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Abstract. In a previous study, the knot depth ratio (KDR) evaluation method was proposed to quantify

the area of knots in a cross-section. That study reported that bending strength can be predicted by KDR

analysis. However, the KDR model did not take into consideration the additional strength reduction

caused by adjacent knots. It was found that the prediction of lumber strength was improved when

adjacent knots were taken into consideration. Analysis using the KDRA (KDR adding knots) model

revealed that the optimum cross-sectional interval, an input variable, is directly affected by knot size

parallel to lumber length (KSPLL). KSPLL depends on the sawing method and log characteristics, and

for species containing large knots, the cross-sectional interval is likely to be extremely wide. This can

cause several adjacent small knots to be excluded from the analysis, requiring modification of the KDRA

model algorithm. This modification resulted in improvement in the precision of the strength prediction,

although the input variable of the cross-sectional interval was not used. The R2 values obtained using this

method were 0.60 and 0.56 for Japanese larch and red pine, respectively.

Keywords: Knot depth ratio, X-ray, KDRA, knot cluster, knot spacing, bending strength, strength

prediction, adjacent knot, lumber, grading.

INTRODUCTION

Wood is a natural material with physical and me-
chanical characteristics that vary widely. To use
wood resources for structural purposes, two kinds
of mechanical performance, strength and stiff-
ness, should be known and controlled to stay
within desirable limits. One of two kinds of me-
chanical performance is the stiffness of the wood,
which can be measured using various nondestruc-

tive techniques such as measurement of wave
speed (ultrasonic and stress waves), measurement
of the natural frequency of the wood, and the
flatwise bending test, among others. However,
strength cannot be measured until the lumber
fails, and then it cannot be used. Therefore, the
strength of lumber should ideally be predicted
using nondestructive methods.

Wood strength is affected by various defects
such as knots, slope of the grain, and cracks.
Among these defects, knots are the most serious,* Corresponding author: junjae@snu.ac.kr
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because they can greatly reduce the strength.
In destructive bending tests, failure is caused
almost exclusively by knots. Schniewind and
Lyon (1971) tested redwood lumber and in 95%
of the cases, failure occurred at knots or at the
local slope of grain that was mainly related to
knots. In Johansson et al (1992), 91% of failures
were caused by knots.

Riberholt and Madsen (1979) proposed the weak-
est section theory for the strength of lumber. This
theory assumes that timber is composed of loca-
lized weak zones connected by segments of clear
wood and that failure is initiated primarily in
these weak zones, which are related to the defects
previously discussed. These authors also reported
that the weakest cross-section corresponds to
the largest knot or group of knots. Based on the
weakest section theory, it is very important to
evaluate the resistance of each section in pre-
diction of lumber strength. Therefore, in this
study, we focused on developing a method to pre-
dict the resistance of a cross-section containing
knots.

The concept of knot area ratio (KAR) is
generally used to predict the resistance of cross-
sections that contain knots. It has been demon-
strated repeatedly that lumber strength is in-
versely proportional to the maximum KAR,
which is defined as the ratio of the knot area to
the cross-sectional area. However, because the
naked eye can inspect only the external appear-
ance of the lumber, it is very difficult to measure
KAR in practice. However, X-rays can easily
be used to image internal knots. In previous re-
search (Oh et al 2009), the knot depth ratio
(KDR) method was proposed to evaluate the
geometric quantity of knots and the transition
zone in an X-ray path. Oh et al (2008) reported
that X-ray analysis based on the KDR value can
be used to predict the bending strength of lum-
ber. Schajer (2001) also reported that the bend-
ing strength of lumber can be predicted using
X-ray.

In addition to knot area in the cross-section,
the location of knots and the spacing between
knots also determine the strength of lumber. If

the knot spacing is small, adjacent knots cause
stress concentration and additional strength re-
duction. In most visual grading rules such as the
Korean standard rule (KSA 2002) and the West-
ern lumber grading rule (WWPA 2005), knots
within 150 mm are regarded as a knot cluster.
The sum of the knot sizes is used to determine
structural grading. However, Schajer (2001) did
not consider the influence of adjacent knots on
prediction of bending strength using X-ray. In
a previous study, Oh et al (2008) proposed a
method to add the KDR values of adjacent cross-
sections to take into account adjacent knots; this
method improved the precision of the bending
strength prediction of a Japanese larch specimen.
This result indicates that strength prediction mod-
els can be improved by considering adjacent
knots. However, the model in the Oh et al (2008)
study examined only one species, Japanese larch,
and is expected to be affected by species, knot
size, the spacing between knots, and so on. There-
fore, additional studies of other species contain-
ing knots of different sizes and spacings are
required.

The main objective of this study was to improve
the previous algorithm to consider adjacent
knots in strength prediction through the use of
X-ray.

MATERIALS AND METHODS

Materials

In this study, 121 Japanese larch (Larix kae-
mpferi) specimens and 145 red pine (Pinus
densiflora) specimens were obtained from com-
mercial mills. Japanese larch specimens have
many small-sized knots, whereas red pine spec-
imens generally have a small number of large-
sized knots. The specimen sizes were 38 mm
thick by 140 mm wide by 3.6 m long, and they
were kiln-dried to an average MC of approxi-
mately 18%.

Experiments

X-ray imaging. An image intensifier (Thales
image intensifier TH9429) was used to take
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X-ray images of the lumber. The images were
taken with X-rays passing through a thickness
of 38 mm. The resolution of the X-ray digital
images was 2.7 pixels/mm.

Bending tests. After capturing the X-ray
images, a static bending test was performed
on the same specimens following the method-
ology of ASTM D198. Because of the uniform
moment in third-point bending, no shear stres-
ses act on the lumber when determining the
design value, making this an ideal test. How-
ever, the number of knots in the Japanese larch
specimens was too great to evaluate the resis-
tance of specific knots. Because of the large
number of knots, failure occurs in a complex
manner and the failure location can be am-
biguous. Therefore, center-point loading tests
were carried out for the Japanese larch spec-
imens, and the cross-section containing the
knot of interest was placed under the loading
point. For the red pine specimens, because the
failure location could be clearly identified,
the third-point bending test was performed to
locate the cross-section containing the knot of
interest between the two loading points. The
test span of the Japanese larch specimens was
2.4 m, whereas the test span of the red pine
specimens was 3.0 m. The test speed for both
tests was 10 mm/min. Modulus of rupture
(MOR) was calculated based on the bending
test results. Because only data from specimens
that failed at the knot of interest were consid-
ered, 97 pieces of Japanese larch and 133
pieces of red pine were analyzed.

Analysis

Basic model for strength prediction. A knot
X-ray image and a clear X-ray image were
prepared for all specimens by applying the knot
detection algorithm (Oh et al 2009) to the raw
X-ray image. KDR values were calculated for
every pixel of the knot X-ray image according
to Eq 1 (Oh et al 2009).

KDR ¼ �� �c
�k � �c

ð1Þ

where

KDR =Knot depth ratio (KDR)
r = Density for a pixel within the knot X-ray

image
rc = Average clear part density obtained by

converting the clear X-ray image for the
same specimen into a density

rk = Average knot density, which was deter-
mined experimentally for Japanese larch
(950 kg/m3) and red pine (930 kg/m3)

Based on the KDR calculation, the knot geome-
try of a cross-section can be predicted as the
simplified knot geometry, as shown in Fig 1c.
Based on the simplified knot geometry, Ik/Ig for
the cross-section of interest can be calculated
following Eq 2 (Oh et al 2008). The relationship
between MOR and the Ik/Ig value was investi-
gated for the two species.

Ik=Ig¼
Pn
i¼1

�
KDRi� t�k3

3
þKDRi� t�k�h2i

�

t�h3

12

ð2Þ
where

Ik = Moment of inertia for the simplified
knot geometry

Figure 1. Simplified knot geometry according to the knot

depth ratio (KDR) method (Oh et al 2009). (a) Geometry

of a real knot. (b) KDR value obtained by X-ray radiation.

(c) Simplified knot geometry.
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Ig = Moment of inertia for gross cross-section
KDRi = KDR value of ith cell

h = Width of the lumber
t = Thickness of the lumber
n = The number of cells in the width of

lumber
k = Width of a cell
hi = Distance between the center line and the

bottom of the ith cell

Consideration of adjacent knots by the
previous model. The KDRA model (KDR add-
ing knots) (Oh et al 2008), referred to in this
study, was used to take adjacent knots into con-
sideration. In this model, knots within 150 mm
of one another were regarded as adjacent knots
(Fig 2a). In an X-ray image, a knot can be placed
on several cross-sections, because knot size is
generally larger than the unit pixel size of the
X-ray image. Initially, among the cross-sections
within 150 mm of the knot, 150/k sheets of the
cross-section were selected with a k mm interval
(Fig 2a). To consider the influence of knot
spacing, the KDR array of the selected cross-
section was multiplied by a triangular weighing
function (Eq 3; Fig 2a), and the weighted KDR
array of the selected cross-sections was added to
the KDR array of the cross-section of interest
(Fig 2c; Eq 4).

WKDRiðpÞ¼
�
1�Dp

75

�
�KDRiðpÞ whenDp � 75

0 whenDp> 75

0
@

1
A

ð3Þ

KDR�
i ¼

X
p

WKDRið pÞð Þ ð4Þ

where

KDRi* = KDR value of the ith cell recalcu-
lated by KDRA

KDRi(p) = KDR value of the ith cell for the
pth selected cross-section

WKDRi(p) = Weighted KDR value of the ith cell
for the pth selected cross-section

Dp = Distance between the pth selected
cross-section and the interested
cross-section (mm)

Some cells of the recalculated cross-sectional
array can have values higher than 1.0 because
of the addition of the KDR values. Because it is
impossible for knot depth to exceed the lumber
thickness, we constrained the KDR values of the
reconstructed cross-sections to have a maximum
possible value of 1.0.

To determine the optimum cross-sectional inter-
val, several intervals of 10 – 50 mm were inves-
tigated, and the relationship between MOR
and the Ik/Ig values based on the reconstructed
KDR values for the cross-sections of interest
were evaluated. The coefficients of determina-
tion and the root mean square errors (RMSE)
were compared to optimize the cross-sectional
interval.

The optimum cross-sectional interval was expec-
ted to depend on the knot size, in particular, knot
size parallel to the length of the lumber (KSPLL,
x in Fig 3). A series of knot sizes parallel to
lumber length (KSPLL) for a knot were measured
along the lumber width (140 mm) for the knot
of interest, and average KSPLL for the knots

Figure 2. Example of the consideration of adjacent knots.

(a) Definition of cross-sections using the knot depth ratio add-

ing knots (KDRA) model and a weighting function (Oh et al

2008). (b) Definition of cross-sections using the modified

KDRA model and a weighting function. (c) Work flow for

reconstructing cross-sections using these two models.

Oh et al—PREDICTION OF BENDING STRENGTH USING X-RAY 13



were calculated. The optimum cross-section in-
tervals were then compared between species.
Additionally, the effect of KSPLL on optimum
cross-sectional interval was investigated.

Consideration of adjacent knots by the
modified KDRA model. In the previous model,
cross-sections within 150 mm were selected at
intervals that were experimentally determined.
In this study, the KDRA model was modified
as follows: only one sheet of cross-sections for
a knot was selected rather than selecting cross-
sections based on cross-sectional intervals. We
refer to this model as the modified KDRA model.

Initially, every pixel of the knot X-ray image
was investigated using morphological mathe-
matics to determine whether the adjacent pixels
were connected to the pixel itself (Fain 2003).
The connected pixels were regarded as the area
for a knot. Figure 4c shows the identified knot
area separated from the other knots; identified
knot areas were labeled with numbers.

Among the several cross-sections related to a
knot, the cross-section with the maximum Ik/Ig
value was selected for each knot (Eq 2; Fig 4d),
regardless of knot size, thereby negating the
need to use the cross-sectional interval as an
input variable. The KDR values of the selected
cross-section were added to the KDR value of
the interested cross-section after multiplying the
KDR array with a triangular weighting function
(Figs 2b – c; Eqs 3 and 4). The added KDR
values were restricted to have a maximum value
of 1.0 as discussed previously. Based on the
KDR array of cross-sections reconstructed by
adding KDR values, the Ik/Ig value of the cross-
section of interest was computed (Eq 2), and the

relationship between the Ik/Ig value and the
MOR was investigated.

Verification of improvement in the prediction
of bending strength. To investigate whether our
new model improved bending strength pre-
dictions, a one-tailed test with a 10% signifi-
cance level was carried out. We hypothesized
that there were no differences of prediction er-
ror between two models. The error was defined
as the absolute value of the difference between
the MOR predicted by regression analysis and
the measured MOR.

RESULTS AND DISCUSSION

Influence of Adjacent Knots on Bending

Strength

Figure 5 shows the relationship between the
MOR and the Ik/Ig values computed by the basic

Figure 3. Definition of knot size parallel to the lumber

length (KSPLL).

Figure 4. Labeling of knots and selecting cross-sections.

(a) Raw X-ray image. (b) Knot depth ratio (KDR) array

obtained using the knot detection algorithm and the KDR

method. (c) Classification of a knot according to its con-

nectedness. Each classified knot area was labeled with a

number. (d) Selected cross-sections.
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model. The coefficients of determination (R2)
were 0.49 and 0.45 for Japanese larch and red
pine, respectively.

However, regression analysis with the speci-
mens not containing any other knots within
150 mm significantly increased the R2 value
of Japanese larch and red pine to 0.55 and
0.56, respectively (Fig 6). Thus, the basic mod-
el does not accurately evaluate the strength
reduction caused by adjacent knots within
150 mm.

The KDRA Model and the Optimum

Cross-Sectional Interval

In the KDRA model, the KDR values of the se-
lected cross-sections within 150 mm are added to
the cross-section of interest. As shown in Tables 1
and 2, KDRA with adjacent cross-sections im-
proved the predictive precision compared with
the basic model.

For the KDRA model, 150/k sheets of cross-
sections were selected, and the cross-sectional
interval, k, was determined for the two species.

Figure 5. Relationship between the modulus of rupture and the Ik/Ig value according to the basic model. (a) Japanese

larch and (b) red pine.

Figure 6. Relationship between the modulus of rupture and the Ik/Ig value according to the basic model for specimens not

containing any knots within 150 mm. (a) Japanese larch and (b) red pine.

Oh et al—PREDICTION OF BENDING STRENGTH USING X-RAY 15



In Tables 1 and 2, 18 mm and 40 mm showed
the strongest relationship and the lowest RMSE
for Japanese larch and red pine, respectively.
The optimum cross-sectional intervals of the
two species are different. To determine the rea-
son for this difference, KSPLL for the knot of
interest was measured. Table 3 shows the aver-
age KSPLL statistics. The KSPLL of red pine
lumber was much larger than that of Japanese
larch. The optimum cross-sectional interval of
both species was approximately 56% of the
average KSPLL.

If the cross-sectional interval were smaller than
one-half of the average KSPLL, the knot of

interest was placed onto two or more selected
cross-sections (Fig 7a). Too many KDR addi-
tions can decrease the predictive precision be-
cause excessive additions will result in most
KDR values reaching the maximum value of
1.0. If the cross-sectional interval were larger
than one-half of the average KSPLL, the knot
was placed onto a single selected cross-section.
However, if the cross-sectional interval was
excessively large, the predictive precision de-
creased because many small knots were disre-
garded (Fig 7b).

In the optimum cross-sectional interval analysis,
the knot of interest for both species was gener-
ally placed on a selected cross-section, because

Table 1. Finding the optimized cross-sectional interval
for Japanese larch.

Cross-sectional
interval (mm)

Predictive precision

R2 RMSE

KDRA model 12 0.49 9.9

14 0.53 9.0

16 0.57 8.7

18 0.59 8.6

20 0.56 8.9

22 0.51 9.1

24 0.49 10.0

Basic model 0.49 10.0

RMSE, root mean square error; KDRA, knot depth ratio adding knots.

Table 2. Determining the optimized cross-sectional inter-
val for red pine.

Cross-sectional
interval (mm)

Predictive precision

R2 RMSE

KDRA model 28 0.48 8.2

32 0.50 8.1

36 0.52 7.8

40 0.53 7.6

44 0.52 7.7

48 0.51 8.0

52 0.47 8.2

Basic model 0.45 8.2

RMSE, root mean square error; KDRA, knot depth ratio adding knots.

Table 3. Statistics of the knot size parallel to lumber
length (KSPLL) of the knot of interest and the optimum
cross-sectional interval in both tree species.

Species

KSPLL Optimum
cross-sectional
interval (mm)Average Standard deviation

Japanese Larch 32.3 16.6 18

Red pine 70.5 36.2 40

Figure 7. Example of cross-sections according to cross-

sectional interval. (a) Excessively wide cross-sectional

interval. (b) Excessively narrow cross-sectional interval.

(c) Example of an optimal cross-sectional interval.
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the optimum cross-sectional interval was slightly
larger than one-half of the average KSPLL.

Because the basic model analyzes only one cross-
section, knot size perpendicular to lumber length
can be considered in Ik/Ig calculation, but KSPLL
cannot be analyzed. Adjacent cross-sections are
not used in the Ik/Ig calculation. Because the
prepared red pine specimens had large knots
(KSPLL), it had been expected to require the
KDR addition by other cross-sections of the same
knot. However, use of a single cross-section for
the knot of interest showed the highest predictive
precision. Consequently, even if the KSPLL of a
knot was large, it was not necessary to add the
KDR value of other cross-sections for the knot
and only one cross-section for each knot was
required.

We also found that the optimum cross-sectional
interval was directly affected by the KSPLL.
Because the KSPLL depends on the sawing meth-
od and the characteristics of the lumber such
as the logging site, log diameter, and species,
and so on, the optimum cross-sectional interval
should be determined whenever the strength is
predicted for new batches of lumber. The deter-
mination of optimum cross-sectional interval
requires a number of failure tests. Frequent deter-
mination of it can decrease the feasibility or ap-
plicability of the model. Therefore, it is necessary
to develop a method that considers adjacent knots
without the need to determine the optimum cross-
sectional interval in advance.

Additionally, in the case of red pine, the opti-
mum cross-sectional interval was 40 mm. In the

KDRA model, the knots that were smaller than
the optimum cross-sectional interval could not
be analyzed, but several knots smaller than
40 mm were likely to be present, which was
likely to affect the precision of the bending
strength prediction.

Prediction of Bending Strength by the

Modified KDRA Model

Only one cross-section for a knot was required
for the KDRA model regardless of its KSPLL.
In the case of species containing large knots
such as in red pine, the KDRA model can miss
knots smaller than the optimum cross-sectional
interval. Based on these findings, the KDRA
model was modified.

Improvement of predictive precision by the
modified KDRA model. Table 4 shows the
results of three different models: basic model,
the KDRA model, and the modified KDRA
model. For both tree species, the consideration
of adjacent knots increased the coefficient of
determination and decreased RMSE. Between
the two different models for considering adja-
cent knots, the modified KDRA model showed
superior predictive precision.

For red pine, the KDRA model fails to take into
consideration knots that are smaller than the
cross-sectional interval (40 mm). On the con-
trary, the modified KDRA model does not re-
quire the optimum cross-sectional interval as an
input variable, and it can analyze all of the adja-
cent knots, even if they are smaller than 40 mm.
Compared with the KDRA model, the modified

Table 4. Comparison of the modified KDRA model, the KDRA model, and the basic model.

Predictive precision

Species Prediction model R2 RMSE

Japanese larch Basic modela 0.49 9.96

Consideration of adjacent knots KDRA modelb 0.59 8.57

Modified-KDRA model 0.60 8.42

Red pine Basic modela 0.45 8.16

Consideration of adjacent knots KDRA modelb 0.53 7.59

Modified KDRA model 0.56 7.12
a Basic model: this model does not consider adjacent knots (Oh et al 2008).
b KDRA model: this model was optimized for each species. Cross-sectional intervals of 18 mm and 40 mm were used for Japanese larch and red pine,

respectively.

KDRA, knot depth ratio adding knots; RMSE, root mean square error.
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KDRA model increased the predictive precision
(R2 and RMSE), most likely because it takes
into consideration knots smaller than 40 mm.

In contrast, the difference in predictive precision
between the KDRA model and the modified
KDRA model was smaller for Japanese larch
than for red pine as shown in Table 4. This is
because the cross-sectional interval of 18 mm
was small enough to include all of the adjacent
knots and the effect of knots smaller than 18 mm
tends to be minimal.

To investigate the improvement in the preci-
sion of bending strength prediction, a t-test was
carried out, and the results are presented in
Tables 5 and 6. These results indicate that
the KDRA model did not reduce error compared
with the basic model; conversely, the predictive
error of the modified KDRA model was smaller
than that of the basic model at the 10% signifi-
cance level (H0 rejected; Table 6). Thus, the
modified KDRA model improved the predictive
precision.

Both the KDRA and modified KDRA models
add the KDR values of adjacent cross-sections to
the cross-section of interest. The KDRA model,

however, may be faster than the modified KDRA
model because it does not calculate the Ik/Ig
values to select a cross-section for each knot.
However, the KDRA model requires input of the
cross-sectional interval. It was considered that
the modified KDRA model would be more appli-
cable because it is not dependent on definition
of the cross-sectional interval, assuming that
processing capabilities outpace production flow.
Additionally, although the modified KDRA mod-
el is slower, it provides higher predictive preci-
sion, especially in the case of species containing
large knots. Figure 8 shows the relationship be-
tween the MOR and the Ik/Ig for Japanese larch
and red pine.

Optimization of the distance for considering
adjacent knots. A distance of 150 mm was used
as the range in which to consider adjacent knots
in this study. In most visual grading rules such as
the Korean Standard (KSA 2002) and Western
lumber grading rules (WWPA 2005), knots
within 150 mm are regarded as a knot cluster.
Although this value has been verified through
numerous studies, our model is not intended for
visual grading but is instead based on X-ray.
Hence, it was necessary to determine a suitable

Table 5. t-test results to verify the improvement of predictive precision obtained by using the KDRA model.

Error t-test

Averagea SDb Test statistic Resultc

Japanese larch Basic model 8.29 5.43 1.06 H0 accepted

KDRA model 7.49 4.91

Red pine Basic model 6.43 5.00 0.80 H0 accepted

KDRA model 5.97 4.65
a Average error.
b SD, standard deviation of the error.
c Result of one-tailed t-test at the 10% significant level.

KDRA, knot depth ratio adding knots.

Table 6. t-test results to verify the improvement of predictive precision obtained by using the modified KDRA model.

Error t-test

Averagea SDb Test statistic Resultc

Japanese larch Basic model 8.29 5.43 1.32 H0 rejected

Modified KDRA model 7.20 4.28

Red pine Basic model 6.43 5.00 1.50 H0 rejected

Modified KDRA model 5.62 4.35
a Average error.
b SD, standard deviation of the error.
c Result of one-tailed t-test at the 10% significant level.

KDRA, knot depth ratio adding knots.
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distance in which to consider adjacent knots.
Several distances over 50 – 220 mm were eval-
uated. Table 7 shows the predictive accuracies
according to distance. Because the knot sizes of
red pine are much larger than that of Japanese
larch, the optimum distance for considering
adjacent knots had been expected to be much
larger in red pine than in Japanese larch. How-
ever, this distance was similar between the
two species (Table 7). Based on this finding,
we concluded that distance is not sensitive to
knot size. Importantly, a distance between 130 –
170 mm shows a relatively high predictive pre-
cision in both species. Thus, 150 mm appears to
be a reasonable distance to use for consideration
of adjacent knots.

CONCLUSIONS

This objective of this study was to improve the
algorithm used to predict bending strength by
considering adjacent knots.

Using the KDRA model, the optimum cross-
sectional interval was found to be approximate-
ly 56% of the KSPLL for both tree species.
When the optimum cross-sectional interval was
used, the KDRA values for only one cross-
section were required for a knot regardless of
knot size (KSPLL).

The KDRA model requires input of the optimum
cross-sectional interval. However, the optimum
cross-sectional interval is related to the size
(KSPLL) of a knot, and knot size can vary
according to the sawing method used and the
log characteristics. Additionally, in the case of
species containing large knots, the optimum
cross-sectional interval is expected to be too
large to evaluate all adjacent knots. This can
cause low resolution and therefore low pre-
dictive precision.

Based on these findings, we modified the KDRA
algorithm to take adjacent knots into consi-
deration. The modified KDRA model was more
accurate than the KDRA method, especially for
bending strength predictions in red pine, which

Figure 8. Relationship between the modulus of rupture and the Ik/Ig value according to the modified knot depth ratio

adding knots model. (a) Japanese larch and (b) red pine.

Table 7. The predictive accuracies according to the
distance used for consideration of adjacent knots.

Distance for considering
adjacent knots (mm)

Japanese larch Red pine

R2 RMSE R2 RMSE

50 0.57 8.68 0.43 8.12

90 0.58 8.59 0.51 7.78

110 0.59 8.53 0.53 7.41

130 0.60 8.48 0.56 7.18

150 0.60 8.42 0.56 7.12

170 0.60 8.52 0.55 7.21

190 0.58 8.60 0.46 7.78

220 0.56 8.78 0.36 8.74

RMSE, root mean square error.
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has large knots. This modified KDRA model
improved the predictive precision of bending
strength of R2 = 0.60 for Japanese larch and
0.56 for red pine without requiring the cross-
sectional interval as an input variable.
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