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Resonant vibrations of softwood logs were examined using TV holography. This technique allows 
a resonance to be detected in real time when the frequency is varied. Time-averaged measurements 
can he taken to map the spatial vibration pattern of the object both at resonance and at an arbitrary 
frequency. Thc resonant frequency of an identified vibration mode is used to calculate cenain material 
parameters. Here, the longitudinal modulus of elasticity is determined from bending modes using 
Timoshenko's beam theory, and one of the shear moduli is determined from torsion modes. Addition- 
ally, the vibration patterns may reflect inhomogeneities within the logs. A feasibility study was made 
on the possibilities of detecting knots from the vihration panerns of a panicular mode of vihration. It 
was concluded that this is not, in general, possible. 
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INTRODUCTION log. Galligan et al. (1967) proposed that 

The vibrational behavior of logs represents 
a great potential in assessing information 
about mechanical characteristics of a log. Dif- 
ferent types--or modes--of resonant vihration 
are associated with different material param- 
eters, which can be estimated using a theoret- 
ical model when an experimental value of the 
resonant frequency is known. Moreover, the 
vibration pattern of a single mode might re- 
flect structural inhomogeneities within the log 
that are invisible on the surface. 

Possible applications of vibration analysis 
applied to logs are: 

Assessment of elastic constants such as the 
longitudinal Young's modulus (MOE) and 
one of the shear moduli that can be used in 
quality sorting of logs prior to processing. 
For the sawmilling industry, this means that 
the quality of the lumber to be sawn from 
a log can he predicted by the MOE of the 

longitudinal vibrations could be used to de- 
termine the log's MOE, while Ross et al. 
(1996) recently suggested the use of longi- 
tudinal stress waves for the same purpose. 
Detection of structural inhomogeneities 
such as knots, checks, and decay. If these 
defects are localized prior to sawing, an op- 
timized sawing pattern can he chosen, i.e., 
asawing pattern that maximizes the value 
of the lumber. Several technologies have 
previously been proposed for this purpose: 
tomographic techniques such as X-ray (or 
gamma) computed tomography (CT) (Tay- 
lor et al. 1984; Birkeland and Holgyen 
1987) and nuclear magnetic resonance 
(NMR) (Wang and Chang 1986) have prov- 
en to locate knots with a spatial resolution 
far beyond the demands. However, this type 
of scanning is still too slow to be operated 
in an on-line sawmill system. Scanning sys- 
tems involving ultrasonics have also been 
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proposed and studied (Han 1991). All these 
techniques involve time-consuming scan- 
ning, which results in an enormous amount 
of data needed to reconstruct a physical pa- 
rameter, such as density, into discrete vol- 
ume elements. 
A tool for tree scientists who want to un- 
derstand the mechanics of standing trees. A 
tree might he put into resonant vibrations 
by external forces e.g., wind load, or be de- 
formed in a similar pattern statically. Either 
way, the laboratory vibration measurements 
reveal the susceptibility of trees to forces 
that may cause failure in bending or torsion. 

In this study, elastic parameters of a sample 
of pine logs were determined from measure- 
ments of the bending and torsion vibrations. 
Furthermore, we investigated if TV holog- 
raphy can be used to detect knots by studying 
the knots' influence on the resonant vibration 
patterns. A pilot study involving a single spec- 
imen, a spruce log, indicated the existence of 
a class of modes, transverse modes, which en- 
abled branch whorls to be localized in a spe- 
cial manner. 

THEORETICAL DESCRIPTION 

Resonant vibrations 

Natural vibration of wooden objects reflects 
the elastic property of wood. A set of vibration 
modes, or eigenrnodes, constitute the dynamic 
nature of an elastic object. Each eigenmode is 
characterized by its modal parameters, which 
are the resonant frequency, the damping factor, 
and the mode shape, or vibration pattern 
(Skatter 1996). The mode shape is the spatial 
deflection pattern of the vibrating object sur- 
face. Since this deflection pattern is time-vary- 
ing, it must be described by two numbers- 
the amplitude, defined as the maximum de- 
flection, and the relative phase of vibration. At 
resonance, the vibration pattern is a standing 
wave and the phase can take only two values 
separated by 180". At nodal lines the ampli- 
tude is zero, and when crossing this line there 
is a phase shift of 180". 

A vibration mode can be excited in two 

ways: either by an initial disturbance that 
leaves the object vibrating freely at a resonant 
frequency, or by a periodic force acting upon 
the object with a periodicity at or near a res- 
onant frequency. The latter is preferable when 
the aim is to image the vibration modes. When 
the frequency of the periodic force is arbitrary, 
i.e., not coincidental with a resonant frequen- 
cy, the vibration pattern is not a standing wave 
but a complex picture of traveling waves. 

To predict material parameters on the basis 
of vibration analysis, a theoretical description 
of the vibration is required. By setting a the- 
oretical expression of the resonant frequency 
equal to the measured frequency of the same 
mode, the desired material parameter can be 
resolved from the equation and determined. 

Classes of vibration modes 

In the experimental setup to be described, 
only transverse components of displacement 
are detectable, and longitudinal motion is 
therefore not observed. 

Bending.-Bending is a vibration mode that 
exists in practically every oblong elastic object 
(also referred to as flexural vibration). If the 
cross section is uniform and the length-to- 
depth ratio is sufficiently large (-20), the ob- 
ject will undergo pure bending where the only 
non-zero stress component is the normal lon- 
gitudinal component, g,. Euler beam theory 
applies ( H e m o n  1966) under these condi- 
tions. When the log is free at both ends (i.e., 
there are no external forces from supports), the 
modulus of elasticity, E,,,,, can be expressed 
in terms of the resonant frequency, f,-,, as in 
Eq. (1). 

where: 

n = mode number 
I = moment of inertia = n R4/4 for cylinders 

(R = cylinder radius) 
A = cross section area = n R2 for cylinders 
p = mass density 
L = length of the object. 
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FIG. I .  Mode shapes of the three first bending modes with the free-free ends support conditions. The nodal points 
are marked. 

The corresponding mode shapes are 
sketched roughly in Fig. 1. When the resonant 
frequency of a bending mode is known from 
experiments, the modulus of elasticity can be 
calculated using Eq. (1). However, when the 
length-to-depth ratio is less than 15 as in this 
case, shear deformation and rotary inertia will 
influence the frequency and this must be ac- 
counted for by altering the frequency equation. 
Timoshenko beam theory (Hearmon 1966) 
takes into account both shear and rotary in- 
ertia, and one particular solution to this equa- 
tion was obtained by Goens (1931). This so- 
lution is given for the free-free ends support 
condition in Eq. (2): 

effective shear modulus, which is a weighted 
average of G,, and G,, while P is an un- 
known form factor. Since neither p nor the 
weighting factors in G are known, we will 
consider the factor q = l/PG as the second 
unknown. The resonant frequency of at least 
two bending modes must be measured to de- 
termine E and q. In the experiments to be de- 
scribed later in this paper, 4 (5) bending modes 
are measured for each log, which means that 
6 (10) combinations of modes exist yielding a 
value of E and q. Another possibility is to find 
the values of q and E that minimize the sum 
of the square errors of Eq. (2). Z,(E - 

Since the 4 (5) equations are not 
completely consistent, the latter is preferred 
for our calculations. 

Torsion.-Torsional vibration modes have a 
similar longitudinal behavior to that of the 
bending modes. The first mode has one nodal 
line in the middle of the log, while the second 
one has two nodal lines, etc. For logs, if we 

T~PR~~,- ,Z assume circular cross sections, only one shear 
- 

PG ' 
(2) modulus is associated with the torsion modes, 

namely G,,. According to Euler-St. Venant 
where the numerical factors F,(n) and F2(n) theory, this modulus may be expressed by the 
are listed in Hearmon (1966). G denotes an resonant frequencies as: 
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2 2LfT., quality of the recording by altering the object 
GLT = P (3) illumination in small steps, thus averaging the 

scattered light from the log. The scattered ob- 
One should be aware that Eq. (3) must be ject light is combined with a reference beam 
modified if the density is not uniform over the where the phase is sinusoidally varying at the 
cross section, e.g., due to heartwoodsapwood. same frequency as the object (log). ~h~ re- 
In this case, p should be replaced by: sulting interference pattern is time-average re- 

4 corded by the video camera. The video signal 
P = Psap - (pwP - Phcm)(*) (4) is then reconstructed electronically in the sig- 

nal processing unit allowing the image of the 
where R,,,,,,, is the radius at the h~ar twood object overlaid with interference fringes (the 
sapwood boundary. vibration pattern) to be seen on the monitor in 

Transver.se modes.-As previously men- real time and interference fringes superim- 
tioned, longitudinal motion is not detectable posed on the image of the object can he seen 
with the experimental setup described. How- on the B~ shifting the phase of the 
ever, according to the theory of elasticity, an reference beam with the phase modulator and 
applied uniaxial force will not only cause nor- using phase-stepping algorithms, the phase 
ma1 strain in the force direction, but also and amplitude can be determined quantitative- 
strains in the transverse directions, the amount ly u k b e r g  1984; ~ l l i ~ ~ ~ ~ d  and ~ o s v o l d  
given by the Poisson numbers. As a conse- 1992). ~~~~~~~t vibrations can be manually 
quence, the axial modes may be detectable due detected by varying the frequency and observ- 
to the passive transverse strains. It is to be ing the vibration pattern on the video monitor, 
expected that modes exist where the primary When a resonance is detected, a phase-stepped 
deformation is in the transverse strain com- measurement can be made to reconstruct the 
ponents. Since longitudinal and transverse vibration phase and (Skatter 1996). 
normal strains in general are coupled, it is dif- 
ficult to class a mode as purely transverse nor- MATERIALS AND METHODS 
ma1 or longitudinal. 

Two series of experiments are described. 
MEASrJRING SINUSO~DAL VIBRATIONS BY TV The first trial included only a single specimen, 

HOLOGRAPHY a short spruce log. The resonant vibrations 
found on this log led to the proposal of a hy- 

TV holography is a nondestructive tech- pothesis which, if true, would allow the detec- 
nique used for full-field vibration and defor- tion of branch whorls on the of a special 
mation analysis. A video camera is used as the class of vibrations modes. 
recording device allowing measurements in The second series consisted of four pine 
near real time. For a more detailed description logs where one log was completely free from 
of the technique, we refer to the literature knots in the interior, The dimensions and den- 
(L@kberg 1980; L@kberg and Slettemoen sities of the logs are specified in ~ ~ b l ~  1, ne 
1987; Jones and Wykes 1989). aforementioned elastic parameters were cal- 

The experimental setup used for the vibra- culated for these samples, 
tion analysis of logs is shown schematically in 
Fig. 2. coherent light from an argon lasir is 
split into two branches, the reference branch General description of the experimental 

and the object branch. The laser beam in the setup 

object branch is passed through a speckle av- The logs were barked and painted with a 
eraging mechanism (SAM) before it is ex- retroreflective paint in order to increase the re- 
panded by a lens to illuminate the sinusoidally flectivity of the log surface. A mirror was 
vibrating log. The SAM is used to improve the placed at an angle behind the log to image part 



232 WOOD AND FIBER SCIENCE. JULY 1997. V. 29(3) 

BC - Beam Combiner 
Image Processing 
System BS - Beam Splitter 

PM - Phase Modulator 

Signal 
Processing 

Vibrating 
force w ~ t h  
frequency f 

Transversely 
vibrating log 

I 
I Vibrating Laser 
I 
I 

Mirror 

INTERFEROMETER 
Ro. 2. Principal setup of the applied TV holography system. 

of the top and hack side of the log. Monitoring was supported on foam rubber placed under- 
both the front and back side of the log is a neath the ends to simulate free-free ends con- 
key to understanding the vibration mode. The dition. The shaker was placed against the log 
interferometer, a RETRA 1000 (from Conspec with a horizontal radial direction of force as 
AIS, Trondheim), was supplied with light from illustrated in Fig. 3a. To excite a bending 
an argon laser via an optical fiber. mode, the excitation point cannot coincide 

When bending modes were excited, the log with a nodal line. When exciting torsional 

TABLE I .  Summap of the characreristics of the pine logs. Tlze density is the average of two determinations: one is 
the toral mass divided by an estimate of the volume; the other uses volues achieved from CT-scanning of the logs. Tlte 
uncertain9 is tlze standard deviation of the two values. 

Length Diameter tnproutt Avcrrgc denslly 
Loe Knnrs (rill lmml (keim'l 

la No knots 2.00 I511158 1,015 2 30 
2b Regular branch whorls 2.00 14511.53 1,015 2 15 
I b Regular branch whorls 1.43 16411 80 1,085 2 30 
2c Grown-over knots 1.43 1591178 940 2 15 
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ESP1 system 
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Frcj. 3 .  Methods of support to ensure free-free ends condition for a) bending modes and b) torsional modes, 

modes, the log was hung up on screws which 
were screwed into the pith as shown in Fig. 
3b. This method of support proved to be very 
good because the cylinder center is fixed, and 
tangential motion is allowed elsewhere. The 
shaker was placed against the log with a tan- 
gential component of force. When searching 
for the transverse modes introduced previous- 
ly, the log was hung up on screws as with 
torsion modes, and the shaker was placed with 

a horizontal radial direction as for the bending 
modes. 

The first results and the formulation of the 
hypothesis 

The spruce log was 79.5 cm long, 20 cm in 
diameter on average, and it had two branch 
whorls. The longitudinal positions of the 
branch whorls are shown in Fig. 4. 
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FIG. 4. Dimensions of spruce log indicating the lon- 
gitudinal positions of the branch whorls. 

i r l th  di f fcrcnt  phases [L : 1:- 
, t i  :,,, 30 4 0  8 . I ,  8 ' 5  ' i l l  1110 

Bending modes were found at the frequen- 
cies 790 H~ (first), 1,572 H~ (second), and , FIG. 5 .  Phase image of the first bcnding mode occur- 

ring at 790 Hz. The predicted nodal lines are at 0.224 and Hz (third)' The log was cut 'lightly 0.776 (when the length of the log equals I ) .  The lront and 
shorter when the bending was the back side of the log (seen in the mirror) had opposite 
determined. Theoretically predicted nodal phases. which means that they move in the same Cartesian 
lines (Fig. 1) were compared with the phase directions. 

image of the mode identified as the first bend- 
ing mode (Fig. 5). There was good agreement 
except to the right in the image where a small 
part of the log had not been imaged. The front 
and the back side of the log (seen in the mir- 
ror) had opposite phases, which means that 
they move in the same directions in a Carte- 
sian coordinate system. 

More interesting is the other class of vibra- 
tion modes observed on the spruce log. For 
the bending modes, the center of mass moves 
transversely; hut in this other type of trans- 
verse vibration, the center of mass seems to 
be at rest. Here, the origin of the transverse 
vibrations is deformation of the cross-sectional 

if the material is transversely isotropic, i.e., the 
elastic properties are equal in the radial and 
tangential directions. In general, this is not the 
case for wood. It should be noted that the ex- 
perimental setup used has its weaknesses 
when measuring displacement patterns de- 
scribed by Eq. (5). The displacement direction 
is in the radial direction, while the TV holog- 
raphy setup senses only components of dis- 
placement in the illumination direction. Con- 
sequently, the amplitude of displacement is 
correctly determined only where the radial di- 
rection coincides with the horizontal direction 

shape. In bending, the cross-sectional shape is 
deformed only as a secondary effect due to 
passive strains caused by the longitudinal 
stress. The results indicated that the cross-sec- 
tional displacement for the different modes 
had the angular dependency of Fourier series 
components Eq. (5): 

~ ( r ,  0) = f(r)cos(n0) I n = l , 2 , 3  ,..., 
~ ( r ,  0) = &)sin@) ' 

(5) 

where r is the radial position, 0 the angular 
position, and u and v are the radial and tan- 
gential displacements, respectively. The trans- 

00 
verse displacement patterns for n = 0, 2, 3, 4 
are plotted in Fig. 6. Such a displacement field FIG. 6. Mode shapes of the transverse modes of form 
can, according to Mirsky (1964). be expected (4). 
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t I .. .. ...... ... ... .. ... ... ... , 

Mirror with a part of the i  LO^ ! 
Z !  

back and  to^ of the log I icontour : 

Vcrt~cal ~ lor la l  lincs coir lc idental  with 
branch whorl positions (fig.4). 
.,,,.,.,., ". .... m.-...-..-.." .. 

RG. 7. Amplitude image of transverse mode at 1,845 
Hz (n = 3). High intensity denotes high amplitude. The 
vertical nodal lines are black areas, i.e.. zero amplitude 
where the corresponding phase images have a shift of 
180'. 

at the front. At the very top and bottom of the 
log, the displacement direction is vertical and 
cannot be detected. An angularly dependent 
weight factor should be multiplied with the 
amplitude while the phase of vibration is cor- 
rectly determined. This is important to keep in 
mind when interpreting the vibration images. 

The displacement field of the transverse 
modes seemed to have a longitudinal depen- 
dence on the position of knots. Figures 7 and 
8 show amplitude images of vibration modes 
occurring at 1,845 and 2,950 Hz. Both figures 
show that vertical nodal lines are located at 
the same position as the branch whorls (ref. 
Fig. 4). By counting the peripheral phase shifts 
on the visible front side, the modes in Figs. 7 
and 8 can be identified as the n = 3 mode and 
the n = 5 mode, respectively. The mode num- 
ber is the number of waves around the circum- 
ference of the log cross section (see Fig. 6). 

The results presented above lead to the pro- 
posal of the hypothesis: 

cur at the longitudinal positions of the 
branch whorls. 

The specimens for the second experiment 
were chosen in order to confirm or reject this 
hypothesis. 

The second experiment-testing of the 
hypothesis 

A new material was chosen to test the by- 
pothesis proposed above. Scots pine was cho- 
sen because of greater regularity with respect 
to branch whorls, i.e., there are no knots be- 
tween the branch whorls as in spruce. Log l a  
was completely knot-free. The knots had been 
removed immediately after the budding had 
taken place (Russian pruning). A control log 
was chosen with approximately the same di- 
mensions (2b) as the knot-free log but with 
regular branch whorls. The two last logs were 
similar regarding dimensions, but the knots in 
log l b  reached the surface, while the other log 
(2c) had only grown-over knots except for a 
few small encased knots. The density values 
used in the later calculations are the average 
values of two density determinations. The first 
of these was based on the total mass and an 
estimate of the volume, while in the other 
method the density was determined from 
CT-scanning of the logs. In the latter, an av- 
erage over the log cross section was used. The 
properties of the specimens are summarized in 
Table 1. 

Vibration modes with the circumferential 
RESULTS 

displacement pattern described by Eq. (5) 
exist in logs Transverse modes 
Knots counteract the radial displacement, Transverse modes were not observed on the 
and transverse nodal lines will therefore oc- pine logs. Longitudinally traveling waves with 
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The whole log 180" out of Almost in phase (due Excitation point 
phase to periodicity in 271) (at the back side) 

FIG. 9. Phase plot of vihration pattern on knot-free log at 2,138 Hz. In the vicinity of the excitation point, the 
mode has an n = 3 shape while it turns to n = 0 after propagation towards left. 

an initial circumferential shape as specified by 
Eq. (5) were observed, but no resonant vihra- 
tion of this kind was found. The phase image 
of one of these traveling waves measured on 
the knot-free log (la) is shown in Fig. 9. This 
vihration pattern was recorded while the vi- 
brating force was working at the middle of the 
visible part of the log. The phase does not take 
only two values anymore; the continuous 
change of phase to the left is describing a - - 
propagating wave. Animation shows that 
waves propagate both to the left and to the 
right from the excitation point. When the ex- 
citation point was moved, waves propagated 
from the new position similarly. It is interest- 
ing that, in the vicinity of the excitation, the 
deflection pattern is that of Fig. 6 with n = 3. 
At a certain point, as the wave propagates lon- 
gitudinally, the circumferential shape alters to 
n = 0 (or n = 1). 

Similar vihration patterns were recorded on 
specimen 2h. Transverse modes were not oh- 
served here either, hut interesting nonresonant 
vibration patterns were recorded. Vibration 
patterns corresponding to the one in Fig. 8 

TABLE 2. The resonant ,frequencies of the bending 
modes. The MOE (E) is determined by minimi3ng th? sum 
of the sqsarc error of rlze 4 (5) equations in Eq. (2). 

1.1. 2nd. 3rd. Ch. 5th. E 
1.o~ IIlrI (HI) lHll IHLI (HI) (GPrI NBG 

were recorded with n = 2, 3, 4. Whether the 
branch whorls played an important role here 
is hard to tell because the vihration patterns 
are very dependent on the excitation point in 
cases of nonresonant vibrations. 

The hypothesis must therefore in general he 
rejected. Special circumstances around the first 
specimen, the spruce log, may explain why 
whorls were identified. Possible explanations 
are: 

The anisotropy of pine is more pronounced 
than that of spruce, that is, G ,  is very dif- 
ferent from G,, and E, different from E, 
(Kollmann and Cbt6 1968) andlor 
There are two equations that have to he sat- 
isfied at resonance--one involving the ra- 
dius and the number of circumferential 
waves (n) and one involving the longitudi- 
nal nodal distance (distance between branch 
whorls). Only one parameter is free, namely 
the frequency. By coincidence, the combi- 
nation of radius and internodal distance fit 
the spruce log, while this was not the case 
with the pine logs. 

Bending modes 

Bending modes were observed for all the 
specimens. All the results can he seen in Table 
2 along with the calculated elastic parameters. 
These parameters are only apparent elastic pa- 
rameters, i.e., they are global values for each 
log. The actual moduli vary within each log. 
E and q are determined by minimizing the 
sum of the square error of Eq. (2) for all the 
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TARLE 3. The ohserved ror.sion moder. The shear modulus GLT is derermined by use of Eq. (3) wirh an approximorr 
expression for p in Eq. ( 4 )  derived by mrasuring rhe denxi? of heartwood and sapwood and rhe radius of rhr hear- 
rwood/sapwnod limit in a ff scanner. The numbers in parenrlzeses are the values determined from modes 1. 2, and 3 
respecrively. 

LO8 1st. (HLI 2nd. tH2) 3rd (Hz1 Clr (GPrl 

2h 190 381 569 0.62 (0.623, 0.626. 0.620) 
la  (cut to 0.67 m) 626 - - 0.76 

4 (5) modes for each log. The calculated 
MOEs are almost equal for all the logs, at least 
not significantly different because the uncer- 
tainties in the densities (Table 1) are in the 
same order of magnitude as the difference be- 
tween the MOEs. The effective shear modulus 
G, when assuming both P and E constant, has 
a much larger variation, even though there is 
no obvious pattern of this variation. Chui 
(1991) states from bending tests that on av- 
erage the shear modulus is higher for knotty 
specimens than for clearwood. 

The values of E are somewhat high com- 
pared to what should be expected from liter- 
ature (Kollmann and CBt6 1968). According 
to literature, dynamic MOEs are 8-10% higher 
than the static values due to the viscoelastic 
nature of wood. The values determined here 
are still, however, much higher than would be 
expected. Spot tests in terms of a few small 
clear specimens were taken from three of the 
logs; 2b, lb, and 2c. Static MOE was mea- 
sured in accordance with IS0 3349 (1975). 
These tests showed that the MOE varied very 
much within each log; for Ib the values 
ranged between 7.5-10.2 GPa, for 2b between 
7.7-11.7 GPa, and for 2c between 8.1 to 10.4 
GPa. It is difficult to calculate an effective 

Deformation 
angle 

Knots 

FIG. 10. The intersection of knots and the LT-plane. 

MOE for the log, but it is interesting to note 
that the local variations of MOE are organized 
in a way that makes the effective MOE of the 
trunk high compared to the local values. This 
may he a new example of optimized growth. 

Torsion modes 

Torsion modes were measured on only two 
of the specimens. They were very easy to find 
when the support condition and the imposed 
force were as specified above. Torsion modes 
were measured on log 2b and log l a  (log l a  
after being cut to one third of its original 
length), and the results can be seen in Table 
3. We see that the calculated value of G, for 
2b is the same for all the three modes. In con- 
tradiction to bending, this is a pure mode, i.e., 
the torsion deformation does not couple to 
other deformation modes. 

Log 2b has 18% lower shear modulus than 
the knot-free la. In the deformation plane, LT, 
all the knots intersect perpendicularly (Fig. 
lo), and this may cause the decrease in the 
shear modulus. 

Just as with the bending deformation, tor- 
sion is likely to occur in living trees due to 
asymmetrical crowns, and the vibrational be- 
havior might he related to failure of standing 
trees. 

CONCLUSIONS 

The results do not show that interior defects 
in logs, such as knots, in general can be de- 
tected from resonant vibrations. The pine logs 
did not behave as assumed after the pilot study 
on a spruce log. A theoretical analytical ap- 
proach to these wave phenomena might clarify 
the picture. 
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The MOE was determined by using Timo- 
shenko beam theory and was for all the pine 
logs about 14 GPa. Spot tests of small clear 
specimens from the logs resulted in local val- 
ues of static MOE between 7.5 and 11.7 GPa, 
so even when the normal difference between 
static and dynamic MOE is taken into account, 
the global value of MOE is high. The shear 
modulus varied greatly between the logs. 

The shear modulus GLT was determined 
from the torsion modes, and the results indi- 
cate that knots decrease the value of G,,. 
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