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I!sing l e a l  squares techniclues. the lattice ~nocle l  member properties were determined to  g ive optimal 
p~.eclictions o f  hulk  elastic con\tants and expected load-displ;~cement responw to failure under perpen- 
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/ation. inclueling crack br idg ing and microcracking around the cri t ical crack. Mesh size effects were 
n l \o  cxanlineil. ;uiti whi le  the lattice models are dependent o n  mesh sire. i t  is demonstrated that fo r  n 
t iscd cel l  aspect ratio. ;I sinlple scaling o f  the lattice lnodel strength and .;tiffness properties to  account 
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lN.I'l<( )l lLI( 'TlON 

The heterogeneous nature of' wood and 
wood cotnposites has presented scientists and 
engineers with a difficult modeling problem 
for many years. In the context of mechanical 
properries. continilurn-based strength of ma- 
terials approaches have bcen the primary 
n~cthocls 1.0s modeling the response of niate- 
rials and structiires to lo~tds. For elastic and 
viscoelaslic tlcf'orniations. anisotropic contin- 
-- 

-:- M c ~ l ~ h e t -  of SWST. 

uum theory is an effective tool for predicting 
structural response. However, for prediction of 
element strength o r  structirral load capacity, 
the effectiveness of traditional elasticity theo- 
ry or a strength of materials approach can be 
called into question. This is especially true for 
a material that has substantial defects, or a ma- 
terial that has been subject to various degrees 
of dunage. Indeed, typical coefficients of var- 
iation (COVs) for strength properties of wood 
are in the range of 14 to 28%, (Wood Hand- 
hook 1999), whereas a typical COV for yield 
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strength of structural steel is around 2% (Ills- 
ton 1994). 

The wide range of COVs observed in wood 
arises from the heterogeneous nature of the 
material and the statistical variations in local 
properties that arise from it. Wood is particu- 
larly difficult to model because the heteroge- 
neities cover a wide range of length scales. 
Property variations are influenced by niacro- 
scopic heterogeneities such as knots, grain an- 
gle deviations, and the differing characteristics 
of earlywood and latewood, as well as micro- 
scopic heterogeneities such as variations in 
microfibril angle. Traditional mechanics of 
materials assumes that the influence of these 
local property variations are evenly distributed 
over the volume of the material. While this 
assumption is reasonably valid for predicting 
yield of ductile metals, for wood it is not. Lo- 
cal property variations in wood dictate the 
strength, and the wide range of relevant length 
scales does not validate spatial leveling up of 
local properties. 

The typically nonductile fracture of wood 
observed in tension and shear has led re- 
searchers to investigate the role of cracks on 
strength. For example, Cramer and Goodman 
(1983) proposed the concept that tensile fail- 
ure of a solid wood board arises from pro- 
gressive fracture, and later developed a so- 
phisticated finite-element model of a board 
that incorporated knots, grain pattern, and 
fracture mechanics to predict failure (Cramer 
and Goodman 1986). Cramer and Fohrell 
(1990) subsequently extended this model to 
capture progressive and mixed-mode fracture. 
These studies were valuable in that they rec- 
ognized and attempted to rationally incorpo- 
rate observed behavior and heterogeneities. 
However, the continuum framework implicit 
in these models ultimately limits their appli- 
cability. 

The work described in this paper represents 
a different approach for modeling heteroge- 
neous material behavior. Specifically, we de- 
velop a lattice finite element model where the 
lattice elements represent specific microstruc- 
tural elements. While lattice models have been 

identified as a natural choice for modeling dis- 
ordered materials due to the relative ease of 
explicitly incorporating heterogeneity and var- 
iability (Curtin and Scher 1990; Jirisek and 
Baiant 1995; Schlangen and Garboczi 1996, 
1997), their ability to mimic the structure of 
an ordered, anisotropic, defect-sensitive ma- 
terial makes them an attractive candidate for 
modeling wood. Such a "morphology-based" 
model has several advantages over traditional 
continuum representations. First, the model 
can represent the material in a way that has a 
physical basis. The model elements are ar- 
ranged in a lattice that mimics the material 
structure. Effects of local variations in fiber 
orientation, defects, and other heterogeneities 
can be incorporated directly into the model. 
Second, the changes in microstructural fea- 
tures that arise from damage-inducing mech- 
anisms can be handled explicitly through bro- 
ken elements. Third, and most significant, the 
modeling approach allows the macroscopic 
behavior of the material to be computationally 
linked to the micro- and meso-level features 
(such as grain angle deviations and knots) that 
cause that behavior. Damage, defects, and oth- 
er microstructural features can be quantitative- 
ly linked to changes in material stiffness and 
strength. The result is a model that predicts 
both load-deformation response and micro- 
structural damage patterns and failure modes. 

The goal of the work described in this paper 
is to evaluate the suitability of lattice models 
for predicting different common failure modcs 
of structural softwood. After an overview of 
the modeling approach, we first demonstrate 
how to adjust lattice properties to mimic bulk 
elastic properties under various loading con- 
ditions. Following this, a typical lattice model 
is calibrated to replicate the load-displacement 
response of eastern spruce loaded to failure 
under perpendicular-to-grain tension, parallel- 
to-grain tension, and shear. Model-predicted 
progressive fracture patterns are presented, 
and the effect of mesh size on model response 
is addressed. The potential for the practical ap- 
plication of lattice models is also discussed, 
with attention given to the explicit consider- 
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FIG. I .  Lattice cell geometry and member definitions. 

ation of macrostructural defects and the issue 
of computational requirements. 

DETAILS OF LATTICE MODEL 

The 2D model detailed in this paper treats 
wood as a lattice composed of fiber bundles 
oriented in the longitudinal direction (denoted 
by L), ties between fibers oriented perpendic- 
ular-to-grain (R or T direction), and diagonal 
members (denoted by D) that are primarily re- 
sponsible for transferring in-plane shear be- 
tween adjacent fiber bundles. All members are 
treated as pinned-end bar elements, carrying 
only axial load. Each member in the lattice has 
a characteristic strength, P [N] and stiffness, k 
[Nlmm]. Figure 1 illustrates the basic config- 
uration of a single model cell having a length 
I and height a, and Fig. 2 shows three different 
finite element meshes of a small piece of clear- 
grained wood that is composed of an array of 
the individual cells. 

An additional parameter not shown in Fig. 
1 is the orientation of the diagonal, D, relative 
to L. We note that in a conventional stiffness- 
based structural analysis, the orientation 0 is 
computed fi-orn the orientation of the element 
in the global coordinate system (i.e., 0 = 

tan '(all  )). However, our preliminary simula- 
tions showed that if 0 is computed from the 
true lattice geometry, it is not possible to 
achieve a good prediction of the elastic con- 
stants with the lattice model. Therefore, 0 was 
kept as an independent model parameter that 

9 x 6 Divisions 

15 x 10 Divisions 

21 x 14 Divisions 

FIG. 2. Lattice models with varying levels of refine- 
ment. 

did not depend on the cell aspect ratio, which 
allowed the relative contribution of the diag- 
onal members to perpendicular-to-grain ten- 
sion and in-plane shear to be adjusted inde- 
pendently of the cell geometry. The element 
stiffness matrices, element nodal force vectors, 
and element nodal displacements were trans- 
formed with this independent value of 0, 
which ensured that equilibrium and compati- 
bility were always satisfied in the analysis. 

The strength and stiffness values for each 
member are taken as random variables that 
obey a given probability distribution. This sta- 
tistical distribution of member strengths within 
a specimen gives rise to the progressive and 
dispersed damage commonly observed in 
wood specimens loaded to failure under sim- 
ple stress states (Vasic and Smith 1996; Vasic 
2000; Vasic et al. 2001). Currently, the form 
of the distribution of lattice member strengths 
and stiffness is unknown, and a normal distri- 
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bution is assumed. Tensile and compressive 
strengths are considered equal in the present 
formulation, although the model can easily be 
extended to incorporate different member 
strengths in tension and compression. No at- 
tempt is made here to model variations in 
strength due to macrostructural features such 
as earlywoodllatewood boundaries, although 
this issue is discussed later in this paper. Fig- 
ure 3 shows the assumed brittle load-displace- 
ment relationship for each lattice member. 

The foregoing model description leads to a 
solution procedure based on a stiffness-based 
matrix formulation for trusses and frames, 
which yields the following system of coupled 
linear equations at every load step: 

In Eq. ( I ) ,  K is the system stiffness matrix, 
which is assembled from the individual ele- 
ment stiffness matrices, U is the vector of un- 
known nodal displacements, and F is a vector 
of known forces. For details of the stiffness 
method for trusses and frames, see a text on 
structural analysis such as Au and Christian0 
( 1993) or Hibbeler (I 990). We have chosen to 
employ a straightforward solution algorithm 
that relies on checking for failed elements at 
each load increment, and then removing the 
failed elements from the model and re-solving 
the system stiffness equations. While this ap- 
proach has been adopted by most prior re- 
searchers who have used lattice models to cap- 
ture failure and fracture in concrete (Raghu- 
prasad et al. 1998; Schlangen and Garboczi 
1996), we do note that more sophisticated al- 
gorithms can be employed that could save sig- 
nificant computation expense for large 3D 
simulations (JirBsek and Baiant 1995). The so- 
lution algorithm is given below for N load in- 
crements; the number of members failed with- 
in each load increment is denoted by n,. The 
algorithm and all necessary routines required 
to assemble K and compute member forces 
have been implemented with the scientific 
computing package Matlab ("Using Matlab" 
1998). 

generate k and P for all members 
assemble K 
f o r ; =  1 . . .  N 

do 
form F 
U = K-'F  
compute forces in individual members 
compute n 
remove failed members from K 

while n > 0 
end for 

ALGORITHM I. Solution of lattice model with progres- 
sive failure. 

ESTIMATION O F  MEAN STIFFNESS PARAMETERS 

The first challenge in the application of the 
proposed lattice model for wood is to deter- 
mine the member properties so that the well- 
known orthotropic elastic constants can be ac- 
curately predicted. With reference to Fig. 1 ,  
there are essentially two geometric parameters 
that can be adjusted: the aspect ratio /la, which 
governs the relative number of L-direction, 
R-direction, and diagonal elements within a 
given model, and 0. For a 2D model in the 1,R 
plane such as that shown in Fig. 1 ,  the mean 
stiffness of each member type (k, k,, and k,) 
is a model parameter. The four elastic con- 
stants that must be matched by adjusting these 
model parameters are the elastic moduli EL 
and E,, the shear modulus G,,, and Poisson's 
ratio u,,. Note that v,, is not considered, as it 
is very difficult to measure experimentally and 
its value is typically negligible (Bodig and 
Jayne 1993). 

For the present simulation, model parame- 
ters were determined for a specimen with an 
overall length in the L-direction of 12 mm. a 
height in the R-direction of 4 mm, and a thick- 
ness of 12 mm. These dimensions are typical 
for the small-specimen tensile tests conducted 
on eastern Canadian spruce by Vasic (2000). 
To study the effect of model refinement, three 
levels of discretization (L X R) were employed 
with the cell aspect ratio of lla = 2.0: 9 X 6 
divisions, 15 X 10 divisions, and 21 X 14 di- 
visions, leaving only four independent model 
parameters. These three finite element meshes 
are shown in Fig. 2. 
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f Compression 

FIG. 3.  Typical latticc element load-displacement re- 
lationship. 

The modulus of elasticity E, was taken as 
5 19 MPa, which is the average secant modulus 
computed at a stress of approximately 0.3 
MPa from the small specimen test data re- 
ported by Vasic (2000). This value is 37.5% 
less than the value of 830 MPa reported by 
Bodig and Cioodman ( 1973) for red spruce (a 
species of spruce common to eastern Canada). 
To account for this observed difference in 
modulus, target values for the remaining elas- 
tic moduli were taken from the Wood Hand- 
book ( 1  999) for red spruce and reduced by 
37.5%. giving EL = 7,200 MPa and G,, = 437 
MPa. The value of v,, (Poisson's ratio) was 
taken to be 0.40, which is typical for spruce. 
Optimal values for the four independent model 

parameters were determined by minimizing 
the following least-squares objective function, 
@,, which is normalized to give equal weight 
to all elastic constants: 

In Eq. (2), ET, E;, Gf,, and v?, are the values 
predicted by the lattice model assuming line- 
arly elastic response to the simple stress states 
of parallel-to-grain tension, radial tension per- 
pendicular-to-grain, and in-plane shear paral- 
lel-to-grain. For all of the models, a strain of 
0.1 % was assumed in the simulations, and no 
members were allowed to fail. 

The loading for the three stress states was 
applied by enforcing the displacements A,, A,, 
and A,,  at the model boundaries as shown in 
Fig. 4. For the case of radial tension perpen- 
dicular-to-grain, this simulates the displace- 
ment control used in the actual experiments of 
Vasic (2000). Minimization of a, with respect 
to the four parameters was accomplished using 
the simplex-based routine fmins provided in 
the scientific computing package Matlab 
("Using Matlab" 1998). The minimization 
process was straightforward, and converged 
quickly to the parameter values given in Table 
1. Two important points regarding these pa- 
rameters have been observed: 

1) For a given aspect ratio, the optimal model 

Radial Tension Parallel-to-Grain Tension LR Shear 

FIG. 4. Enforced displacements and boundary conditions. 
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T A B L ~  I .  Optimul model parumetency , f i~r various levels 
of discretizuriotl. 

Mc\h reflnrlnrnl 
( I .  X K) 0 (radian\) ki* tN1ni111) !,,I ( N l m m )  k,,* (Nlmrn)  

' The5c v;ilur\ ;Ire pcr mrn of modcl u ~ d t h  

parameters remain relatively independent 
of the cell size for a given value of a and 
1. This is an extremely useful result, as it 
implies that adjustments to cell geometry 
required by meshing constraints and model 
geometry can be efficiently accommodated 
by small adjustments to member stiffness- 
es. 

2) The cell aspect ratio has a significant effect 
on the predicted parameters, and aspect ra- 
tios other than the assumed value of 2.0 
will yield different values for 0,  k,, k,, and 
k,,. Good results were achieved for aspect 
ratios of 1.0 and 3.0. However, once the 
aspect ratio exceeded a value of about 3, 
the rate of convergence of the minimiza- 
tion process slowed significantly. 

CALIBRATION OF THE MODEL 

Overview of test procedures and results for 
spruce sul7jected to radial tension 

The complete load-deformation response of 
wood specimens loaded in tension perpendic- 
ular to the grain was measured by Vasic 
(2000). These experiments, aimed at evaluat- 
ing the nonlinear softening response of eastern 
Canadian spruce, provide a strong basis for 
calibration of the lattice model in that partic- 
ular loading case. The experimental setup, il- 
lustrated in Fig. 5 ,  was designed to facilitate 
observation of stable post-peak strain-soften- 
ing response. Specimens were glued to steel 
blocks that were then mounted in a steel load- 
sharing arrangement. The load-sharing ar- 
rangement was able to produce stable crack 
growth in the wood specimens. The load was 
applied to the steel beam above the specimen. 
The load on the wood specimen was deter- 

Fixed Base 

FIG. 5.  Schematic of radial tensile tests. 

mined by subtracting the load produced by the 
beam without a specimen from the measured 
load with the specimen. Deformation was de- 
termined from clip gages mounted on either 
side of the specimen. The tests were run in 
displacement control at a crosshead rate of 1 
mmlmin. This rate was chosen to obtain corn- 
plete failure in 3-5 min. 

The spruce specimens tested in radial per- 
pendicular-to-grain tension were 4 mm thick, 
and ranged in size from 10 mm X 10 mm to 
14 mm X 14 mm in the LT plane. Figure 6 
shows the measured load-displacement results 
that have been normalized to a specimen si.ce 
of 12 mm X 12 mm. Additional details of the 
testing program and results can be found in 
Vasic (2000). 

Target response for lattice model 

Application of the lattice model to the pre- 
diction of the observed small-specimen re- 
sponse in radial tension perpendicular-to-grain 
requires that a single target experimental load- 
displacement curve be determined. To achieve 
this, each experimental load-displacement 
curve shown in Fig. 6 was first smoothed us- 
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+ Smoothed Average Response 

700 

FIG. 6.  Measured small-specimen radial tension per- 
pendicular-to-grair behavior (Vasic 2000). 

ing a moving average to allow easy interpo- 
lation. Second, the loads for all specimens 
were normalized to values corresponding to a 
12-mm X 12-mm X 4-mm (L X T X R) spec- 
imen. This normalization was necessary since 
the tests were conducted on specimens ranging 
in size from 10 mm X 10 mm X 4 mm to 14 
mm by 14 mm X 4 mm. Finally, 24 discrete 
displacements were selected at which the 
smoothed, normalized loads for all experi- 
ments were averaged. In addition to the six 
normalized experimental curves, Fig. 6 also 
shows this average curve, which was taken as 
the target response for the lattice model for 
radial tension perpendicular-to-grain. The 
mean radial tensile strength is 396 N, which 
corresponds to a stress of 2.75 MPa on a 12- 
mm X 12-mm specimen area. This value was 
14.6% higher than the average perpendicular- 
to-grain tensile strength of 2.4 MPa reported 
in the Wood Handbook (1999) for red spruce 
at 12% moisture content. 

The lattice model should also be able to pre- 
dict LR shear response, which is primarily 
governed by the strength and stiffness of the 
diagonal members, and parallel-to-grain (L-di- 
rection) tension response. Determining the tar- 
get load-displacement response for LR shear 
and parallel-to-grain tension was a challenging 
task. To the best of the authors' knowledge, 
load-displacement curves determined from 

tests on small specimens that describe the 
post-peak softening response of red spruce in 
tension parallel-to-grain and LR shear parallel- 
to-grain are not available. The nominal spec- 
imen response under these loading states was 
assumed to be linearly elastic until the failure 
load was reached. 

The failure load for LR-shear was estimated 
as 1470 N. This value was computed by in- 
creasing the average shear strength of red 
spruce of 8.9 MPa (Wood Handbook 1999) by 
14.6% and multiplying by a specimen area of 
12 mm X 12 mm. While the Wood Handbook 
(1999) does not report a value for L-direction 
tensile strength of red spruce, its average mod- 
ulus of rupture (MOR) is 74 MPa. This value 
was adjusted downward by 8.8% based on the 
reported L-direction tensile strength and MOR 
of Sitka spruce of 59.3 MPa and 65 MPa, re- 
spectively, and then adjusted up by 14.6% 
based on observed radial tension strength. The 
failure load for a specimen with an area of 4 
mm X 12 mm in L-direction tension was then 
computed as 3710 N. 

Culibmtion procedure 

Prediction of the progressive damage and 
softening observed in the small-specimen ra- 
dial tension perpendicular-to-grain tests re- 
quires the determination of the strengths and 
coefficients of variation of the individual 
members of the lattice model. A 15 X 10 (L 
X R) lattice model was used to determine 
strength and stiffness parameters. The effect 
of mesh refinement is considered later in this 
section. The following nine independent mem- 
ber strength and stiffness parameters can be 
adjusted to match experimental and nominal 
response: the mean strength of each member 
type (P, P,, and P,) ) ,  the coefficient of vari- 
ation in strength of each member type 
(COV,,, COV,,, and COV,,,), and the coeffi- 
cient of variation of stiffness of each member 
type (COV,,, COV ,,,- and COVkn). The mean 
member stiffnesses (k,, f,, and f , )  were fixed 
for all analysis at the values determined by 
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fitting the elastic constants as described pre- 
viously. 

Preliminary analyses indicated that consid- 
ering all nine parameters to be independent 
was computationally impractical; in addition, 
existing data do not provide guidance on ap- 
propriate magnitudes of the coefficients of 
variation. To overcome these difficulties, the 
number of parameters was reduced to six by 
assuming that COV,, = COV,, = COV,, 
COV,,,, = COV,,, = COV,, and COVkR = 

COVPR = COV,. Initial attempts at simulta- 
neously fitting radial tension perpendicular-to- 
grain, LR shear, and parallel-to-grain tension 
response by allowing all six parameters to 
vary were unsuccessful. Therefore, the param- 
eters providing a best fit to the data in a least 
squares sense were determined with the three- 
phase process described as follows. 

Parameter estimation .for LR shear re- 
sponse.-First, the response of the lattice in 
LR shear parallel-to-grain was analyzed. This 
loading was chosen for initial examination be- 
cause the LR shear stiffness and strength are 
governed almost exclusively by the stiffness 
and strength of the diagonal elements. The 
values of COV,, and P ,  were determined to 
provide the best fit to the shear response by 
minimizing the following objective function, 
+I.,: 

( 3 )  

In Eq. (3), S:,, is the model-predicted peak 
shear force and S;",, is the model-predicted 
shear force at half the displacement corre- 
sponding to S:;,,. These values were both tak- 
en as the average of 20 simulations, where 
properties of each diagonal member were gen- 
erated for each simulation assuming a normal 
distribution of strength and stiffness. Similar- 
ly, S,,,,, is the expected shear failure load of 
1470 N and SIl2 is the expected shear force at 
half the displacement corresponding to the ex- 
pected shear failure load. This objective func- 

tion was purposely constructed to ensure that 
its minimization resulted in a good fit to both 
the shear modulus and the ultimate shear 
strength, which are the two constitutive pa- 
rameters readily available in the literature. An 
initial starting value of 100 N for P, was es- 
timated from the average member force in 
each diagonal element when a shear force of 
S,,,, was applied to a linearly elastic lattice 
model. The starting value for COV, was taken 
as 0.20. The values of COV, and COV, were 
fixed at 0, and the values of P, and P, were 
assigned artificially large values to prevent 
failure of the parallel-to-grain and radial per- 
pendicular-to-grain members. We emphasize 
that these members have very little effect on 
LR shear response. These initial parameter val- 
ues yielded +,, = 0.15. The minimum value 
of +,, was 0.08, which corresponds to P,, = 
80 N and COV, = 0.15. 

Parameter estimation,for response in radial 
tension perpendicular-to-grain.-The target 
radial tension response described previously 
and shown in Fig. 6 was used to determine the 
values of COV, and P,. The objective func- 
tion for radial tension response, +,, was taken 
as follows, where T, is the experimental 
smoothed average load at the ith radial dis- 
placement A, (see Fig. 6), and is the force 
predicted by the lattice model at the ith radial 
displacement. 

Including the point (0, O), there are 24 points 
defining the smoothed average response curve. 
In the determination of +,, the values of j', 
and COV, were held at the previously deter- 
mined optimal values of 80 N and 0.15, re- 
spectively. We note that this objective function 
differs significantly from that used for Ll?- 
shear (Eq. 3) and that used for L-direction ten- 
sion (presented in the following section). This 
is due to the fact that for radial tension, de- 
tailed experimental data were available that 
fully describe the nonlinear, softening re- 
sponse. If such data were available in LIZ- 
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- 
TABLE 2. VUIIIYS of' @,,for 40 5 P ,  5 50 trnd 0.25 5 

C'OV,, 5 0.50. 

shear and L-direction tension, objective func- 
tion:~ similar to Eq. (4) could be constructed 
for ill1 loading conditions. 

Reasonable values of P ,  and COV, were 
estimated by manually varying their values 
and observing response. This initial step yield- 
ed tlhe following likely range of parameter val- 
ues: 40 5 P, 5 50 and 0.25 5 COV, 5 0.50, 
for which values of $, were then calculated. 
To ensure a smooth variation in $,, each force 
c': was determined for each pair of parameters 
as the average of 20 independent simulations 
using randomly generated member properties. 
Table 2 gives the values of +, corresponding 
to this range of parameter values. The mini- 
mum value of $, corresponded to P, = 48 N 
and COV, = 0.35. 

Puramet~r estimation fbr parullel-to-gruin 
teil.sion response.-The values of P,  and 
COV, were determined to provide the best fit 
to [.he parallel-to-grain tension response by 
minimizing the following objective function, 
dL: 

This objective function was constructed based 
on the same philosophy as +,, in an attempt 
to rnatch both the elastic modulus and the ul- 
timate tensile strength parallel-to-grain. In Eq. 
(S), Q:,,, is the maximum model-predicted ten- 
sion force, and Qc2 is the model-predicted par- 
allel-to-grain tension force at half the displace- 

FIG. 7. Pred~cted and experimental radial ten\ile per- 
pendicular-to-grain behavior. 

ment corresponding to Qz,,. These values 
were both taken as the average of 20 simula- 
tions, where properties of each L-direction 
member were randomly generated for each 
simulation arsuming a normal distribution of 
strength and stiffness. Similarly, Q,,,,,, is the 
expected tensile failure load of 3410 N, and 
QIl2 is the tension force at half the displace- 
ment corresponding to Q,,,,,. A starting value 
of 600 N for P, was estimated from a few 
initial simulations, and the initial value for 
COV, was taken as 0.20. The values of P,, 
P,, COV, and COV,, were fixed at the pre- 
viously determined optimal values. The opti- 
mal values for P, and COV, were 700 N and 
0.20, respectively, at +, = 0.02. 

I MODEL PREDICTIONS AND SIGNIFICANCE 

O F  RESULTS 

Using the previously determined optimal 
parameters, responses of a 12-mm X 12-mm 
X 4-mm specimen to the loading conditions 
of radial perpendicular-to-grain tension, par- 
allel-to-grain tension, and LR shear were sim- 
ulated. Each of the responses was computed 
as the average of 100 independent simulations 
with randomly generated material properties. 
Figures 7-9 show the model load-displace- 
ment response and the target response for the 
three loading conditions. The primary stress 
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FIG. 8. Predickd and nominal 1,R shear parallel-to- F , ~ ,  9, predicted and tension parallel.to.grain 
grain behavior. behavior. 

state of interest was radial tension perpendic- 
ular-to-grain, and the model fit to the mean 
experimental data was considered good (Fig. 
7). In addition, the fit to the nominal shear 
response was considered good. The predicted 
post-peak response in parallel-to-grain tension 
was not as good as that achieved for radial 
tension and LR-direction shear, although both 
the stiffness and the magnitude of the peak 
load are accurately predicted by the lattice 
model. This is discussed in more detail later 
in this section. 

We note that while the nominal load-dis- 
placement response in both LR shear and L-di- 
rection tension (Figs. 8 and 9) was taken as 
nearly brittle fracture, the post-peak capacity 
and strain softening that has been observed for 
radial tension may exist for LR shear and L-di- 
rection tension. However, the authors are not 
aware of any small-scale data that illustrate 
this behavior. 

In addition to the base level of discretization 
with 15 X 10 element divisions, simulations 
using models with 9 X 6 element divisions 
and 2 1 X 14 element divisions were conducted 
in an attempt to assess the effects of finite el- 
ement mesh refinement. The mean strengths of 
the members in the model with 9 X 6 mem- 
bers were determined by scaling P,, P,), and 
P ,  by the ratio of (15 + 1)/(9 + 1 )  = 1.6, 
which corresponds to the ratio of the number 

of elements in the R-direction for the base 1'5 
X 10 element mesh and the 9 X 6 element 
mesh. Similarly, the mean member strengtl.1~ 
for the model with 21 X 14 elements were 
scaled by the ratio ( 1  5 + 1)/(2 1 + 1 ) = 0.73. 
We note that these scale factors are not ideal 
for all loading states, since both the radial per- 
pendicular-to-grain tension response and par- 
allel-to-grain tension response also depend on 
the diagonal elements, whose mean strength 
should be scaled by 1519 and 15/21 for the 9 
X 6 and 21 X 14 element meshes, respective- 

ly. 
This simple scaling procedure produced 

good results for LR shear (Fig. 8). For the 
loading state of radial tension perpendicular- 
to-grain, the maximum load of 396 N is 0.v- 
erpredicted by about 1% when 9 X 6 element 
divisions are employed. The model with 21 X 

14 elements also gives acceptable results, un- 
der-predicting the maximum load by only 2410. 
However, the shape of the predicted radial ten- 
sion load-displacement curve varies at differ- 
ent levels of mesh refinement, with increasing 
levels of mesh refinement better capturing the 
sharp descending branch. For parallel-to-grain 
tension, the peak load is less accurately pre- 
dicted for all levels of mesh refinement, and 
the steepness of the descending branch in- 
creases rapidly with increasing levels of mesh 
refinement. Overall, it is concluded that this 
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Radial Displ. = 0.08 mm Radial Displ. = 0.16 mrn Radial Displ. = 0.50 mrn 

(a) Lattice Model Predictions 

(b) Experimentally Observed Crack Growth and Bridging 

FIG. 10. Damage evolution in specimen subjected to radial tension perpendicular-to-grain 

simple scaling gives reasonable results; how- 
ever the topic of mesh refinement certainly 
warrants further study. 

Figure 10a shows the lattice model mem- 
bers (that remain intact) at different magni- 
tudes of perpendicular-to-grain radial tensile 
displacement, illustrating the predicted evolu- 
tion of damage. The initial damage occurring 
at low displacement magnitudes is widely dis- 
persed throughout the specimen. As displace- 
ments increase, individual fracture planes 
merge, eventually resulting in a tortuous frat- 

1.-D~rect~on Tension Dlspl. = 0.19 rnrn LR Shear Dlspl. - 0 12 mm 

(a)  1.att1ce Model Fracture Patterns for L-d~rect~on Tcnslon and LR Shear 

(h) Ohserved Small-spec~nlen L-direction Tens~le  Fracture 

FIG. I I .  Damage evolution in specimen subjected to 
tension parallel-to-grain. 

ture path that eventually travels as a major 
crack through the full member width along the 
grain. This model-predicted response is con- 
sistent with the crack bridging phenomenon 
observed in small-specimen wood fracture in 
spruce shown in Fig. lob (Vasic et al. 2001; 
Vasic and Smith 1996). This crack bridging 
has not been successfully captured with con- 
ventional continuum-based linear or nonlinear 
elastic fracture mechanics approaches (Vasic 
2000). 

Figure 1 l a  shows the remaining lattice 
model members after peak load has been 
reached for both L-direction tension and LR 
shear. In the case of L-direction tension, the 
damage is less localized since both the diag- 
onal and L-direction members carry significant 
force. This results in a relatively tortuous frac- 
ture path, which is consistent with the fracture 
patterns seen in small-specimen tests of 
spruce-pine-fir specimens recently conducted 
at the University of Maine (Fig. 1 lb). How- 
ever, for the case of LR shear, distinct fracture 
planes emerge in which almost all diagonal 
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members have failed. These observed fracture grained specimens, and it must be acknowl- 
patterns explain why the lattice model predicts edged that their lack of incorporation of 
brittle fracture in LR shear, but not in L-direc- growth ring structure and earlywood/latewood 
tion tension. boundaries is a significant shortcoming. How- 

Taken as a whole, the results of this work ever, the lattice models are naturally suited to 
demonstrate several items of significance: incorporating this feature, as cell size in the 

The lattice formulation can ,~imultaizeously 
capture elastic response, load-deformation 
behavior, and juilure patterns in three dif- 
ferent orientations c,fstress. This is accom- 
plished through a fairly simple model for- 
mulation with variable in element proper- 
ties. 
Model parameters can be estimated through 
c~ relativelj~ straightforward optimization 
procedure, with elastic constunts and 
~trerzgth properties as inputs. To a large ex- 
tent, the determination of optimal member 
properties can be accomplished indepen- 
dently for both elastic constants and 
strengths under simple stress states. How- 
ever, it may be possible to develop more 
sophisticated schemes for parameter esti- 
mation where responses under several load- 
ing conditions are considered simultaneous- 
I,, 
' Y .  

Mesh r~ jnemen t  and length scale effects 
n9urrLint .further stud.y. Although reasonable 
predictions can be achieved for different 
levels of mesh refinement with a simple 
scaling of material properties, model re- 
sponse is sensitive to mesh refinement. Fur- 
ther research should address the effects of 
mesh refinement and the issue of length 
scale. This is extremely important, as ulti- 
mately the scale of the mesh should repre- 
sent inherent length scales in wood macro- 
and mesostructure. 

POTENTIAL FOR PRACTICAL IMPLEMENTATION 

Explicit silnulation of macrostructure 
and defects 

The mechanical properties of wood are sig- 
nificantly affected by its growth ring structure, 
the presence of defects such as knots and spi- 
ral grain, and moisture content. We have only 
considered lattice models of small, clear- 

- 

R-direction can be easily adjusted so the 
growth ring thickness is a multiple of this tli- 
mension. Further, the strength and stiffness of 
individual model elements can be based on 
whether they fall within an earlywood or late- 
wood ring. This cell size will also allow future 
models to capture the disorder most relevant 
for structural applications, including grain de- 
viation, shrinkage cracks, and spatial variation 
of properties due to varying moisture content. 
At length scales smaller than the growth ring, 
disorder can be represented by the statistical 
distribution of individual element properties. 
Micro- and mesoscale features can be incor- 
porated into the lattice models as additional 
experimental data becomes available. 

To illustrate the lattice model's potential 
ability to capture the effect of grain deviation, 
simulations were completed for a model with 
grain angles of 0°, 45", and 90". For simplicity, 
the model was assumed to be 12 mm X 12 
mm in the L and R directions, and 12 mm 
thick. The simulations employed the same lat- 
tice cell geometry and element strength and 
stiffness properties of the previous models. 
The model boundaries were taken as fixed on 
the left face, and gradually increasing horizon- 
tal displacements were applied to the right 
face of the model as shown in Fig. 12. 

The failure mode predicted by the simula- 
tions for a grain angle of 45" is essentially a 
shear failure that propagates inward from the 
model corners, and in the L-direction as shown 
in Fig. 12. This is consistent with failures ob- 
served in laboratory tests of specimens with 
significant grain deviations, which often frac- 
ture along a growth ring (Bodig and Jayne 
1993). The failure mode was quite brittle, with 
a sudden drop in capacity at an enforced dis- 
placement of 0.7 mm. 

It is well known that in addition to affecting 
failure mode, grain angle significantly reduces 
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No d~splacemcnt 
Ax enforced at t h e l  

at this boundary 
boundary 

? 

Fracture Pattern at Applied Fracture Pattern at Appl~cd  
Undcformcd Mcsh Displacement of 0.05 mm D~splacernent of 0.20 mm 

FIG. 12. Lattice with grain angle of 45" 

tensile capacity. The peak loads predicted by 
the model-based on the average of 10 sim- 
ulations-were 10,7 10 N, 1,l 13 N, and 407 N 
for grain angles of 0°, 4S0, and 90°, respec- 
tively. One widely used formula for predicting 
the variation in strength with grain angle is 
Hankinson's formula (Hankinson 192 1 ), 
which while originally developed for use with 
compressive failures has also been applied for 
tensile failures such as those considered here 
(Cowin 1979). It is interesting to note that 
with the L- and R-direction capacities of this 
lattice model, Hankinson's formula predicts a 
tensile capacity of 784 N for a grain angle of 
4S0, which is 30% below that predicted by the 
lattice model. This overprediction of strength 
by the lattice model could be due at least in 
part to its lack of consideration of growth 
rings and the difference between earlywood 
and latewood strengths. Future research efforts 
on the use of lattice models to predict the 
structural response of wood should focus in 
better mimicking wood structure and explicit 
inclusion of defects. 

Mod01 size and compututionul requirements 

It must be acknowledged that the lattice 
simulations of this study were performed for 
very small specimens, and the practical sim- 
ulation of progressive fracture and failure of 

structural members such as beams, columns, 
or connections using lattice models of this 
study would require significant computational 
resources. This is especially true in light of 
material variability and the need for Monte- 
Carlo simulations. 

However, as with any finite-element based 
simulation, solution speed is primarily gov- 
erned by the efficiency of the algorithm used 
to solve the system stiffness equations. Several 
investigators working with discrete lattice 
models of concrete have tackled this problem. 
Jirasek and Baiant ( I  995) utilized a technique 
where the effect of stiffness degradation with 
progressive fracture was captured through the 
application of external inelastic forces, which 
made explicit updating of the system stiffness 
matrix unnecessary. Schlangen and Garboczi 
(1996) addressed this issue through the use of 
an iterative, conjugate-gradient solver; how- 
ever, they did not perform preconditioning, 
which can significantly reduce computational 
expense. With appropriate preconditioners, the 
conjugate-gradient method has been shown to 
be extremely powerful for solving both linear 
and nonlinear finite-element problems in struc- 
tural mechanics (Davids and Turkiyyah 1999). 

Another approach that would significantly 
decrease computational requirements would 
be the adoption of a "local-global" modeling 
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approach, where a relatively coarse continuum 
finite-element model is used in regions of low 
stress (where the assumptions of orthotropic 
elasticity are reasonable) to maximize efficien- 
cy. The continuum could be explicitly coupled 
with lattice models near defects and in regions 
where significant nonlinearity andlor fracture 
is expected. Because the progressive failure 
and fracture in the lattice model will affect the 
kinematics of the entire member, the continu- 
um and lattice would need to be meshed to- 
gether using elements with compatible shape 
functions at the continuumllattice boundary. 

SUMMARY AND CONCLUSIONS 

A lattice model consisting of longitudinal, 
radial, and diagonal elements was proposed to 
simulate the response of clear wood to three 
simple loading cases. A least squares mini- 
mization procedure was used to fit the spring 
constants of the lattice elements to the four 
bulk elastic constants in two dimensions. 
Mean strengths and coefficients of variation 
for the lattice elements were determined with 
a least squares minimization using experimen- 
tally obtained load-deformation curves for ra- 
dial tension and published strength values for 
shear and tension parallel-to-grain. The lattice 
model accurately predicted peak load and the 
experimentally observed post-peak strain soft- 
ening in perpendicular-to-grain tension. How- 
ever, the post-peak shape of the load-defor- 
mation curve was affected by the degree of 
mesh refinement. Damage localization in ra- 
dial tension can be observed with the lattice 
model, including crack bridging and micro- 
cracking around the critical crack. The lattice 
model successfully modeled parallel-to-grain 
shear response, which proved to be relatively 
insensitive to mesh refinement. However, 
strength and post-peak response were not as 
accurately predicted for parallel-to-grain ten- 
sion response, and this loading case was par- 
ticularly sensitive to mesh refinement. Details 
regarding the practical implementation of the 
lattice models were also discussed, including 
explicit incorporation of growth rings and de- 

fects (such as knots and grain deviations) and 
computational issues. 

The methodology described in this paper 
may serve as a foundation for predicting struc- 
tural behavior of wood and wood compostte 
systems. However, there are several critical is- 
sues that must be addressed in future research: 

Consideration of length scales and incor- 
porate growth patterns and geometrical d'e- 
jkcts. As discussed earlier, a natural length 
scale might be growth ring thickness. Mor- 
phology-based lattice models are ideally 
suited to model the observed strength and 
stiffness differentials between latewood and 
earlywood, and could also allow the treat- 
ment of common defects such as knots and 
sloping grain that often govern the strength 
of a structural member. 
Validation o f the  model jbr pieces of wood 
of other sizes. This is closely tied to the 
consideration of length scale and defects, as 
larger members are more likely to have 
strength-reducing defects. 
Treatment of compression response. The re- 
sponse of wood in compression is dramati- 
cally different than in tension, and this must 
be addressed. This will likely necessitate the 
formulation of new (and possibly ductile) 
compressive failure criteria for the individ- 
ual lattice members. 
Consideration qf combined loading condi- 
tions. The models considered in this paper 
individually examined simple loading con- 
ditions; actual structures often fail under 
complex combined loading conditions. 
Extension c!f' the lattice models to the pre- 
diction of three-dimensional response. 
While some structures can be idealized as 
one- or two-dimensional, successful predic- 
tion of response in the presence of strength- 
reducing defects and combined loadings 
will require the use of three-dimensional 
models. 
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