wider range of shapes of frequency distributions than the log- 
normal and Weibull, or even the beta, distributions. Maximum likelihood estimates of the four pa- 
rameters can be obtained. 

A bivariate distribution between correlated variables A and B. e.g. modulus of rupture and modulus 
of elasticity, is readily calculated if an S, distribution is fitted to each variable, the only additional 
information needed being the value of the correlation coefficient between A and B. This distribution, 
known as the S,, distribution, is based on a transformation of the original values into normal 
deviates and so its properties can be determined from normal distribution theory. The conditional 
distribution of variable A for a given value of B is itself an S, distribution, the form of which may 
vary with the value of B to fit the test distribution of the A-values. 

The S,, distribution offers a possible means of obtaining a probabilistic relationship between the 
various strength properties of lumber such as modulus of rupture and maximum tensile strength. 
Means of estimating the correlation coefficient between different strength properties are suggested 
and the effect of error in the estimate of the correlation coefficient is discussed. 

Keywords: Frequency distribution, lognormal distribution, Weibull distribution, lumber, mechanical 
properties, S, distribution, S,, distribution. 

INTRODUCTION 

It is often convenient to describe the results of mechanical tests on lumber in 
terms of some recognized distribution function. Unfortunately, the frequency 
distributions of the test results do not follow a consistent pattern. The normal 
distribution provides a reasonable fit in some cases, but the lognormal and the 
Weibull distributions have generally been found to give a better fit. The Weibull, 
which has been increasingly preferred in recent years, has the advantage of being 
able to represent both negatively and positively skewed data, whereas the log- 
normal is restricted to positively skewed data. One problem with these three 
distributions is that they are very limited in the values of skewness (&) and 
kurtosis (P,) that they can accommodate. The normal distribution is theoretically 
appropriate only for zero skewness and for p, = 3, while for the other two dis- 
tributions, p, is a near linear function of p,. This is illustrated in Fig. 1, which is 
a plot of P, against P I ,  the square of the skewness. The normal distribution is 
represented by a single point, the lognormal by a single line, and the Weibull by 
two lines, the shorter line being for negative skewness. There is a lower bound 
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FIG. I .  p , ,  p, space showing the values covered by the normal, lognormal, Weibull and S, dis- 
tributions. 

to the value of p, for any value of p, defined by the line p, - PI - 1 = 0, shown 
in Fig. 1 as the boundary of the "impossible region." The lognormal and Weibull 
lines are not widely separated, especially for small values of skewness, and so 
it is to be expected that either distribution would provide a moderate fit to data 
with p, and p, values that plot near those lines. 

As an illustration of the scatter of test values in the P I ,  p, space, Fig. 2 repro- 
duces part of Fig. 1 with the plotted values of b, and b, (the estimates of P, and 
p,) for the properties of the three samples of lumber mentioned later in this paper. 
It should be remembered, however, that large sampling errors are usually asso- 
ciated with the b estimates. Consequently, this diagram does not necessarily 
indicate, or rule out, any particular distribution as the "best" distribution. 

The purpose of this paper is to discuss some features of a four-parameter, 
univariate distribution called the S, distribution (Johnson 1949a), and the corre- 
sponding bivariate distribution known as the S,, distribution (Johnson 1949b). In 
Fig. 1, the SB distribution covers the PI, p, space between the lognormal curve 
and the impossible region. Consequently, it is possible to fit it to data with a 
wider range of skewness and kurtosis values than even the beta distribution, 
which covers the region between the Weibull line and the impossible region. 

The SB and S,, distributions have been applied by Schreuder and Hafley (1977) 
and by Hafley and Schreuder (1977) to tree heights and diameters with consid- 
erable success. As far as the author is aware, they have not been applied to the 
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FIG. 2. Values of b , ,  b, for modulus of rupture (MOR), modulus of elasticity (MOE) and maximum 
tensile strength (MTS) of 2- x 8-inch southern pine and 2- x 4-inch radiata pine lumber. 

mechanical properties of wood. Warren (1978) discussed Schreuder and Hafley's 
work, and commented briefly on the possible application of these distributions 
to the mechanical properties. In earlier work (Warren 1973), he found that the 
Weibull distribution fitted the lumber data he has been working with better than 
the four-parameter Pearson type 1 distribution, of whic,h the beta distribution is 
a special case. The Weibull has the theoretical justification of being compatible 
with a weakest link theory of failure. Consequently, Warren appears to favor 
further exploration of the Weibull system in preference to the SR distribution. 
However, the final sentence of his paper states ". . . very little work has been 
done on fitting the Weibull bivariate (or any other bivariate distribution) to mod- 
ulus of rupture and modulus of elasticity data, so that a verdict on its applicability 
or otherwise must be deferred until the necessary evidence has been accumu- 
lated. " 

It is proposed in this paper to advance some arguments for studying the ap- 
plicability of S, and S,, distributions to the results of mechanical tests on lumber. 

THE UNIVARIATE Sn DISTRIBUTION 

Like the beta distribution, the S, distribution is defined only for the range (0, l ) ,  
so  the test values must be transformed to bring them within that range. To do 
this, the lower and upper limits of the population values must be known or es- 
timated. If x is the test value, .$ is the lower bound and A is the range of the 
population, then the variate u lies within the range (0,1), where 
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FIG. 3.  Fit of the lognormal, Weibull and S, distributions to modulus of rupture of 363 pieces of 
mixed grades of 2- x 8-inch southern pine lumber. 

The probability distribution function for u is given by 

f(u) = (SIX @){u(l - u))-I e ~ p [ - 0 . 5 { ~  + 6 In u/(l - u)j2] (2) 

where 6 and y are shape parameters. 
If both the lower and upper bounds of the distribution are specified, then closed 

maximum likelihood solutions of 6 and y exist. Often, only the lower bound can 
be reliably specified, in which case the upper bound may be estimated by an 
iterative procedure. It is also possible to obtain maximum likelihood estimates of 
both bounds by an iterative procedure if neither can be reliably estimated be- 
forehand. A suitable computer program enables ready calculation of the param- 
eters for any of these cases. Although values of the population bounds for the 
mechanical properties are unknown, informed estimates can be made. If the 
bounds obtained by the mathematical search routines appear unrealistic, then the 
researcher can make some adjustments as indicated later. 

Figures 3 and 4 show the lognormal, Weibull and S, distributions fitted to the 
values of modulus of rupture (MOR) and flatwise modulus of elasticity (MOE), 
respectively, given by Doyle and Markwardt (1966) in their Fig. 9 for four grades 
of 363 pieces of 2- x 8-inch southern pine lumber. 
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FIG. 4. Fit of the lognormal, Weibull and S, distributions to modulus of elasticity of 363 pieces 
of mixed grades of 2- x 8-inch southern pine lumber. 

For both properties, the SB distribution gave the best fit according to log like- 
lihood and Kolmogorov-Smirnov statistics, The log likelihood estimates of the 
goodness of fit for the three distributions are given in Table 1, the smaller the 
value the better the fit. The rank of the dist~ibutions is given in parentheses. That 
the SB distribution should give the best fit for modulus of rupture is to be expected 
because the plotted point in Fig. 2 for skewness and kurtosis lies well below the 
Weibull line. However, the corresponding point for modulus of elasticity lies on 
the lognormal line, but Fig. 4 shows that the shape of the lognormal distribution 
does not fit the pattern of the experimental values quite as well as does the S, 
distribution. 

T H E  BIVARIATE SBB PISTRIBUTION 

The bivariate distribution can be readily found for correlated variables x , ,  x,, 
for example, modulus of rupture and modylus of elasticity, if an S, distribution 
is fitted to the test results for each variabld. Apart from the parameters of these 
marginal distributions, the only additional ibformation required is the correlation 
coefficient for the two variables. 

The test values, after being transformed according to equation ( I ) ,  are further 
transformed to yield normal variates as under 
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T A B L E  I .  Compari.ron of distributions for 363 pieces of 2- x 8-inch pine lumber. 

Values of log likelihood and rank of distribution 

Property Lognormal Weihull SB 

Modulus of rupture -881.5 8 7 2 . 1  -864.9 
(3) (2) ( 1 )  

Modulus of elasticity - 159.2 - 166.4 - 154.8 

(2) (3) (1) 

Z, = y, + 6,1n{uI/(l - u,)) 

z, = y, + 6,ln{u,/(l - u,)) 

The correlation coefficient p between z, and z, may then be calculated as 
follows: 

where n = total number of paired values. 
The probability distribution function for the bivariate distribution of z, and z, 

is then given by 

f(z,,z,:p) = { 2 n ~ ~ } - 1 e x p { - 0 . 5 ( 1  - p2) '(z,' - 2pz,z, + z,,)) (5) 

The conditional probability of z, for any given z, is also an S, distribution 
with parameters given by 

Because the z's are normal variates, the percentile limits for z, for given 2, 
can be readily computed. If k is the normal deviate c:orresponding to a particu- 
lar percentile a ,  e.g. k = -1.645 for the 5th percentile, then the a-percentile 
for u, for given u, is 

where 

= o{u,/(l - ~ , ) ) ~ e x ~ { k ~ ~ p " / 6 ~ )  

The mean regression is too complicated to be readily manipulated. How- 
ever, the median regression is more amenable. It is obtained from Eq. (7) 
by putting k = 0 in Eq. (8) to give 

the subscript "m" indicating the median value. 
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FIG. 5 .  Regression lines for the median and 5th and 95th percentiles for the bivariate distribution 
of modulus of rupture on modulus of elasticity of 2- x 8-inch southern pine lumber. 

Figure 5 shows the regression lines corresponding to the Sth, 50th (median), 
and 95th percentiles for an S,, distribution fitted to the same results for modulus 
of rupture and flatwise modulus of elasticity as in Figs. 3 and 4. The figure 
illustrates how the distribution accommodates the change in skewness of the 
modulus of rupture results as the modulus of elasticity changes. For low values 
of modulus of elasticity, the median is closer to the 5th percentile line than to the 
95th line, but for high values it is closer to the 95th percentile line. 

The lower and upper limits were determined for the distribution by iteration 
but are not realistic in that horizontal asymptotes are implied for the modulus of 
rupture. The inference may be drawn that the data do not contain sufficient 
information to provide good estimates of the limits. One can specify certain re- 
lationships or values for the limits that will lead to more realistic shapes for the 
regression lines in the extrapolated regions. An illustration of such a modification 
is given in Fig. 6 for the S,, distribution for maximum tensile strength (MTS) and 
modulus of elasticity of 74 pieces of 2- x 4-inch radiata pine lumber from data 
supplied by Leicester (1979). A substantial change from the original lower and 
upper bounds made little difference to the regression lines in the region occupied 
by the test results. There are, of course, very significant changes in the regression 
lines outside that region. As usual, extrapolation beyond the scope of the data is 
fraught with uncertainty. Exploration of procedures for obtaining better estimates 
of the bounds may be a worthwhile future study. 
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FIG. 6 .  Effect of change in the estimated values of the upper anti lower bounds of the population 
values of maximum tensile strength and modulus of elasticity in tension of 2- x 4-inch radiata pine 
lumber. 

ESTIMATION OF THE CORRELATION COEFFICIENT 

Often it is not possible to obtain paired x , ,  x, values to enable the correlation 
coefficient to be calculated. For example, modulus of rupture and maximum 
tensile strength cannot be determined for the same piece of lumber because each 
involves a destructive test. S, distributions can be fitted to available data on the 
separate properties, but some estimate of the correlation coefficient for the two 
properties is needed to obtain the bivariate distribution. One is tempted to base 
the estimate on the correlation coefficient obtained for each of the x, , x, variables 
with some other common property. For example, the correlation coefficient be- 
tween tensile strength and modulus of elasticity can be obtained, as can that 
between bending strength and modulus of elasticity. Unfortunately, no theory 
exists for estimating the x, , x, correlation coefficient from the correlation between 
x, and x, separately with some other property. However, one intuitively expects 
that knowledge of the latter correlations should provide an indication of the x,, 
x, correlation coefficient. 

Figure 7 illustrates the effect on the percentile regressions of using two esti- 
mates of the correlation coefficient relating maximum tensile strength and mod- 
ulus of rupture. The data were from tests on 74 pieces of radiata pine (Leicester 
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FIG. 7. Effect of change in the assumed correlation coefficient between maximum tensile strength 
and modulus of rupture of 2- x 4-inch radiata pine lumber. 

1979), the correlation coefficient between tiensile strength and modulus of elas- 
ticity being 0.78 and that between modulus of rupture and modulus of elasticity 
being 0.75. In Fig. 7,  regression lines are drawn for correlation coefficients of 0.7 
and 0.5. As expected, the smaller coefficient gave a wider spread for the theo- 
retical distribution. However, it should be noted that the percentile lines based 
on the two correlation coefficients cross over each other. There is, therefore, 
only a small difference in the values near those intersections. 

An alternative means of estimating the correlation coefficient may be available. 
As shown in the Appendix, Eq. (8) may be rewritten in the form 

P = z2rn/a,rn (12) 

where z,, , z,, are paired median values of the transformed normal deviates. 
Consequently, if estimates of paired median values can be obtained, the cor- 

relation coefficient can be estimated from Eq. (12). One possible way of doing 
this will now be described. 
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Suppose, for example, that the median regressions for modulus of rupture on 
modulus of elasticity in bending, and for maximum tensile strength on modulus 
of elasticity in tension have been determined from the results of tests on lumber 
from the same population. The distribution of the modulus of elasticity in bending 
usually differs from that in tension, so it will also be necessary to know the 
median regression for these two properties. From this regression, we can obtain 
for any set of median values of modulus of elasticity in bending a matched set of 
median values for modulus of elasticity in tension. Hence for this median set of 
modulus of elasticity values in bending, we can obtain the corresponding set of 
modulus of rupture and maximum tensile strength values from the appropriate 
median regressions. In this way, we can obtain nominally matched pairs of values 
of modulus of rupture and maximum tensile strength from which the correlation 
coefficient can be computed. Unfortunately, the author does not have access at 
this time to suitable test data to enable this procedure to be tried out. To obtain 
such data would require the tension specimens to be tested first in bending to 
obtain the modulus of elasticity value to be paired with the modulus of elasticity 
value from the subsequent tension test. 

CONCLUSION 

The S, and S,, distributions offer a degree of' flexibility which should enable 
them to be of value in describing lumber data. They appear to have considerable 
potential where knowledge of the bivariate relationships between correlated prop- 
erties is required. They may also provide a means of' estimating the correlation 
coefficient between strength properties when a direct determination of that cor- 
relation is impossible. 
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Equation (1 1) may be written in the form 

O{ulrn/(l - u,rn)}@' 

:. In 0 + $ ln{u,,/(l - 

Substitution of the values for 0 and $ 

(PYI - ~ ) / 6 ,  + 
i.e. py, + p611n{u,,l(l 
1.e. p .z , ,  = zzm 

.-. p = zzm/zlm 




