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Abstract. Bioenergy properties of poplar species Populus trichocarpa (PT), Populus deltoides (PD),

and their hybrid were evaluated. Hybrid poplar trees from the cross between PT and PD presented

different anatomic, physical, chemical, and thermal properties from their parent species. Anatomic results

tended to suggest that hybrid poplar, with fewer vessels per unit area, had more resemblance to PT.

Extractive content ranged from 10.64-11% for PD, PT, and first-generation hybrid poplar, whereas it

varied from 8.8-9.5% for backcross offspring (BC2-BC5). PD had the greatest average lignin content of

25.6% followed by first-generation offspring and backcross offspring with lignin content of approxi-

mately 25%. Holocellulose content of hybrid poplar species was higher than that of their parent species.

Observed stem/stump proximate results ranged from 72-74.7%, 25-28%, and 0.80-1.7% for volatile

matter, fixed carbon, and ash content, respectively. Heating values observed along the stem were slightly

higher than at the stump, ranging from 7498-8356 kJ. TGA-FTIR analysis indicated that H2, CO2, CH4,

and CO were the dominant gaseous components from wood pyrolysis.

Keywords: Anatomy, bioenergy, hybrid poplar, TGA-FTIR, thermal and chemical properties.

INTRODUCTION

Demand for bioenergy in the US is growing
because of a concerted effort to decrease the
nation’s carbon footprint and dependency on fossil
fuels. Currently, woody biomass, the most abun-
dant naturally occurring resource, is a potentially
important feedstock for production of various
forms of bioenergy. Benefits of using biomass as
feedstock for bioenergy include decrease in use of

nonrenewable fuels, less dependency on foreign
fuels, stabilization of income in rural areas, and
decreased carbon emissions (Office of Technol-
ogy Assessment 1993). Biomass has been targeted
to replace 30% of fossil fuel used for transporta-
tion in the US by 2030 (DOE 2010).

The challenge with using biomass for trans-
portation fuel production is caused by the recal-
citrant nature of lignin. Cellulase enzymes
produced from a host of microorganisms can be
used to hydrolyze wood into fermentable sugars
provided an appropriate pretreatment is used.
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However, enzyme productivity is limited by
lignin content in pretreated wood, and thus
there is a need to genetically engineer biofuel
feedstock with naturally low lignin content.
Poplar trees (native cottonwood, aspen species,
and its hybrids) are suitable candidates for
genetic improvement for bioenergy feedstock
production because of their modest genome
size (Perlack et al 2005). Hybrid poplar has a
fast growth rate and high biomass yield of
about 18,144 kg per 0.01 km2 per year (Stanton
et al 2002). Hybrid poplar also thrives on a
wide range of conditions, can be harvested
throughout the year with minimum investment
in storage facilities (Wright 1994), and has com-
parable greenhouse gas emissions to other cellu-
losic crops because of less tillage and cutting
(Adler et al 2007).

With the goal of examining the bioenergy poten-
tial of hybrid poplars and their parents, the objec-
tives of this study were to 1) assess the anatomical,
physical, and thermochemical-related properties
of Populus trichocarpa (PT), Populus deltoids
(PD), and resulting hybrids; and 2) compare
bioenergy potentials among these poplar species
in the central Appalachian region.

MATERIALS AND METHODS

Materials

Poplar trees used in this study (PT and PD)
were established from vegetative cuttings at the
West Virginia University Agronomy Farm. The
plant material consisted of a single interspecific
family produced from a pseudobackcross cross-
ing design (Fig 1). Flowering branches were
collected from female PT tree clone 93-968
from the State of Washington. Pollen was col-
lected from a male PD clone, number ILL-101,
and used for crosses in a greenhouse setting
(Stanton and Villar 1996). This produced a
first-generation (F1) hybrid, clone 52-225 (clone
F1), which has been used extensively in com-
mercial plantations (Van Oosten 2000). To dis-
sect factors contributing to hybrid vigor in
this commercial clone and genes that control
lignin composition and its recalcitrance, F1

hybrid was backcrossed to a different PD tree,
clone D124, from Minnesota (Riemenschneider
et al 2001). This produced the pseudobackcross
family 52124 (collectively referred to as clone
BC1 in this article), which was used for
establishing the plantation and stool bed at West
Virginia University.

A randomized complete block design with four
replicates was used in this study. Twomain factors
considered were genotype and wood sample loca-
tion. There were five genotypes, all of which were
part of a two-generation pedigree: PD1, PD2, PT1,
F1, and BC (BC1-5). The second source of varia-
tion (block) was location sample was taken from
in the tree (ie stem or stump). Five backcross
hybrid poplars (five different trees, named BC1,
BC2, BC3, BC4, and BC5) from a 2-yr-old
plantation consisting of 755 genotype samples
were harvested together with primary coppice
shoots from samples of PD (PD1-pedigree
and PD2-pedigree), PT (PT1-pedigree) and first-
generation poplar (F1) for physical, anatomical,
chemical, and thermal analysis.

Anatomic, Physical, and Thermochemical

Analysis

Anatomic analysis for each sample was con-
ducted in cross, radial, and tangential sections

Figure 1. Crossing design for production of quantitative

trait locus (QTL) mapping pedigree. Female clone 93-968

was crossed to P. deltoides male clone ILL-101 to produce

F1 tree clone 52-225, a female tree. This tree was then

crossed to another P. deltoides male clone, D124, to pro-

duce 796 progeny comprising family 52124.
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with a scanning electron microscope (SEM;
S-400; Hitachi, Tokyo, Japan). Thin wood sheets
(0.2 mm thick from cross, radial, and tangential
sections) were cut from each sample using a
microtome. Dried sample sheets were glued on
silicon wafers and then coated with gold via an
ion sputter coater prior to observation by SEM.
Operating voltages of SEM were 20 kV, and a
magnification of 150 was used.

After samples were collected from the desig-
nated site, they were processed into small blocks
for anatomic, moisture content, and specific
gravity determination. Hot water extractives
and acid-insoluble lignin and holocellulose con-
tents in the various poplar woods were deter-
mined in accordance with ASTM D 1110-84
and 1106-96, respectively (ASTM 2001). A hot
water extraction method usually gives a good
estimate of wood extractives, especially for
hardwoods such as poplars, which is more cost-
and labor-effective.

Proximate Analysis

Content of volatile matter, carbon, and ash in
wood was evaluated based on ASTM D3172
(ASTM 2006) and D1102-84 (ASTM 2001).
One gram of each sample was placed in an oxy-
gen bomb calorimeter (Parr 6300) for heating
value determination. After running each sam-
ple through the bomb calorimeter, corrections
were made based on calorimeter gross and net
heat of combustion (Eqs 1 and 2) for hydrogen,
nitric acid, sulfuric acid, and fuse wire con-
sumption for the final computation of gross and
net heating value (Parr Instrument Co 2005)
following ASTM E711-87 (ASTM 2006). After
completion of all physical, chemical, proximate,
and thermal tests on wood samples, analysis of
variance and a t-test (a = 0.05) were performed
using the Statistical Analysis System (SAS,
Cary, NC) package.

Hc ¼ W � T � e1 � e2 � e3
m

ð1Þ

Hn ¼ 1:8� Hc � 92:7� H ð2Þ

where Hc = gross heat combustion (J/kg); T =
temperature change (%); W = energy equivalent
of calorimeter being used (J/kg); e1 = heat pro-
duced by burning the nitrogen portion of air
trapped in the bomb to form nitric acid (J); e2 =
heat produced by formation of sulfuric acid from
the reaction of sulfur diode, water, and oxygen
(J); e3 = heat produced by heating wire and cotton
thread (J); m = mass of sample (kg); Hn = net
heating value (J/kg); and H = percentage of
hydrogen (%) (based on a typical value of 6.2%).

TGA-FTIR Analysis

Thermal degradation behavior and pyrolysis
tests of selected samples were investigated by a
thermogravimetric analyzer (TGA Q50; TA
Instruments, New Castle, DE). Temperature
ranged from 22-400�C with a heating rate of
20�C/min. Nitrogen gas, at a rate of 20 mL/min,
was used to avoid oxidation. Sample weights
were approximately 2-3 mg. Evolution of gases
and light volatile organic compounds were mea-
sured with the TGA analyzer connected via a
heated transfer line to a NicoletiS10 (Thermo-
Scientific, Waltham, MA) Fourier Transform IR
Spectrometer (FTIR). Spectra of the gas mixture
were measured every 30 s at 4 cm�1 resolution.
A 1-min delay between TGA and FTIR gas cells
has been taken into account in data analysis and
presentation.

RESULTS AND DISCUSSION

Scanning Electron Microscopy Anatomic

Observation

In general, all poplar species examined presented
diffuse porous structure and agreed with prior
research findings (Panshin and de Zeeuw 1980;
Balatinecz et al 2001). Based on our visual esti-
mates, all anatomic features such as vessel size
and vessel cell pattern located at cross, radial,
and tangential sections appeared different among
PT, PD, and hybrid poplar species (Figs 2-5). PD
(Fig 3) appeared to have more vessels per
unit area compared with other poplar species. Ves-
sel distributions in cross-sections were visually
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Figure 2. Scanning electron microscopy images of

Populus trichocarpa (PT1): (a) cross-section, (b) radial sec-
tion, and (c) tangential section.

Figure 3. Scanning electron microscopy images of

Populus deltoides (PD2): (a) cross-section, (b) radial sec-

tion, and (c) tangential section.

Figure 5. Scanning electron microscopy images of

second-generation hybrid poplar (BC1): (a) cross-section,

(b) radial section, and (c) tangential section.

Figure 4. Scanning electron microscopy images of first-

generation hybrid poplar (F1): (a) cross-section, (b) radial

section, and (c) tangential section.
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different among poplar types. The anatomic result
tended to suggest that hybrid poplars (Figs 4
and 5) with fewer vessels per unit area have more
resemblance to PT (Fig 2) than to the pedigree
father (PD clone) (Fig 3). Based on our ocular
estimations, the predominant volumetric composi-
tion of observed poplar anatomy was fiber ele-
ments and vessel cells, which tends to agree with
past research that poplar trees have more fiber
proportion than vessels (Panshin and de Zeeuw
1980).

Physical and Thermochemical Analysis

Average specific gravity of the poplars showed
some differences among PD, PT, and hybrid
samples (Table 1). However, differences were
not statistically significant (p = 0.1431). Poplar
trees (including hybrid poplar) planted in North
America have been shown to be diffused porous
in structure with a low specific gravity ranging
from 0.30 to 0.39 (Bendtsen et al 1981;
Balatinecz et al 2001). However, average spe-
cific gravity observed in this study was slightly
higher. Higher specific gravities of 0.44 and 0.42
were observed in stump samples of pedigree par-
ents PT, PD, and hybrid poplar (F1, BC) species,
respectively, whereas a lower specific gravity

range of 0.35-0.39 was observed throughout the
stem. Generally, specific gravity of BC1-BC5
was higher than other genotypes, and specific
gravity of stump mass for most poplar species
was slightly higher than those of their respective
stems. This outcome was expected because
stumps were larger in diameter and contained
more fiber per unit area than stems. Higher spe-
cific gravity in the stump could be a result of
higher fiber proportion because wood-specific
gravity is significantly influenced by vessel-to-
fiber ratio (Balatinecz et al 2001).

Content of measured chemical properties (extrac-
tives, lignin, and holocellulose) in poplar wood
(Table 1) generally agreed with that obtained in
previous studies (Baker 1983; White 1987;
Adebola et al 2009). Extractive content ranged
from 10.6-11.1% for PD1, PD2, and PT; 11.0-
11.3% for F1 and BC1; and 8.8-9.5% for BC2-
BC5. Extractive content of BC2-BC5 showed
a statistically significant difference (p �0.0001)
from other poplar species tested. Lignin content
among the major group of poplar trees was sig-
nificantly different (p = 0.04599). PD1 had the
highest average lignin content of 25.6% followed
by F1 and BC1, which had average lignin con-
tents of approximately 25%. Observed significant
differences among poplar trees do not indicate a

Table 1. Physical and chemical properties of hybrid poplar (first generation, F1) and backcross (BC), Populus deltoides
(PD1 and PD2), and Populus trichocarpa (PT1).

Poplar species Wood location Diameter (mm) Specific gravity Extractives (%) Lignin (%) Holocellulose (%)

PD1 Stem 14.5 0.35 10.71 25.60 63.29

Stump 65.0 0.35 10.64 25.60 64.00

PD2 Stem 14.0 0.39 10.98 23.64 65.24

Stump 31.0 0.44 10.98 23.64 65.24

PT1 Stem 19.0 0.36 11.11 23.38 65.51

Stump 65.0 0.41 10.15 23.10 67.00

F1 Stem 16.0 0.39 11.09 25.00 63.91

Stump 85.0 0.43 11.30 22.58 66.32

BC1 Stem 13.5 0.35 11.00 24.98 63.88

Stump 31.0 0.43 11.35 24.67 63.44

BC2 (2-445) Stem 25.4 0.42 9.00 24.00 68.00

Stump 46.6 0.41 9.30 24.00 68.10

BC3 (1-425) Stem 31.5 0.42 8.80 24.00 69.20

Stump 50.0 0.43 9.20 25.00 66.80

BC4 (124) Stem 31.5 0.42 8.80 24.20 69.20

Stump 34.0 0.42 9.31 25.00 67.00

BC5 (031) Stem 18.0 0.35 9.50 23.00 68.00

Stump 40.0 0.41 9.00 23.00 69.00
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useable difference with respect to bioconversion
of wood to fermentable sugars, which contrasts
with a previous report that wood enzymatic
hydrolysis increases with decreased lignin con-
tent (Kim et al 2000). Average lignin content of
the remaining genotypes ranged from 24.0-
22.6%. The relatively higher average lignin con-
tent of hybrid poplars observed in this study
agrees with previous findings that reported
hybrid poplars had high lignin content (Labosky
et al 1983; Law and Rioux 1997). However,
average lignin content of hybrid poplar stem
and its pedigree is 2-6% lower compared with
yellow-poplar and red oak stem woods (Adebola
et al 2009). The reason for lower average lignin
content could be the age of poplar trees used
in this study. There were statistically significant
differences (p = 0.00026) in holocellulose con-
tent among various poplar trees investigated.
Holocellulose content of stump biomass was 67.0,
66.3, 64.0, 65.2, and 63.4% for PT1, F1, PD1,
PD2, and offspring BC1, respectively. Slightly
higher holocellulose content (67.0-69.2%) was
observed among offspring BC2-BC5. Compared
with their parent species, the higher holocellulose
content of hybrid poplar species indicated that
hybrid poplar could be suitable for biofuel conver-
sion through biochemical process.

Proximate Analysis

Proximate analysis indicated similar volatile
matter, carbon, and ash content among various
poplar trees (Table 2). Values obtained were
within the range previously reported for hard-
wood species (Sjostrom 1981; Demirbas 1997;
Adebolo et al 2009). Generally, observed stem/
stump volatile matter content, which ranged
from 72.0-74.7%, showed little variation within
wood (stem vs stump). The F1 and PD2 geno-
types exhibited a slightly higher volatile matter
content of 74.7%. Stump volatile content of
hybrid poplar (BC1) was slightly higher than
PD2 at the expense of lower carbon content.
PD1, PT1, and BC had high carbon content
ranging from 27.2-28.0% compared with other
poplar tree samples. The least carbon content of
25.2% was found in stem biomass of PD2. Ash
content (ie minerals such as magnesium, cal-
cium, potassium) varied significantly among
genotypes. Stump ash content (0.8-1.7%) was
higher than stem ash content (1.1-1.3%) in most
genotypes. Hybrid poplar (F1 and BC1) showed
slightly lower ash content compared with their
parents (1.1-1.2% vs 0.8-1.7%).

Measured heating value varied significantly
among poplar types. Values observed along the

Table 2. Proximate and heat-related properties of hybrid poplar (first generation, F1) and backcross (BC), Populus
deltoides (PD1 and PD2), and Populus trichocarpa (PT1).

Poplar species Wood location Specific gravity Volatile (%) Carbon (%) Ash (%) Heat (kJ)

PD1 Stem 0.35 72.3 27.7 1.3 8326

Stump 0.35 71.5 28.5 1.2 8046

PD2 Stem 0.39 74.7 25.2 1.2 8065

Stump 0.44 73.6 26.4 1.7 7610

PT1 Stem 0.36 72.9 27.1 1.2 8221

Stump 0.41 72.6 27.4 0.8 7506

F1 Stem 0.39 74.7 25.3 1.2 8322

Stump 0.43 74.6 25.4 1.1 8039

BC1 Stem 0.35 72.4 27.2 1.1 8299

Stump 0.43 73.3 27.2 1.2 8247

BC2 (2-445) Stem 0.42 72.0 26.9 1.1 7874

Stump 0.41 72.0 26.8 1.2 7545

BC3 (1-425) Stem 0.42 73.0 26.0 1.0 8356

Stump 0.43 72.0 26.0 1.3 8263

BC4 (124) Stem 0.42 71.0 28.0 0.9 8263

Stump 0.42 74.0 25.0 1.0 8356

BC5 (031) Stem 0.35 73.0 26.0 1.1 8059

Stump 0.41 73.0 26.0 1.1 7498
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stem of poplar species indicated a slightly higher
gross heat value than in the stump. The heat
values ranged from 7874-8356 kJ in the stem and
from 7498-8356 kJ in the stump for various pop-
lar trees (Table 2). Hybrid poplars (F1, BC)
presented slightly higher gross heating values than
their pedigree parents. The reason for this could
be the proportionately higher lignin content of
poplar samples. Lignin has been previously
reported to have a strong correlation to higher
heating value of wood (Baker 1983; White
1987). The potential higher heating values of
hybrid poplar species also suggest that these spe-
cies could be suitable as energy crops.

TGA-FTIR Analysis

Heat-related properties of poplars were further
examined with TGA at various pyrolysis tem-
peratures (from 22-400�C). All poplar samples
examined showed a similar pattern of degrada-
tion (Fig 6a). TGA graphs indicated two main
phases in wood decomposition. Phase 1 showed
equilibrium of moisture content loss at low tem-
perature (<230�C). Degradation of cellulose
and lignin into volatiles (synthetic gases such as
CO2, CH4, CO, H2O, and other chemicals)
occurred in phase 2 at approximately 250�C
(Fig 7). Significant degradation of wood cell
walls and lignin of poplar trees, with respect to
temperature, occurred between 250 and 390�C,
as indicated in the thermogravimetric derivative
curve (TGD) peaks (Fig 6b). TGD curves, how-
ever, showed obvious differences in degradation
behavior between hybrid poplars and other pop-
lar trees because pyrolysis behaviors of the three
basic wood components, hemicellulose, cellu-
lose, and lignin, were significantly different
(Fig 6a) (Nowakowskia et al 2007; Yang et al
2007).

Hybrid poplar BC had lower residue amounts
at 400�C, which was attributed to its lower lig-
nin content compared with other genotypes,
which had much higher residue at this tempera-
ture (Fig 6). TGD curves of hybrid poplar also
showed some stability with decreased mass loss
rate during phase 2 of degradation. The stability

observed in this study could be a result of
the slightly higher proportion of lignin in the
hybrid poplars. A previous study (Sun et al
2000) indicated that lignin, in contrast to cellu-
lose, degrades slowly with a high rate of non-
volatiles. Lignin’s thermal stability is caused by
its complex hydrocarbon structures of benzene–
phenolic compounds (coumarylic, sinalpylic,
and coniferylic) (Yang et al 2007).

Typical spectral outputs of hybrid poplar and its
cellulose from TGA-FTIR analysis were plotted
in the form of 3D spectra (Fig 7). FTIR spectra
plots illustrated the evolving of gas products
during pyrolysis of samples as a function of
wave number and temperature. Temperatures at

Figure 6. Thermal degradation: (a) weight loss of seven

wood samples and cellulose and lignin from hybrid poplar;

and (b) derivative weight loss of two hybrid samples (BC2

and BC4) and parent poplars (PD1 and PT1) at 0-400�C
tested by TGA.
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which gas products were released (Fig 7)
corresponded to observed sample weight loss
(Fig 6). The main volatile components identified
by FTIR included CO2, CH4, CO, H2O, and
some organics (a mixture of acids, aldehydes
[C=O], alkanes [C–C], and ethers [C–O–C]).
However, release time and temperature of some
gases were different in hybrid poplar compared
with its cellulose because it is more difficult
for lignin to decompose than cellulose and
hemicellulose. Lignin in hybrid poplar particles
consists of aromatic groups, which have higher
chemical bond energies than polysaccharide
structures of cellulose, which consist mostly of
a series of glucose molecules (Yang et al 2007).

For example, more CO2 was released at higher
temperature from hybrid poplar than from the
cellulose sample (Fig 7).

CONCLUSIONS

The cross between poplar species PD and PT
resulted in hybrid poplar trees with different
anatomic, physical, chemical, and thermal prop-
erties from their parent species. All observed
poplar trees had different diffuse porous struc-
ture with distinct patterns of vessel distribution.
Vessel distributions in cross-sections were visu-
ally different among poplar types. Average spe-
cific gravity of hybrid poplar was slightly
higher than in previous findings. Extractive
content was statistically significant among PD,
PT, F1, and BC. Lignin content among the
major group of poplar trees was significantly
different. Holocellulose content of hybrid pop-
lar species was generally higher than that of
their parent species. Proximate analysis of vol-
atile matter, carbon, and ash content showed no
significant differences among the various pop-
lar species. Heating values varied significantly
among poplar species. Gross heating value of
stem biomass of different poplar species was
slightly higher than that of stump samples.
Hybrid poplars (F1, BC) presented slightly
higher gross heating values than their parent
species. TGD curves indicated different pat-
terns of degradation between hybrid poplars
and their parents during phase 2 of thermal
degradation. The main volatile components
generated were CO2, CH4, CO, H2O, and some
organics identified by TGA-FTIR analysis.
Hybrid poplars could be a suitable energy crop
for biofuel production through either biological
or thermochemical conversion.
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