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ABSTRACT

Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry
and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty
boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study
combines a finite element model with a parametric design of the geometry and material characteristics
affecting the critical buckling stress of box panels to examine their postbuckling response. The finite
element model enables a broad scope of simulated panels to be examined economically. Results lead
to a postbuckling model fit to the predictions and a better understanding of how to unify elastic and
inelastic failure data from actual experiments and form a more general box strength formula.

Keywords: FEA, postbuckling, box compression strength, paperboard, plates.

INTRODUCTION

In accordance with the research objectives
of the Agenda 2020 program of the American
Forest & Paper Association, cost-saving com-
puter-based models of corrugated fiberboard
and fiberboard boxes are needed to differen-
tiate among alternative fiber furnishes, en-
hance innovation in design, reduce costly de-
structive testing, and provide confirmation of
acceptable performance. Knowing more about
the fundamentals of compression strength at-
tributes will lead to higher product perfor-
mance, which can either reduce the amount of

1The Forest Products Laboratory is maintained in co-
operation with the University of Wisconsin. This article
was written and prepared by U.S. Government employees
on official time, and it is therefore in the public domain
and not subject to copyright.

material needed to obtain necessary perfor-
mance or allow unique design features so that
corrugated fiberboard can compete more fa-
vorably with other materials.

Conventional box strength formulas (Batel-
ka and Smith 1993; Hutten and Brodeur 1995;
McKee et al. 1963; Shick and Chari 1965) do
not relate universally to all box sizes, styles,
fabrication, and materials, or to interior com-
ponents. The assumed failure is by elastic
buckling wherein box panels can sustain com-
pression loads at an average failure stress sf

greater than that predicted by the elastic crit-
ical stress scr when bifurcation first occurs.
The difference between the load carrying ca-
pacity and this theoretical strength decreases
as box dimensions, relative to the combined
board thickness, decrease. If box panels dis-
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play a sinusoidal waviness prior to the maxi-
mum attainable load, box dimensions would
generally satisfy the condition scr # sf # sy,
called elastic buckling.

The relationship among scr, sf, and sy has
been traditionally applied (Bulson 1969; Ger-
and 1957) to metals, with sy being the yield
stress in compression. The same relationship
prevails if expressed in terms of load per
width of loading edge instead of stress. This
enabled the ultimate edge crush strength Pu to
be substituted for yield strength in applying
the same relationship to corrugated boxes
(McKee et al. 1963). Likewise, containerboard
ultimate stress su was successfully used in an-
alyzing corrugated fiberboard (Urbanik 1990,
1996a). Yield stress and ultimate stress were
used interchangeably in the further analysis of
boxes (Urbanik 1996b, 1997). The success
with using ultimate stress or ultimate strength
for paper and corrugated fiberboard is fortu-
itous in that a yield stress for such nonlinear
materials has not been defined.

Box inserts, partitions, trays, and squatty
boxes can fail by an inelastic buckling phe-
nomenon such that sf # sy # scr. Few box
compression tests to characterize strength in
this regime have been reported in the litera-
ture. However, a review of some historical
data bases on box compression (Urbanik
1996b), including subsets of elastic and in-
elastic buckling, revealed that a combination
of elastic and inelastic postbuckling theory
(Bulson 1969) can be universally applied to
the data, with different constants for each data
base, provided that nonlinear material char-
acterization is introduced and that an empirical
correction is applied to panel stiffness.

OBJECTIVE AND SCOPE

The objective of this study is to determine
if the postbuckling formula advocated in Ur-
banik (1996b) for combined elastic and in-
elastic failure is supported by a parametric
variation of the variables determining scr. In
the previous study (Urbanik 1996b), the best
model of box strength was obtained with each

panel characterized by the following two-part
formula:

h
s sf cr5 a U . 11 2s sy y

sf 5 a U # 1 (1)
sy

together with the empirical correction

Sa 5 Sft (2)

using an apparent stiffness Sa instead of S in
the calculation of scr. Two postbuckling con-
stants, a and h, appear in Eq. (1). A third ma-
terial postbuckling constant u0 and a fourth
constant t are embedded implicitly in the cal-
culation of scr (from scr 5 c1 , per Appendix).ŝ

For nonlinear material theory, one input to
scr is the stress–strain law s 5 c1 tanh(c2«/c1).
Few reported experiments provide complete
data on c1 and c2. In applying a nonlinear
stress-strain law to the analysis of data with
partial inputs, it has been found helpful to con-
sider a constant u0 5 c1/su and compute c1

from the experimental su and an optimum u0

representing all the data (Urbanik 1990). The
optimum values of a and h via Eq. (1) then
become a function of u0, which in turn is a
function of the accuracy in determining su.

Thorough experimental replication (Urban-
ik 1996b) and inclusion of all geometry and
material variables would be prohibitively ex-
pensive. Therefore, our approach is a para-
metric study of the fundamental variables in-
put to scr combined with finite element anal-
ysis (FEA) predictions of sf and the applica-
tion of Eqs. (1) and (2). While it makes some
sense to terminate the analysis with the FEA
predictions, having a simpler, yet mechanistic,
strength formula can provide the basis for ac-
tual experimental confirmation and practition-
er use.

The scope of our parametric design is lim-
ited to scr as a function of the basic input var-
iables u0, S, f, n, and ĉ that comprise the the-
ory (Johnson and Urbanik 1987) applied to
simply supported plates subjected to axial
compression. Other edge conditions, loading
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conditions, materials, and geometry undoubt-
edly play a role, but their investigation is re-
served until the relevancy of nonlinear mate-
rial plate theory can be corroborated.

An accurate formula for scr was reported as
most important in the development of a gen-
eral box compression formula (McKee et al.
1963). Variables that affect sy can be impor-
tant but are not investigated here. In addition,
just as testing procedures are known to affect
an experimental sf, the magnitude of imper-
fections and the solution step size are two ex-
amples of parameters that affect the FEA pre-
diction of sf.

An additional limitation to the scope of
FEA is to consider only isotropic material be-
havior. This enables an exact characterization
of the material stress–strain curve in the prin-
cipal and transverse directions to be used and
rules out stress–strain approximations as a
source of error.

PARAMETRIC DESIGN

The theory of finite length plates (Urbanik
1996b), representing box panels and used to
determine scr, has five fundamental nondimen-
sional inputs: u0, S, f, n, and ĉ. A 25 factorial
design of these variables was generated (Table
1), with low and high values of each variable
selected to include the overall scope of box
panel characterization from data of four stud-
ies investigated in Urbanik (1996b) along with
an inelastic regime. The curve of , com-ŝ(«̂)
puted from S, f, n, and ĉ (Fig. 1), provides a
measure of the factorial range. Below 5 0.5,ŝ
the curve is nearly linear, and plates repre-
sented by the leftmost points (Fig. 1) would
likely fail by elastic buckling. Above 5 0.9,ŝ
the represented plates would likely fail by in-
elastic buckling.

Isotropic plate properties h, c2, and su are
given in Table 2. These properties were deter-
mined from the anisotropic inputs Pu, Exh, Eyh,

, and representing the standard 205-g/EI EIx y

m2 C-flute corrugated fiberboard in Urbanik
(2001), with the result that the computed S and
f of a plate would remain the same for both

isotropic and anisotropic cases. Additional
physical properties, c1, n1, n2, G, d, and l, were
determined from our nondimensional inputs
(Table 1). Collectively, the properties shown
in Tables 1 and 2 provide the material and
geometry inputs for FEA characterization.

Buckling strength predictions of sf from the
FEA model and the best fitting postbuckling
formula (discussed later) are given in Table 1.
The FEA predictions are simulations of edge-
wise compression experiments. Obviously, an
exact fit to the FEA sf-values (Table 1) could
be obtained from a 32-parameter factorial for-
mula. With fewer-parameter formulas, param-
eters u0 and S were found to be the most sig-
nificant. Thus, intermediate parametric designs
with a broader range of u0 and S values were
generated in Table 3 and additional FEA pre-
dictions were made.

FINITE ELEMENT PROCEDURE

The buckling data used to calibrate the post-
buckling formula were generated by means of
the commercially available finite element pro-
gram ANSYS. The FEA can provide two
types of buckling analyses, linear elastic clas-
sic eigenbuckling or a nonlinear analysis that
tracks the response until collapse. The latter
will be referred to as postbuckling analysis.
Finite element postbuckling analysis can take
into account material nonlinearities and initial
geometric imperfections. It is a fully nonlinear
static analysis with gradually increasing loads,
which seeks the load level at which the struc-
ture becomes unstable.

The nonlinear buckling analysis in the FEA
differs from traditional static analyses by
searching for the point where the structure
reaches its limit or maximum load. This is
done by constantly incrementing the applied
loads until the solution begins to diverge.
Upon finding a final load that prevents equi-
librium equations from being satisfied, the
program bisects the final load step increment
and attempts a new solution at a smaller load.
In a buckling analysis, each such convergence
failure is typically accompanied by a ‘‘nega-



325Urbanik and Saliklis—BUCKLING PHENOMENA IN CORRUGATED BOXES

WOOD AND FIBER SCIENCE
Tuesday Jul 01 2003 07:04 AM
Allen Press • DTPro System

wood 35_302 Mp_325
File # 02em

TABLE 1. Factorial design of nondimensional parameters and selected results.

Factorial design

u0 S f n ĉ

Physical properties

c1
a

(MPa) n1 n2
b

Gc

(MPa)
dd

(mm)
le

(mm)

Selected results

FEA
sf

(Mpa)

Eq.
(2)
Sa

scr
(Mpa) U

Eq.
(6)f

sf
(Mpa)

sf
diff.
(%)

8
8
8
8
8
8
8
8

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.25
0.25
2
0.25
0.25
2
2
2

0.5
0.5
0.5
0
0
0.5
0
0

1.25g

0.75
1.25
1.25
0.75
0.75
1.25
0.75

10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9

0.5
0.5
0.5
0
0
0.5
0
0

0.5
0.5
0.5
0
0
0.5
0
0

255
85

255
319
191

85
319
191

32.4
32.4

259
32.4
32.4

259
259
259

130
130
130
130
130
130
130
130

1.26
1.23h

1.11
1.23
1.23
1.07
1.06
1.06

0.05
0.05
0.14
0.05
0.05
0.14
0.14
0.14

10.6
10.0

7.78
7.95
7.52
6.05
5.83
4.54

0.36
0.37
0.42
0.41
0.43
0.47
0.48
0.55

1.20
1.20
1.18
1.19
1.18
1.17
1.17
1.15

24.53
22.71

6.31
23.54
23.57

9.85
9.69
8.46

1
1
1
1
1
1
1
1

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.25
0.25
2
0.25
0.25
2
2
2

0.5
0.5
0.5
0
0
0.5
0
0

1.25
0.75
1.25
1.25
0.75
0.75
1.25
0.75

1.36
1.36
1.36
1.36
1.36
1.36
1.36
1.36

0.5
0.5
0.5
0
0
0.5
0
0

0.5
0.5
0.5
0
0
0.5
0
0

255
85

255
319
191

85
319
191

91.6
91.6

733
91.6
91.6

733
733
733

366
366
366
366
366
366
366
366

0.77
0.76
0.65
0.72
0.72
0.63
0.59
0.59i

0.05
0.05
0.14
0.05
0.05
0.14
0.14
0.14

1.32
1.25
0.97
0.99
0.94
0.76
0.73
0.57

1.01
1.04
1.18
1.17
1.20
1.34
1.37
1.55

0.85
0.83
0.77
0.77
0.76
0.71
0.70
0.64

9.39
9.70

17.8
7.11
5.90

12.6
17.7

9.86
8
8
8
8
8
8
8
8

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.25
0.25
2
0.25
0.25
2
2
2

0.5
0.5
0.5
0
0
0.5
0
0

1.25
0.75
1.25
1.25
0.75
0.75
1.25
0.75

10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9

0.5
0.5
0.5
0
0
0.5
0
0

0.5
0.5
0.5
0
0
0.5
0
0

255
85

255
319
191

85
319
191

11.4
11.4
91.6
11.4
11.4
91.6
91.6
91.6

45.8
45.8
45.8
45.8
45.8
45.8
45.8
45.8

1.31
1.42
1.27
1.35
1.41
1.25
1.26
1.26

0.38
0.38
1.16
0.38
0.38
1.16
1.16
1.16

84.8
80.2
62.2
63.6
60.1
48.4
46.7
36.3

0.13
0.13
0.15
0.15
0.15
0.17
0.17
0.19

1.33
1.33
1.31
1.31
1.31
1.30
1.29
1.28

1.76
26.44

3.56
22.64
27.29

3.86
2.51
1.42

1
1
1
1
1
1
1
1

0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8

0.25
0.25
2
0.25
0.25
2
2
2

0.5
0.5
0.5
0
0
0.5
0
0

1.25
0.75
1.25
1.25
0.75
0.75
1.25
0.75

1.36
1.36
1.36
1.36
1.36
1.36
1.36
1.36

0.5
0.5
0.5
0
0
0.5
0
0

0.5
0.5
0.5
0
0
0.5
0
0

255
85

255
319
191

85
319
191

32.4
32.4

259
32.4
32.4

259
259
259

130
130
130
130
130
130
130
130

1.24
1.23
1.04
1.22
1.22
1.01
1.02
1.30j

0.38
0.38
1.16
0.38
0.38
1.16
1.16
1.16

10.6
10.0

7.78
7.95
7.52
6.05
5.83
4.54

0.36
0.37
0.42
0.41
0.43
0.47
0.48
0.55

1.20
1.20
1.18
1.19
1.18
1.17
1.17
1.15

23.00
22.27
13.6

22.91
23.00
15.5
14.9

211.5
a c1 5 suu0.
b n1 5 n2 5 n.
c G 5 [(ĉ 2 n)/2(1 2 n2)]c2.
d d 5 fl.
e l 5 Ï12EI /u SP .0 u
f Parameter values from Model 7 in Table 4.
g Design in bold italics is also in Table 3.
h Run 10.
i Run 5.
j Run 7.

tive pivot,’’ which means that the attempted
load equals or exceeds the buckling load. The
program normally converges to the limiting
load as the process of bisection and resolution
continues to the point at which the minimum
load increment is achieved. The minimum
load step will directly affect the precision of
results. For this study, the FEA inputs that pre-

scribe how iteration shall seek out this final
buckling load were kept constant. Depending
on the geometry and material properties, the
final collapse state of stress may be less or
greater than the classical eigenbuckling stress.

Our finite element postbuckling analyses
used 8-noded isoparametric shell elements.
Twelve elements per buckled shape (sinusoi-
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FIG. 1. Variation of normalized buckling stress (Eq.ŝ
(A-13)) with normalized buckling strain (Eq. (A-2)) for«̂
inputs from factorial design in Table 1 and nonlinear
stress–strain law.

TABLE 2. Isotropic properties of standard corrugated fi-
berboard.

Property Value

Pu 8.150 kN/m
EI 5 ÏEI EIyx 9.117 Nm
Eh 5 ÏE hE hyx 3,054 kN/m

h 5 Ï12EI /Eh 5.985 mm
E 5 Eh/h 510.3 MPa
c2 5 E 510.3 MPa
su 5 Pu/h 1.362 MPa

dal half-wave) were used in typical mesh sizes
(Fig. 2). This mesh size was chosen based on
mesh refinement exercises. Isotropic material
characterization enabled input of the exact
stress–strain curve, s 5 c1 tanh(c2«/c1). The
Poisson’s ratio varied from 0 to 0.49. At n 5
0, the shear modulus G is one-half the mod-
ulus of elasticity E. At n 5 0.5, the material
is incompressible.

Another feature of nonlinear buckling anal-
ysis is that if the loading on the structure is
perfectly in-plane (membrane or axial stresses
only), the out-of-plane deflections necessary
to initiate buckling will not develop and the
analysis will fail to predict buckling behavior.
To initiate some out-of-plane movement re-
sulting from in-plane compressive loads, a
small out-of-plane perturbation, such as a
modest temporary force or a prescribed dis-
placement, must be applied. The final failure
load is very sensitive to these parameters.
Consequently, we kept the initial imperfection
consistent with the longest dimension of the
panel to simulate nearly perfect, yet real, pan-
els. For panels up to 100 mm long, the initial
imperfection was 1 mm out-of-plane, bowing
from the edges to the center of the panel. For
100- to 500-mm panels, the imperfection was

2 mm. For panels longer than 500 mm on ei-
ther edge, the imperfection was 3 mm.

To more realistically simulate experimental
laboratory results, the postbuckling analysis
imposed a downward displacement at the top
of the panel, which simulated the head move-
ment of a testing machine. The bottom of the
panel was not allowed to translate vertically.
All edges were pinned (i.e., allowed to rotate)
and remained straight (i.e., did not displace
transverse to the panel). As the top of the pan-
el was forced downward, the panel bulged out-
ward into a number of half-sine waves. Stress-
es increased throughout the analysis, until con-
vergence could no longer be achieved. Maxi-
mum out-of-plane displacement was recorded
throughout the analysis, as was the final num-
ber of half-sine waves. The total force along
the loaded edge was recorded throughout the
analysis. Typical results for applied and out-
of-plane displacement are shown for run 5 (sf

$ scr) and run 10 (sf # scr) in Fig. 3. For run
5, the maximum average stress was approxi-
mately 586 kPa, as reported in Table 1, even
though the panel had not yet collapsed. Final
collapse occurred shortly afterwards, at 520
kPa.

RESULTS

The FEA determinations of sf are summa-
rized in Table 1 for the factorial designs and
in Table 3 for the intermediate designs. Vari-
ous forms of Eq. (1) using either a linear ma-
terial law or a nonlinear law to compute scr

were fit to the data. Note that the second line



327Urbanik and Saliklis—BUCKLING PHENOMENA IN CORRUGATED BOXES

WOOD AND FIBER SCIENCE
Tuesday Jul 01 2003 07:04 AM
Allen Press • DTPro System

wood 35_302 Mp_327
File # 02em

TABLE 3. Intermediate designs of nondimensional parameters and selected results.

Intermediate design

u0 S f n ĉ

Physical properties

c1
a

(MPa) n1 n2
b

Gc

(MPa)
dd

(mm)
le

(mm)

Selected results

FEA
sf

(MPa)

Eq.
(2)
Sa

scr
(MPa) U

Eq.
(6)f

sf
(MPa)

sf
diff.
(%)

1
1
1
1
2
2
2
2

0.145
0.012
0.008
0.004
0.042
0.020
0.006
0.005

2
2
2
2
2
2
2
2

0
0
0
0
0
0
0
0

0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

1.36
1.36
1.36
1.36
2.72
2.72
2.72
2.72

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

191
191
191
191
191
191
191
191

609
2,094
2,555
3,885

798
1,146
2,126
2,439

304
1047
1278
1942

399
573

1063
1219

0.76
0.35
0.29
0.21
0.81
0.49
0.35
0.26

0.210
0.018
0.012
0.005
0.061
0.030
0.009
0.007

0.82
0.07
0.05
0.02
0.48
0.23
0.07
0.05

1.29
4.43
5.40
8.22
1.69
2.42
4.49
5.16

0.73
0.33
0.29
0.22
0.61
0.48
0.32
0.29

24.91
25.97
20.50

3.48
224.6
21.92
28.93
11.6

4
4
4
4
8
8
8
8

0.042
0.020
0.006
0.005
0.145
0.012
0.008
0.004

0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25

5.45
5.45
5.45
5.45

10.9
10.9
10.9
10.9

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

255
255
255
255
255
255
255
255

70.6
101
188
216

26.9
92.5

113
172

282
405
751
862
108
370
452
687

0.92
0.79
0.55
0.48
1.14
0.94
0.82
0.64

0.020
0.010
0.003
0.002
0.069
0.006
0.004
0.002

2.23
1.08
0.31
0.24

15.4
1.30
0.87
0.38

0.78
1.12
2.08
2.39
0.30
1.02
1.25
1.90

1.00
0.79
0.53
0.49
1.23
0.84
0.74
0.56

8.93
0.03

22.60
0.44
7.79

210.2
29.68

211.5
1
1
1
1
2
2
2
2

0.1
0.4
0.5
0.8
0.2
0.3
0.6
0.7

2
2
2
2
2
2
2
2

0
0
0
0
0
0
0
0

0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

1.36
1.36
1.36
1.36
2.72
2.72
2.72
2.72

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

191
191
191
191
191
191
191
191

733
366
328
259
366
299
212
196

366
183
164
130
183
150
106

98

0.59
1.07
1.15
1.30
1.21
1.27
1.31
1.34

0.145
0.579
0.723
1.157
0.289
0.434
0.868
0.013

0.57
2.27
2.84
4.54
2.27
3.40
6.81
7.94

1.55
0.77
0.69
0.55
0.77
0.63
0.45
0.41

0.64
1.01
1.09
1.15
1.01
1.14
1.18
1.19

9.86
25.98
25.81

211.5
216.9
210.4
210.3
211.6

4
4
4
4
8
8
8
8

0.2
0.3
0.6
0.7
0.1
0.4
0.5
0.8

0.25
0.25
025
0.25
0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25

5.45
5.45
5.45
5.45

10.9
10.9
10.9
10.9

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

255
255
255
255
255
255
255
255

32.4
26.4
18.7
17.3
32.4
16.2
14.5
11.4

130
106

75
69

130
65
58
46

1.12
1.14
1.30
1.30
1.26
1.30
1.30
1.31

0.096
0.143
0.287
0.334
0.048
0.191
0.239
0.382

10.6
15.9
31.8
37.1
10.6
42.4
53.0
84.8

0.36
0.29
0.21
0.19
0.36
0.18
0.16
0.13

1.20
1.23
1.27
1.28
1.20
1.29
1.30
1.33

6.96
7.84

21.97
21.49
24.53
20.88

0.07
1.76

of Eq. (1) is the same as the first line when h
5 0. An even more general form of Eq. (1) is
obtained by making the substitutions scr 5 sc1

and sy 5 su 5 c1/u0 to get

sf 5 asy
12hscr

h 5 ac1u0
h21 hŝ (3)

and prescribing a and h as a function of U.
An algorithm for determining from inputs S,ŝ
f, n, and ĉ is given in the Appendix. If Sa is
then substituted for S according to Eq. (2), u0

becomes an additional input and it is helpful
to write sf as

sf 5 as1u0
h21

a
hŝ (4)

to express as an apparent stress .ŝ ŝa

Working with nondimensional instead ofŝ
scr via Eq. (3) also provides a way to inves-
tigate a linear stress–strain law. In accordance
with Johnson and Urbanik’s (1987) theory,
implementing the linear stress–strain law puts

into the form 5 CS (from Eq. A-3), whichŝ ŝ
leads to

sf 5 ac1u0
h21(CS)h (5)

If we then substitute Sa from Eq. (2) again, we
get

sf 5 ac1u0
h21(CSa)h (6)

This interesting solution of buckling in terms
of C while retaining c1 and u0 as inputs pro-
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FIG. 2. Buckling plate subjected to uniform displace-
ment along top edge with all edges simply supported and
restrained from z-direction translation. Actual analysis
used 12 elements per half-wave.

FIG. 3. Variation of out-of-plane displacement
(squares) with average edge stress corresponding to ap-
plied downward displacement (circles) and determined by
FEA algorithm in nonlinear buckling analysis of runs 5
and 10 in Table 1. Note two displacement scales.

TABLE 4. Parameter values of 13 models fit to FEA data.

Law Model t

U # Ub

a1 h1 Ub
a

U $ Ub

a2 h2

Ave.
zerrorz
(%) r2

Error
ratiob

McKee 1 0 — — — 0.394 0.254 26.2 0.638 17.1
Linear Eq. (5) 2

3
4

0
0
0

—
0.808
0.750

—
0
0.060

—
1
0.621

0.551
0.808
0.609

0.175
0.382
0.280

15.8
16.8

9.7

0.700
0.707
0.856

5.3
4.8
2.4

Hybrid Eq. (6) 5
6
7

0.559
0.716
0.533

—
0.832
0.798

—
0
0.049

—
1
0.647

0.555
0.832
0.628

0.202
0.447
0.325

14.9
13.6

7.1

0.754
0.806
0.936

4.1
3.3
1.0

Nonlinear Eq. (3) 8
9

10

0
0
0

—
0.826
0.737

—
0
0.119

—
1
1.000

0.636
0.826
0.737

0.250
0.357
0.349

15.6
16.1
12.3

0.699
0.747
0.810

4.8
4.4
3.1

Nonlinear Eq. (4) 11
12
13

0.410
0.760
0.620

—
0.778
0.809

—
0
0.073

—
1
0.922

0.636
0.778
0.766

0.264
0.416
0.407

14.8
13.3

9.4

0.720
0.851
0.883

4.4
3.3
1.8

a Ub 5 exp[0.5 ln(a1/a2)/(h1 2 h2)].
b Normalized relative to lowest sum of errors squared determined on logarithmic scale.

duces a sort of hybrid stress–strain theory. Al-
though the prediction of sf incorporates a lin-
ear material law, parameters c1 and u0 appear
in the formula and enable nonlinear stress–
strain curves to be input. This is analogous to
a tangent modulus theory where some remote

slope along a nonlinear stress–strain curve
gets treated as the initial modulus in a linear
theory.

A summary of the models obtained from
Eqs. (3) to (6) is given in Table 4. For com-
parison, Model 1 is simply the McKee formula
from McKee et al. (1963) rearranged into Eq.
(5) with constants a and h taken from Urbanik
(1997). The average error magnitude and the
correlation coefficient reported (Table 4) are
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FIG. 4. Variation of stress ratio sf/sy with universal
slenderness U for data in Tables 1 and 3. Bilinear line is
fit of best-fitting Model 7 from Table 4. Here and in Fig-
ures 5 and 6, the data include levels of S (0.1, 0.8) and u0
(1, 8) along with intermediate design points (Int. pts.).

FIG. 5. Variation of stress ratio sf/scr with ratio scr /
sy for data in Tables 1 and 3. Bilinear line is fit of best-
fitting Model 7 from Table 4.

between the FEA sf values (Tables 1 and 3)
and the postbuckling model of sf. Only the sf

predictions from postbuckling Model 7 are re-
ported in Tables 1 and 3.

Various criteria can be used to compare the
fit of each postbuckling model with FEA pre-
dictions. The average error magnitude of
26.2% for Model 1 (Table 4) was reduced to
15.8% for Model 2 by optimizing the a and h
values in Eq. (5) to match the FEA predic-
tions. The differences in a and h between
Model 1 and Model 2 are a measure of how
our derived physical properties and the FEA
characterization compare to the real box pan-
els in actual experiments (McKee et al. 1963).

The average error magnitude was reduced
as expected per our parametric design with a
combined elastic–inelastic postbuckling mod-
el. This is observable in Table 4 by comparing
Models 2 and 3, Models 5 and 6, Models 8
and 9, and Models 11 and12. Elastic failure
occurs among the data when U $ Ub, and in-
elastic failures occur when U # Ub, with Ub

considered a breakpoint among the U data.
The case when Ub 5 1 and inelastic h 5 0 is
the same as Eq. (1).

The elastic–inelastic models were made
more accurate by optimizing Ub and general-

izing the separation between elastic and in-
elastic data. This is observable in Table 4 by
comparing Models 3 and 4 and Models 9 and
10. For each case of elastic or elastic–inelastic
model, the average error magnitude was fur-
ther reduced by substituting Sa for S and de-
termining an optimum t, and corroborates
with actual experiments (Urbanik 1996b). This
is observable in Table 4 by comparing Models
5, 6, and 7 with Models 2, 3, and 4, respec-
tively, and Models 11, 12, and 13 with Models
8, 9, and 10, respectively.

In the analysis of actual experiments (Ur-
banik 1996b), nonlinear material theory fit
data better than did linear material theory, but
with the elastic–inelastic model restricted to
the form of Eq. (1). Our results of Model 9
compared with Model 3 (Table 4) are consis-
tent. However, for our FEA data, the hybrid
material law, not previously considered, ap-
pears best. This can be observed in Table 4 by
comparing Models 5 and 7 with Models 11
and 13, respectively. Note that for the hybrid
law to be used, the material must still be char-
acterized as nonlinear and Sa must be substi-
tuted for S.

Figures 4, 5, and 6 are plots of the best-
fitting Model 7 (Table 4) with an average error
magnitude of 7.1%. Figure 4 is a representa-
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FIG. 6. Comparison of sf values in Tables 1 and 3 with
FEA determinations.

FIG. 8. Solution of from specified S, f, n, and ĉ andŝ
a linear or a nonlinear material law. Letter–number labels
(A-6, A-7, etc.) refer to equation numbers in Table 5.

FIG. 7. Variation of apparent stiffness Sa with S. Points
are determinations of Sa from Eq. (7) at two levels of f.
Lines are predictions according to Eq. (2).

tion of the generated data as utilized in Bulson
(1969) and Urbanik (1996b). Plates represent-
ed by points with U . Ub 5 0.647 fail by
elastic buckling. Plates with U , Ub fail by
inelastic buckling. As mentioned previously,
few experiments have addressed the important
variables in inelastic failure. The transition be-
tween elastic and inelastic buckling around Ub

(Fig. 4) is even less understood.
A rearrangement of Eq. (6) gives rise to the

apparent stiffness given by

1/h12h1 s uf 0S 5 (7)a 1 2C ac1

Figure 7 shows how predictions of Sa given by
Eq. (2) compare with the exact determinations
by Eq. (7), with a and h inputs from Model
7, and provides a good validation of why such
a correction for an apparent stiffness succeed-
ed with actual experiments (Urbanik 1996b).

CONCLUSIONS

The postbuckling of plates with nonlinear
material and subjected to axial compression
was analyzed with a finite element model. Var-
ious models were fit to the finite element pre-
dictions to determine a simplified form of a
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TABLE 5. Equations referred to by letter-number labels in Fig. 8.

Eq. Form Reference

(A-2)

22 24«̂ 1 p ĉ 2 1
1 ĉ 1 2 2 1 sinh(2«̂)2 2 21 2[ ]tanh(2«̂) 1 2 n 4x 1 2 n

New «̂ 5
4«̂ 3

1 sinh(2«̂) 2 22tanh(2«̂) x S

Eq. (A-2), Appendix

(A-6)
2p S(ĉ 1 1)

«̂ 5 26(1 2 n )
Eq. (3.59), Urbanik (1992)

(A-7)
2«̂

f («̂) 5 1 2
sinh(2«̂)

Johnson and Urbanik (1987)

(A-8)
2p S 2New «̂ 5 3ĉ 1 Ï1 2 (1 2 n ) f («̂)426(1 2 n )

Eq. (3.4), Urbanik (1992)

(A-9)
p 2 1/4x 5 [1 2 (1 2 n ) f («̂)]
2

Eq. (3.3), Johnson and Urbanik
(1987)

(A-10)
2xf

m 5
2f

Eq. (9), Urbanik (1996b)

(A-11)
m pix 5i 2f

Eq. (10), Urbanik (1996b)

(A-12)
22 2x p 2C 5 ĉ 1 2 ĉ 1 12 21 2[ ]3(1 2 n ) 4x

Eq. (A-4), Appendix

(A-13) ŝ 5 tanh «̂ Eq. (5.1), Johnson and Urbanik
(1987)

more general strength formula applicable to
the panels of corrugated containers. An em-
pirical correction for plate stiffness as a func-
tion of an effective plate aspect ratio input to
an elastic–inelastic postbuckling model with
an empirically optimized division between
elastic and inelastic failures gave the best re-
sults. The postbuckling model corroborates
experimental data, and results extend the
strength predictability of panels of boxes with
geometry beyond the range available from ac-
tual experiments.

NOMENCLATURE

C Eq. (A-4)
c1, c2 Constants in the y-direction stress–

strain relationship s 5 c1 tanh(c2«/c1)
ĉ Normalized in-plane shear modulus

of elasticity given by ĉ 5 n 1 2(1
2 n2)(G/c2)Ïn2/n1 . When ĉ 5 1, St.
Venant’s principle prevails.

Dx, Dy Plate bending stiffness in x-direction
and y-direction, respectively, where-
in D 5 /(1 2 n1n2)EI

d, l, h y-direction plate depth, x-direction
plate width, and plate thickness, re-
spectively

E Modulus of elasticity
Exh, Eyh Combined board extensional stiff-

ness per unit width perpendicular
(Exh) and parallel (Eyh) to fluting
axis

,EI EIx y Combined board bending stiffness
per unit width perpendicular ( )EIx

and parallel ( ) to fluting axisEIy

f ( )«̂ Eq. (A-7)
G In-plane shear modulus of elasticity
g( )«̂ Zero function
m Number of buckled half-waves

along d
Pu Combined board edgewise compres-

sion strength
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r Coefficient of correlation
S Normalized plate stiffness given by S

5 (c2/c1)(h/l)2Ïn1/n2 5 12Ï /EI EIx x

u0Pul2

Sa Empirically corrected apparent S
U Universal plate slenderness given

by U5 Ïsy/scr

Ub U-breakpoint between elastic and
inelastic postbuckling

x, y Plate axis in transverse and loaded
directions, respectively

a, h Postbuckling constants
« Strain
«cr Critical strain
«̂ Normalized buckling strain
u0 Nonlinear material postbuckling

constant given by u0 5 c1/su

f Effective plate aspect ratio given by
f 5 (d/l )(Dx/Dy)1/4

t Stiffness correction exponent
n, n1, n2 Geometric mean Ïn1n2 and Pois-

son’s ratios associated with x- and
y-direction plate loading, respective-
ly

x Nondimensional wave period
s Stress
scr Average critical stress at bifurcation

across plate width
sf Average failure stress across plate

width at maximum load
su Material ultimate stress
sy Material yield stress
ŝ Normalized buckling stress

REFERENCES

Batelka, J. J., and C. N. Smith. 1993. Package compres-
sion model. Containerboard and Kraft Paper Group,
Project 3746, Final Report. February. American Forest
& Paper Association, Washington, DC.

Bulson, P. S. 1969. The stability of flat plates. American
Elsevier Publishing Company, Inc., New York, NY.

Gerand, G. 1957. Handbook of structural stability. Part IV.
Failure of plates and composite elements. Natl. Adv.
Comm. for Aeronautics, Tech. Note 3874. August.

Hutten, M., and P. Brodeur. 1995. MD and CD properties
of linerboard components and the resulting box stacking
performance. Containerboard and Kraft Paper Group
Project 3712, Final Report, July. American Forest &
Paper Association, Washington, DC.

Johnson, M. W., Jr., and T. J. Urbanik. 1987. Buckling of

axially loaded, long rectangular plates. Wood Fiber Sci.
19(2):135–146.

McKee, R. C., J. W. Gander, and J. R. Wachuta. 1963.
Compression strength formula for corrugated boxes. Pa-
perboard Packaging (August).

Shick, P. E., and N. C. S. Chari. 1965. Top-to-bottom com-
pression for double wall corrugated boxes. Tappi J.
48(7):423–430.

Urbanik, T. J. 1990. Correcting for instrumentation with
corrugated fiberboard edgewise crush test theory. Tappi
J. 73(10):263–268.

. 1992. Effect of in-plane shear modulus of elas-
ticity on buckling strength of paperboard plates. Wood
Fiber Sci. 24(4):381–384.

. 1996a. Machine direction strength theory of cor-
rugated fiberboard. J. Comp. Technol. Res. 18(2):80–
88.

. 1996b. Review of buckling mode and geometry
effects on postbuckling strength of corrugated contain-
ers. Development, validation, and application of inelas-
tic methods for structural analysis and design, Pressure
Vessels and Piping, 343:85–94. American Society of
Mechanical Engineers.

. 1997. Linear and nonlinear material effects on
postbuckling strength of corrugated containers. App.
Mech. Div. vol. 221/MD vol. 77, Mechanics of Cellu-
losic, American Society of Mechanical Engineers. Pp.
93–99.

. 2001. Effect of corrugated flute shape on fiber-
board edgewise crush strength and bending stiffness. J.
Pulp Paper Sci. 27(10):330–335.

APPENDIX

Nonlinear Stress–Strain Law

Previous research (Urbanik 1996b) considered the
buckling strain of a finite length plate with fixed x. An
algorithm for finding the root of Eq. (3.29) from Urbanik
(1992)

22 2 2x S 1 p ĉ 2 1
g(«̂) 5 ĉ 1 2 2 f («̂) 2 «̂ 5 0

2 2 21 2[ ]3 1 2 n 4x 1 2 n
(A-1)

and based on fixed point iteration was proposed. For the
current study, an algorithm for more general values x and
based on Newton’s method is given by

g(«̂)
New «̂ 5 «̂ 2 (A-2)

]g(«̂)/]«̂

Linear Stress–Strain Law

In accordance with linear material analysis (Johnson
and Urbanik 1987), the linear stress–strain law s 5 orc «̂2

5 , agrees with Eq. (0.1) of Johnson and Urbanikŝ «̂
(1987) for small strains. For a small strain 5 )2f («̂) 0(«̂
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so that Eq. (2.139) of Urbanik (1992), the linear buckling
stress is

5 CSŝ (A-3)
where

22 2 2x 1 b̂ ĉ 2 1
C 5 ĉ 1 2 (A-4)

2 2 21 2[ ]3 1 2 n x 1 2 n

For simple support 5 p/2 and the solution of Eq. (3.29)b̂
of Urbanik (1992) for a value of x that minimizes when«̂
plate length is infinite gives x 5 p/2. Hence, in this case

2p (ĉ 1 1)
C 5 (A-5)

26(1 2 n )

Please note that Eqs. (3.59) and (5.3.19) were given in-
correctly in Urbanik (1992). With finite values of plate
length, values of C1 and C2 corresponding to m1 and m2

need to be examined.

Algorithm

An algorithm for determining the nondimensional buck-
ling stress of a simply supported plate with compression
in the direction of its length and having either a linear or
a nonlinear material characterization is given in Fig. 8.
Referenced equations are given in Table 5. After comput-
ing , the critical stress is scr 5 c1 .ŝ ŝ


