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ABSTRACT

Detecting and classifying defects are required to grade and sort pallet parts. Use of quality parts
can extend the life cycle of pallets and can reduce long-term cost. An investigation has been carried
out to detect and classify defects in yellow-poplar (Liriodendron tulipifera, L.) and red oak (Quercus
rubra, L.) stringers using ultrasonic scanning. Data were collected for sound and unsound knots, bark
pockets, decay, holes, and wane using rolling transducers in a pitch-catch arrangement. Data from
eight ultrasonic variables—energy, pulse length, time of flight (TOF)-amplitude, TOF-energy, TOF-
centroid, energy value, energy pulse value, and peak frequency—were used to classify defects. Three
different types of classifiers were used to categorize defects—a multi-layer perceptron network (MLP),
a probabilistic neural network (PNN), and a k-nearest neighbor (KNN) classifier. Mean values for the
energy variables demonstrated statistically significant differences between clear wood and defects and
among defect types. Mean values for the TOF variables did not differ significantly between clear wood
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and knots. All three types of classifiers were able to distinguish defected from clear wood in oak with
accuracies above 95%; accuracies for yellow-poplar were somewhat lower for the MLP and PNN
classifiers. Among the defect classes, decay exhibited the highest recognition rate for both yellow-
poplar and oak. Wane and holes in oak were readily confused owing to their common loss of transducer
contact. Overall accuracy at the data-point level varied from 69–78%. Simple post-processing opera-
tions are expected to improve that substantially. Based on accuracy performance alone, the MLP and
KNN appear equally preferable for this task.

Keywords: Ultrasonic scanning, nondestructive testing, transducer, defect classification, neural net-
work.

INTRODUCTION

Typically, wooden pallets consist of two
parts—stringers, the structural central mem-
bers that carry the load, and deckboards, the
top and bottom parts that provide dimensional
stability and products placement. Pallets are
manufactured in many ways depending on
size, pallet use, and also number and positions
of stringers and deckboards. Usually, pallet
parts are produced from solid wood (lumber)
or from the center portion (cant) of logs. These
cants have a high percentage of defects and
have less market value for other solid wood
products, which makes them attractive as a
raw material source for pallets.

The most common defects found in pallet
parts are sound knots, unsound knots, cross
grain, bark pockets, decay, holes, splits, shake,
and wane. The extent and severity of these
defects often depend on the wood species. A
recent study (Araman et al. 2003) on cants
showed that different species vary in the vol-
ume of defects found in a typical cant. Defect
volume can comprise above 30% of the total
volume of a cant. Because the location and
extent of pallet part defects contribute to the
strength and durability of a pallet, high-grade
pallets (containing fewer defects) have a lon-
ger life cycle and promote multiple trips per
pallet. Therefore, high-quality pallet parts are
desired. Manual grading and sorting is a slow
and inaccurate process, so an automated in-
spection system could be very useful to detect
defects and sort pallet parts. A study by
Schmoldt et al. (1993) demonstrated the profit
potential for such an automated inspection
system.

In the past few years, many researchers

have examined ultrasonic inspection of wood
for defects, primarily in surfaced lumber
(McDonald 1980; Ross et al. 1992; Bradshaw
et al. 2000; Fuller et al. 1995; Niemz et al.
1999; Raczkowski et al. 1999; Karsulovic et
al. 2000; Halabe et al. 1996). Most of these
ultrasonic investigations have used transmis-
sion time to characterize defects. Measurement
of transmission time may be useful when there
is only a single defect type in a board or where
transmission velocity is diagnostic for the de-
fect types of interest. Certain defect types,
however, do not respond well to transmission
time measurements, but respond, instead, to
other ultrasonic variables, e.g., peak ampli-
tude, energy, centroid time, frequency domain
energy, etc. Studies by Halabe et al. (1993,
1994, 1996) showed that frequency domain
analysis is very useful for detecting decay.
Bradshaw et al. (2000) reported that insertion
loss and energy measurements provide valu-
able information for detecting wetwood in red
oak lumber. Still, before an automated pallet
part inspection system can be operational, it
must be able to reliably locate, distinguish,
and measure a variety of different defect types.
This capability has not been demonstrated to
date.

An ongoing research project aims to devel-
op an automated pallet part inspection system
(Schmoldt et al. 1994, 1997; Kabir et al. 2000,
2002). However the classification step in de-
fect detection is a difficult and complicated
task using any online inspection system. Dif-
ferences exhibited by ultrasonic variables
across several defect types can be small, mak-
ing classification difficult. The degree of se-
verity for any single defect is somewhat easier,
however, as reported by Tiitta et al. (2001).
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This paper presents some initial classification
results for defects in two species of wooden
pallet stringers using ultrasonic measurement
variables as feature vectors. Three different
types of classifiers are used in this experiment.
Their ability to distinguish between various
defect types and clear wood are reported.

MATERIALS AND METHODS

Scanning and data collection

Fresh, unplaned yellow-poplar (Lirioden-
dron tulipifera, L.) and red oak (Quercus rub-
ra, L.) stringers of varying lengths were col-
lected from a local sawmill. They were kept
in cold storage to reduce their drying rate, and
the moisture content of the stringers was main-
tained approximating the fresh-cut state or
above the fiber saturation point. Eighteen
stringers were scanned for each species, three
for each of six defect types. Each stringer also
contained clear wood, which is the only non-
defect classification. The average length,
width, and thickness of the stringer were 122
cm, 10 cm, and 3.8 cm, respectively. Defects
examined in this study are sound and unsound
knots, bark pockets, holes, decay, and wane.
Six scan lines were marked longitudinally
along the face of each stringer 12.5 mm apart,
and data were collected every 2.5 mm along
each scan line. The scanning was conducted
across the thickness of the board, which is per-
pendicular to the growth ring (either radial or
tangential or both). From this data set, a clas-
sification data set was generated by randomly
selecting samples from each class.

The scanning equipment used in these tests
was manufactured by the Ultrasonic Group,
Forest Products Division of Perceptron Inc.
The system consists of in-feed and out-feed
roll beds, two sets of pinch rollers for part
movement, and two rolling transducers mount-
ed in an ultrasonic ring. Details of the equip-
ment and materials handling were described
elsewhere (Kabir et al. 2002). Stringers move
through the system lying on a face, and ultra-
sonic signals propagate through the part’s
thickness. The necessary electronics and soft-

ware to control material movement, signal
generation, data collection, and analysis were
supplied by Perceptron. Data were collected,
stored, and processed by LabViewy software
modules. The scanning speed was 220 ft/min,
and the desired spatial resolution (number of
waveforms per centimeter; 4 in this study) can
be achieved by controlling roller speed and the
number of pulses per second. We chose higher
scanning speed since scanning speed does not
have significant effect on the data collection
(Kabir et al. 2002). Each board was scanned
three times to ensure consistency of the data
collection, although the repeatability and reli-
ability of the data collection are acceptable as
mentioned in Kabir et al. (2002). All mea-
surements were carried out at 120 kHz trans-
mitting frequency, and received signals were
sampled at 500 kHz.

Ultrasonic variables

Ultrasonic scanning involves recording sig-
nal voltage measurements 500,000 times per
second. From these data, eight variables were
calculated—three for time of flight, three for
pulse energy, and one each for pulse duration
and peak frequency. Specifically, variables in-
cluded pulse length (PL), time of flight-cen-
troid (TOF-c), time of flight-energy (TOF-e),
time of flight-amplitude (TOF-a), energy, en-
ergy value (EV), energy/pulse value (EPV),
and peak frequency (PF). These are described
below.

The wave energy of the received signal can
be expressed as the time integral of the volt-
age:

2E 5 v (t) dt (1)E
The energy value (EV) or loss is expressed as
the ratio of the energy received by the receiv-
ing transducer to the energy input to the trans-
mitting transducer, and is given by:

ErEV 5 10log 2 G (2)[ ]Et

where Er is the energy received by the receiv-
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ing transducer, Et is the energy input to the
transmitting transducer, G is the receiver gain.
This parameter is normally expressed in deci-
bels (dB) and by convention on a logarithmic
scale (and hence a negative number), with
lower signal ratios being more negative. The
pulse length parameter is derived from the in-
tegral expression above. It is defined as 1.25
times the time required for the received wave
energy to rise from 10% to 90% of its total
energy and is expressed in microseconds.
These two parameters, energy value and pulse
length, can be combined to provide another
variable with defect resolution capability,
known as energy/pulse value (EPV). Again,
because of the wide range of energy levels,
EPV is also expressed on a logarithmic scale
(dB). For proprietary reasons, the exact form
of this calculation is omitted.

Time of flight (TOF) measurements can be
associated with the energy, amplitude, or cen-
troid of the signal. TOF-energy is calculated
as the time at which the energy integral cross-
es a threshold value, as a percentage of the
final value. If the threshold value is, for in-
stance, 40%, then TOF-energy is simply the
time at which the integral value reaches 40%
of the final value. Similarly, TOF-amplitude is
the time at which the amplitude of the signal
first reaches, for instance, 40% of the maxi-
mum amplitude. TOF-centroid is the time to
the centroid of the time waveform, which is
based on the ratio of the first- and zeroth-order
moments.

For each data point, a feature vector was
constructed that consists of the eight ultrasonic
variables mentioned above. Each feature vec-
tor was also paired with a class designation as
determined by a visual inspection of the data
point on the stringer. For yellow-poplar, hole
defects were not present in the specimens col-
lected, and so the total number of classes was
reduced to six. A total of 289 feature vectors
were created for oak and 268 for poplar, and
were used with each of the classifiers de-
scribed below.

Defect classification

Three different types of supervised classifi-
ers were used to discriminate pallet part de-
fects. These are a multilayer perceptron net-
work (MLP), a probabilistic neural network
(PNN), and a k-nearest neighbor (KNN) clas-
sifier. Theory and details of these classification
methods can be found in Duda and Hart
(1973), Specht (1990a), Gonzales and Woods
(1992), and Tiitta et al. (2001). The classifica-
tion methods were applied to the nine-element
feature vectors described above (eight variables
plus one class output value). For the MLP and
PNN classifiers, we used tenfold cross-valida-
tion. In this approach, the entire data set is par-
titioned into 10 subsets, and an initial classifier
is trained on all the data from nine partitions
and tested on the tenth. The testing partition is
then reinserted back into the full data set and
another partition is removed for testing. Then,
a second-stage classifier is trained on the re-
vised nine partitions and tested on the new
tenth partition. This replacement/training/test-
ing cycle is repeated until all ten test partitions
have been used. The final classification rate is
the average of all ten classifiers.

Artificial neural networks are one of the
most commonly used models for pattern clas-
sification. The multilayer perceptron (MLP)
network, which consists of a large number of
simple, interconnected, structurally identical
processing elements (PEs), is the most fre-
quently used type of network. Network
weights are adjusted using back-propagation
supervised training to gradually coerce the
network output toward the known target. A
nonlinear tangent sigmoid function was used
as the transfer function that converts weighted
inputs from each PE into an output signal. Our
MLP network consists of an eight-node input
layer (corresponding to the feature vector el-
ements), two hidden layers with 16 and 10
PEs, respectively, and a 1-of-N output layer
containing seven PEs (one for each defect and
one for clear wood, a total of six for yellow-
poplar). We reasoned that two hidden layers
might offer more sophisticated mappings than
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FIG. 1. Signal amplitude in the frequency domain for
ultrasonic signals through clear and defected wood, (a)
sound knot in oak, (b) bark pocket in yellow-poplar, and
(c) decay in oak.

a single hidden layer to help describe the de-
cision boundaries between classes. We have
obtained better results when the dimensional-
ity of the hidden layer is more than twice the
input’s dimensionality, so we used 16 PEs for
the first hidden layer. The second hidden layer
has 10 PEs (greater than the number of PEs
in the output layer). Then, back-propagation
trains the network until the performance goal
(mean square of the network error 5 0.02) is
met.

Probabilistic neural networks are a class of
artificial neural network that combines some
of the best attributes of statistical pattern rec-
ognition and feed-forward neural networks.
Because PNNs have an ability to approximate
the probability density function of the under-
lying distribution inherent in the example data
set, they guarantee convergence to a Bayesian
classifier, if enough training examples are pro-
vided. Therefore, PNNs are suitable for su-
pervised classification problems (Specht
1990b). We used a two-layer network for the
PNN. The first layer contains radial basis
functions as the kernel and the second layer is
a competitive network, where the PE receiving
the greatest value for its input has an output
of 1. All the other second-layer PEs have out-
puts of 0.

A k-nearest neighbor classifier is a non-
parametric classifier. Leave-one-out training/
testing is often used, so the training data for
each output category represent a class, and the
one unclassified pattern is classified by finding
the nearest-neighbor class(es). Statistically,
more reliable results can be achieved by using
more than one nearest-neighbor class. The k-
nearest neighbor classifier finds the k-nearest
neighbors to the target data point based on
some distance metric. The final class is chosen
from those nearest neighbors by some voting
mechanism. The leave-one-out method repeats
this process for every sample. In our imple-
mentation of the KNN classifier, a value of k
5 ÏN and Euclidean distance were used,
where N represents the number of sample data
points. A simple plurality count was used as
the voting mechanism.

RESULTS AND DISCUSSION

Amplitude waves for ultrasound signals
propagating through clear and defected wood
are shown in Fig. 1. Signals for defected wood
(sound knots, bark pockets, and decay) in both
yellow-poplar and oak are attenuated to the
point that signal strength barely diverges from
0v. Because defects in wood produce defect-
clear wood interfaces, ultrasonic signal energy
is lost as the elastic wave’s transition from one
medium to another. So, energy loss alone is a
reliable indicator of defect presence. Other
signal characteristics, however, are needed to
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FIG. 2. The response of different ultrasonic variables
to the unsound knot of yellow-poplar stringer, a) energy,
PL, and PF, b) TOF-e, TOF-c, and TOF-a, and c) EV and
EPV.

distinguish between defect types. Figure 2 de-
picts the effect of unsound knot on the ultra-
sonic variables of yellow-poplar stringer. All
variables were affected significantly by un-

sound knot. The response of different defect
types to the ultrasonic variables was discussed
elsewhere (Kabir et al. 2002).

Tukey’s t-test results for different defect
types and ultrasonic variables in oak and yel-
low-poplar are presented in Table 1. In each
case, mean values of the ultrasonic variables
for each defect type were tested. Mean values
for clear wood energy measurements are sig-
nificantly different from defected wood both
for oak and yellow-poplar, but there exist al-
most no differences in mean values between
defect types. While EV and EPV also have
clearly different mean values for clear wood
and defects, they also show differences be-
tween mean values for many defect types.
This makes EV and EPV good candidates for
classifying defects. The variables PL, TOF-a,
TOF-e, TOF-c also showed significance dif-
ferences between mean values for clear and
defected wood. However, there are no signif-
icant differences between mean values for
clear wood and mean values for either sound
or unsound knots. Because both hole and wane
defects result in the transducers losing good
contact with the wood, their mean values are
difficult to distinguish for all ultrasound vari-
ables.

Feature vectors calculated from scan data
for each species were classified using a mul-
tilayer perceptron network, a probabilistic
neural network, and a k-nearest neighbor clas-
sifier. An effective way to present classifica-
tion results is a ‘‘confusion matrix,’’ where
each row displays how the row’s category (the
true class), e.g., sound knot, was classified.
Seven-label classification results for oak
stringers are shown in Table 2; corresponding
results for yellow-poplar appear in Table 3.
Diagonal elements in the confusion matrix in-
dicate correct classification results, while the
other elements in the table are misclassifica-
tions. Classification accuracies for each defect
type and each classifier type appear in the last
column in each table, while overall classifi-
cation accuracies appear in the bottom-right
corner of each matrix.

Overall classification accuracy of the MLP
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TABLE 1. Tukey’s t-test results indicate, for each ultrasonic measurement variable, where mean values for different
defect types differ significantly in oak and yellow-poplar stringers. Defect types are significantly different at a 5 0.01
unless noted otherwise*.

Species

Ultrasound variablesa

Energy PL TOF-a TOF-e TOF-c EV EPV PF

Oak C-all C-
U,B,W,H
K-D,W,H
U-D,W,H
D-C,B,W*
B-W,H

C-
D,B,W,H
K-D,W,H
U-D,W,H
D-B
B-W,H

C-
D,W,H
K-
D,W,H
U-
D,W,H
B-

C-
D,B,W,H
K-D,W,H
U-D,W,H
D-B
B-W,H
W-H*

C-all
K-all
U-
D,W,H
D-all
B-W,H

C-all
K-all
U-
D,W,H
D-all
B-W,H

C-D,W,H
K-D,W,H
U-D,W,H
D-B,W*
B-W,H

Yellow-Poplar C-all
K-all

C-all
K-W
U-W
D-W*

C-W
K-W*

C-D,W
K-D,W
U-D,W
D-W*
B-W

C-D,B,W
K-D*,B,W
U-D,B,W
D-W

C-all
K-all
U-B,W
D-W
B-W

C-all
K-all
W-
U,D,B

C-D*,W
W-
K,U,D,B

a C Clear wood, K sound knot, U unsound knot, D decay, B bark pocket, W wane, and H hole.
* Significant at a 5 .05.

TABLE 2. The confusion matrix displays the number (and types) of misclassifications (off-diagonal elements) for MLP,
PNN, KNN classifiers applied to oak stringers. Correct classifications appear on the diagonal.

True class Clear
Sound
knot

Unsound
knot Decay

Bark
pocket Wane Hole Total

Accuracy
(%)

Clear

Sound knot

MLP
PNN
KNN
MLP
PNN
KNN

69
70
72

3
2
2

1
2
0

22
20
21

0
0
0
2
2
3

1
0
0
0
0
0

1
0
0
2
5
4

0
0
0
0
0
0

0
0
0
0
0
0

72
72
72
29
29
30

95.8
97.2

100.0
75.9
70.0
72.4

Unsound knot

Decay

MLP
PNN
KNN
MLP
PNN
KNN

0
2
0
0
0
0

6
5
5
1
0
0

14
12
16

0
0
0

0
0
0

55
49
51

4
5
3
1
1
1

0
0
0
1
0
1

0
0
0
4

12
9

24
24
24
62
62
62

58.3
50.0
66.7
88.7
79.0
82.3

Bark pocket

Wane

MLP
PNN
KNN
MLP
PNN
KNN

2
1
1
0
0
0

3
6
6
0
0
0

5
6
8
0
0
1

2
1
0
2
3
2

24
22
21
2
2
2

1
0
0

11
12
11

0
1
1
7
3
4

37
37
37
22
20
20

64.9
59.5
56.8
55.0
60.0
55.0

Hole

Total

MLP
PNN
KNN
MLP
PNN
KNN

0
0
0

74
75
75

0
0
0

33
33
32

0
0
0

21
20
28

4
2
6

64
55
59

1
0
0

35
35
31

10
12
14
23
24
26

30
31
25
41
47
39

45
45
45

291
289
290

66.7
68.9
55.6
77.9
74.8
75.1
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TABLE 3. The confusion matrix displays the numbers (and types) of misclassifications (off-diagonal elements) for
MLP, PNN, KNN classifiers applied to yellow-poplar stringers. Correct classifications appear on the diagonal.

True class Clear
Sound
knot

Unsound
knot Decay

Bark
pocket Wane Total

Accuracy
(%)

Clear

Sound knot

MLP
PNN
KNN
MLP
PNN
KNN

62
56
68

6
7
9

7
12

1
43
42
40

0
0
0
3
3
5

0
1
0
0
0
0

0
0
0
4
4
2

0
0
0
0
0
0

69
69
69
56
56
56

89.9
81.2
98.5
76.8
75.0
71.4

Unsound knot

Decay

MLP
PNN
KNN
MLP
PNN
KNN

0
0
0
0
0
0

5
6
5
2
1
3

21
20
19

0
2
1

2
3
2

32
29
30

0
0
1
1
3
2

3
2
4
3
3
2

31
31
31
38
38
38

67.7
64.5
61.3
84.2
76.3
78.9

Bark pocket

Wane

MLP
PNN
KNN
MLP
PNN
KNN

0
0
0
0
1
0

0
0
2
1
2
0

2
0
0
5
8
3

3
4
3

13
9

11

13
9

11
0
6
0

0
5
3

37
30
42

18
18
19
56
56
56

72.2
50.0
61.1
66.1
53.6
75

Total MLP
PNN
KNN

68
64
77

58
63
51

31
33
28

50
46
46

18
22
16

43
40
51

268
268
269

77.6
69.4
78.4

for red oak is slightly higher (although not sta-
tistically significant) than either the PNN or
the KNN. For yellow-poplar, accuracies for
the MLP and KNN classifiers are statistically
indistinguishable, whereas the MLP is signif-
icantly better than the PNN classifier (a 5
.026). Similar classifier results (with a single
defect type, decay) were also reported for
MLP and KNN classifiers by Tiitta et al.
(2001). Typically, MLP classifiers provide
very good results if network parameters are
chosen carefully. On the other hand, KNN
classifiers are non-parametric, extensive train-
ing is not required (beyond setting k, the dis-
tance metric, and the voting method), they are
easy to use, and they work quite well with
either linear or nonlinear data.

By examining row and column totals, we
can make a few observations about classifi-
cation using these data. For oak stringers,
there seems to be a general ‘‘over-classifica-
tion’’ of clear wood, sound knots, and wane,
i.e., more samples are assigned to those classes
than actually appear in the data set. Unsound

knot, decay, bark pocket, and hole categories
are generally ‘‘under-classified,’’ although not
uniformly so by all oak classifiers in all cases.
For yellow-poplar stringers, decay defects are
strongly over-classified and wane defects are
strongly under-classified. All three types of
classifiers are able to distinguish clear wood
from defected wood in oak with greater than
95% accuracy. Clear wood classification ac-
curacies for yellow-poplar are not nearly as
uniformly high. For both species, classification
accuracies for decay and sound knots were the
next highest. For the remaining classes, clas-
sification accuracies are much lower and vary
between classifier types. While under- and
over-classifications point to potential perfor-
mance problems, we need to examine those
misclassifications in more detail to understand
how they affect strength-reducing defects.

In the case of oak, only sound knots and bark
pockets exhibited some misclassifications as
clear wood, and then only a few. When bark
pockets are large (and consequently highly
strength-reducing), this misclassification is less
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likely to occur (ultrasound signals should be
noticeably different otherwise). Unsound knots
are primarily confused as sound knots or bark
pockets. This is not unexpected, because (1)
many unsound knots can have included bark,
and (2) parts of unsound knots can also be
sound. Most decay misclassifications occur as
holes—both are serious strength-reducing de-
fects, so confusion between them is not too se-
rious. Bark pocket defects exhibit misclassifi-
cations with every other category, due to their
co-occurrence with many other defect types.
Wane is confused fairly equally among decay,
bark pockets, and holes. This is expected be-
cause wane is the absence of wood, and so the
transducers can lose contact and generate very
low energy signals, similar in value to decay,
holes, and bark pockets. Between ¼ and ⅓ of
hole defects were misclassified as wane, which
again is due to poor transducer contact. Most
of these misclassifications in oak, then, are rea-
sonable given what we know about defect man-
ifestations and ultrasound signal generation and
propagation.

There are significantly more misclassifica-
tions of clear wood for yellow-poplar than for
oak stringers. The KNN classifier performed
significantly better than the MLP and PNN for
clear wood, which contributed to its overall
high accuracy. The MLP, on the other hand,
performed moderately well across all defects.
The PNN exhibited generally good accuracy
for many defects, but it faired quite poorly on
wane and bark pocket defects, creating low
overall accuracy. The pattern of misclassifi-
cations for sound knots was similar to oak.
However, unsound knots were confused with
wane and decay, rather than bark pockets (as
in oak). Without any hole defect type included
in the yellow-poplar data, decay, bark pockets,
and wane were confused with all other defects
(not clear wood). Because hole defects have
similar ultrasound signals to each of those
three defects, their absence may have de-
creased the ability of the classifiers to discrim-
inate the remaining classes in parameter space.

CONCLUSIONS

Based on statistical tests of mean values,
energy variables, particularly EV and EPV, ap-
pear to have good discriminating power to dis-
tinguish between clear wood and defects in
these two species of stringers (Table 1) seem-
ingly contradicting the findings of other stud-
ies, e.g., McDonald (1980) and Schmoldt et
al. (1997). Our explanation for this discrep-
ancy is twofold: (1) we are using thicker spec-
imens—previous studies used nominal 1-inch
lumber or thinner (pallet deckboards), and (2)
our TOF variables are conditioned on aspects
of the entire waveform, rather than just arrival
time of the leading edge (the typical TOF
measurement). With thicker specimens, much
of the sound-knot cross-section, through
which ultrasound signals propagate, can con-
tain considerable clear wood volume. In this
case, TOF values may not be appreciably dif-
ferent between clear wood regions and sound-
knot regions. For thinner materials, the ratio
of clear wood volume to true knot volume
around a knot defect is much lower, resulting
in more homogenous knot regions and more
distinguishable differences in TOF values.
Furthermore, because the TOF variables used
here are conditioned on the entire waveform,
these TOF variables can behave quite differ-
ently and may have little relation to ‘‘leading
edge’’ TOF measurements.

Differences in classifier performance be-
tween species are somewhat surprising. If the
PNN classifier had performed better for yel-
low-poplar wane and bark pocket defects, the
overall results would have been quite similar
for both species. In that case, neither classifier
would have demonstrated a clear performance
advantage. Given the current feature vectors,
though, it appears that either the MLP or the
KNN is the preferred type. In particular, one
might select the KNN based on its simplicity
of use and its high accuracy for distinguishing
clear wood from defects in both species.

The current data and analyses are relatively
preliminary. While overall accuracy values are
not as high as is desirable, they reflect only
individual measurements and analyses at 2.5-
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mm spatial resolution. As part of an eventual
scanning process, we will be generating a 2-
dimensional image of each stringer. Initial
classifications of each data point would then
be refined in a post-processing step, wherein
multiple data points (pixels) would be used to
label any region as belonging to a particular
class. At that point, then, spatial information
could be used to improve classification. This
could include both shape and location, e.g.,
many of the wane, decay, and hole misclas-
sifications could be eliminated by fairly simple
spatial analysis. Probably one-half of the cur-
rent errors could be removed immediately.
Many others could be eliminated by simple
morphological operations that reclassify indi-
vidual data points based on immediately sur-
rounding data points. At the same time, we
will need to examine entire-defect labeling ac-
curacy, rather than the individual, data-point
labeling accuracy reported here. Based on the
current results, though, we expect that all but
the smallest defects will be readily distin-
guishable.
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