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abstract

Equations for a two-dimensional finite difference heat flow analysis were developed and applied to pon-
derosa pine and Douglas-fir square timbers to calculate the time required to heat the center of the squares
to target temperature. The squares were solid piled, which made their surfaces inaccessible to the heating
air, and thus surface temperatures failed to attain the temperature of the heating air. The surface tempera-
tures were monitored during heating and related to time by an empirical equation. When this equation was
used as the boundary condition in the finite difference solution, calculated time estimates required to heat
the center to target temperature agreed favorably with experimentally observed heating times.
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introduction

Heat treatment is an increasingly common
way to sterilize lumber, timbers, and pallets
against invasive species such as insects and
fungi. In a previous study (Simpson 2003), a
one-dimensional finite difference solution to
heat flow equations was used to calculate esti-
mates of heating time for heat sterilization of
slash pine (Pinus ellióttii) boards. The solution
also included boundary conditions that allowed a
continuously variable surface temperature. The
one-dimensional solution works well for boards
that are considerably wider than they are thick,
but it cannot be applied to large cross-sectional
dimension timbers and squares. In another study
(Simpson et al. 2003), heating time data were
collected for ponderosa pine (Pinus ponderosa)
and Douglas-fir (Pseudotsuga menziesii)
squares.

The objectives of the study reported here were
to extend the one-dimensional finite difference
solution to two dimensions so that it could be ap-
plied to large cross-sectional dimension timbers
and squares and to test this solution on previ-
ously collected data for ponderosa pine and
Douglas-fir.

experimental methods

The experimental methods are described in
detail in Simpson et al. (2003). Ponderosa pine
specimens were 102-, 152-, and 305-mm (4-, 6-,
and 12-in) square. Douglas-fir specimens were
89, 146, and 298 mm (nominal 4, 6, and 12 in;
actual 3.5-, 5.75-, and 11.75-in) square. (Here-
after, squares will be referred to as 4 � 4, 6 � 6,
and 12 � 12.) The squares were freshly sawn.
The ponderosa pine was all sapwood, whereas
the Douglas-fir had considerable heartwood
(Fig. 1).

The previous study (Simpson et al. 2003) in-
cluded two stacking configurations, stickered
and solid piled. It also included measurement of
surface temperatures as well as center tempera-
tures, which are necessary to determine when the
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target heat sterilization temperature has been
achieved. In the experiments with solid piled
squares reported here, surface temperatures were
monitored on two adjacent surfaces of selected
squares; these surface temperature data were
used to test the two-dimensional finite difference
solution. Thermocouples were used to measure
both center and surface temperatures. The exper-
imental method was given in Simpson (2003)
and Simpson et al. (2003).

All heating was done in a 3.5-m3 (1,500 board
foot) experimental dry kiln at a constant dry-
bulb temperature of 71°C (160°F) and a constant
wet-bulb depression of approximately 0.8°C to
1.1°C (1.5°F to 2°F). Target center temperature
was 56°C (133°F). Air velocity was approxi-
mately 3.1 m/s (600 ft/min).

Five replicates of the 4- � 4- and 6- � 6-in.
squares and four replicates of the 12 � 12
squares were heated together. Dummy boards
and squares were included in each stack so that
all test squares were surrounded by other boards
or squares. Thus, all test squares responded as
squares within the stacks and not as edge
squares. Figure 1 shows a stack of stickered test
material ready for the kiln. Except for stickering,
the unstickered stacks were similar to the stick-
ered stacks.

analytical methods

The equation that governs two-dimensional
heat flow is

(1)

where T is temperature, t is time, x and y are spa-
tial coordinates, and �x and �y are diffusivities in
the x and y directions, respectively, and are as-
sumed to be the same in this analysis. MacLean
(1941) has shown that diffusivities in the radial
and tangential directions do not differ by much.

The two-dimensional finite difference equa-
tions that approximate the solution to Eq. (1) and
the finite difference grid are shown in Appendix
A; one equation is for the interior temperatures
and the other for the center temperatures. As a
first test of the two-dimensional finite difference
analysis, heating times were compared with the
two-dimensional equation developed by
MacLean (1932) (also discussed in Kollmann
and Côté 1968) and described and applied by
Simpson (2001). MacLean’s equation (Appendix
B) can be applied only under the boundary con-
ditions where the surface immediately attains
and maintains the temperature of the heating
medium. The finite difference analysis can be
applied to these boundary conditions as well as
boundary conditions where surface temperature
varies with time. Comparisons of the calculated
times required for the center of various sizes of
lumber and timber to reach a target center tem-
perature of 56°C (133°F) are shown in Table 1.
The times calculated by the two methods are in
close agreement.

The main purpose for the two-dimensional fi-
nite difference analysis was to accommodate
boundary conditions of time-dependent surface
temperature. In this study, surface temperatures
were derived from fitting the following empiri-
cal equation to the surface temperature–time
data collected for each experimental heating run:

(2)

where Ts is surface temperature,
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Fig. 1. Stack of ponderosa pine boards and square tim-
bers ready for the kiln. This figure shows stickers between
layers of boards/squares, but the data for this study were
taken from unstickered stacks. Pieces with white tags have
thermocouples embedded in their center.



Th is temperature of heating medium � 71°C
(160°F) in this study,

t is time (minutes in this analysis), and
a and b are coefficients determined by nonlin-

ear regression.
Equation (2) was developed from the basic re-

quirement that the surface temperature will
eventually attain the temperature of the heating
medium. Thus, the equation was developed to be
forced to converge to Th at large times. For this
analysis, n was taken up to a value of 3.

results and discussion

Solid stacking the squares prevented the heat-
ing medium access to the surfaces. If the square
timbers had been stickered, the surfaces would
have immediately attained and maintained the
approximate temperature of the heating medium
because, with the small wet-bulb depression, the
heating medium was nearly saturated steam.
However, by solid stacking the squares (which is
sometimes more practical than breaking down
solid piled stacks), stickering them for heat treat-
ment, and then restacking them in solid piled
configuration, access to the surfaces was denied.
Consequently, the surfaces did not immediately
attain and maintain the temperature of the heat-
ing medium. This, in turn, reduced the tempera-
ture that the squares would have attained had
they not been solid stacked. Similarly, even if the
squares had been stickered but the heating
medium had been air drier than saturated steam,

the surfaces would not have immediately at-
tained the air temperature because the drier air
would have caused water to evaporate and thus
cool the surfaces below the air temperature.

Figure 2 shows examples of the variation of
surface and center temperatures with time for
two different cases. The coefficients of Eq. (2)
are shown in Table 2. Equation (2) is effective in
characterizing the variation of surface tempera-
ture with time, with coefficients of determina-
tion (R2) in excess of 0.99.

Table 3 compares the time for the centers of
solid piled ponderosa pine and Douglas-fir
square timbers to reach 56°C (133°F) when
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Table 1. Comparison of heating times of two-dimensional
wood configurations calculated by MacLean’s equation and
by a finite difference method.a

Wood configuration MacLean Finite difference
(inch (mm)) (min) (min)

2 � 2 (51 � 51) 23.1 21.2
6 � 6 (152 � 152) 207 204
8 � 8 (203 � 203) 369 361
10 � 10 (254 � 254) 576 567
12 � 12 (305 � 305) 830 864
16 � 16 (406 � 406) 1,475 1,444

aMacLean 1932, Kollmann and Côté 1968, and Appendixes.
Heating times calculated from center of specimen to 56°C (133°F). Condi-

tions: heating temperature, 71°C (160°F); heating temperature, 71°C (160°F);
initial temperature, 21oC (70oF); specific gravity, 0.5; moisture content, 90%;
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Fig. 2. Increase in surface and center temperatures with
time for square timbers: (a) 12 � 12 ponderosa pine, (b) 4 �
4 Douglas-fir.



heated in saturated steam at 71°C (160°F). The
comparisons are between experimental times,
times calculated by MacLean’s equation assum-
ing that surface temperature immediately attains
the heating medium temperature, and times cal-
culated by the two-dimensional finite difference
equations utilizing Eq. (2) to characterize the
change in surface temperature with time. Times
calculated by MacLean’s equation were grossly
shorter than experimental times, as expected.
The finite difference equations were effective in
estimating heating times, with the average of the
absolute value of deviation from experimental
times of less than 5%.

The practical usefulness of this two-
dimensional approach requires knowledge of
how surface temperature varies with time under
any heating conditions (where the target center
temperature is above the wet-bulb temperature
of the heating medium (Simpson 2003)). Knowl-

edge of how coefficients a and b of Eq. (2) vary
with heating conditions or any other factors
could lead to practical applications, and further
studies could clarify this variation.

conclusions

The two-dimensional finite difference heat
flow analysis accurately estimates the time re-
quired to heat the center of ponderosa pine and
Douglas-fir square timbers to target temperature
when the heating medium is saturated steam and
when the boundary conditions of a time-varying
surface temperature are included in the solution.
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Table 2. Coefficients of Eq. (2) relating surface temperature to time (min) for solid piled ponderosa pine and Douglas-fir
squares heated at 71°C (160°F).

Species, config. a1 b1 a2 b2 a3 b3 R2

Ponderosa pine
4 � 4 49.6 –0.202 –52.8 –0.0220 –91.8 –0.0000763 0.9981
6 � 6 –23.9 –0.0248 –3.09 –0.0393 –86.1 –0.0000486 0.9993
12 � 12 –2.37 –5.41 � 10-9 –237 –0.00194 121 –0.0000885 0.9952

Douglas-fir
4 � 4 123 –0.0285 –158 –0.00338 –52.4 –1.58 � 10-13 0.9988
6 � 6 144 –0.0104 –179 –0.000341 –54.5 –0.000167 0.9987
12 � 12 –6.89 –0.193 –62.6 –0.000754 –28.1 –0.0000694 0.9987

Table 3. Comparison of experimental and calculated (MacLean equation) heating times for timbers heated at 71°C
(160°F) dry-bulb temperature and 1.1oC (2oF) wet bulb depressiona

Heating time (min)

Finite difference in
Species, config. Experimentalb MacLean heating time (min) Deviation (%)

Ponderosa pine
4 � 4 831 (14.0) 101 730 13.8
6 � 6 1,201 (30.1) 217 1,214 –1.1
12 � 12 1,736 (26.4) 871 1,724 0.7
Douglas-fir
4 � 4 432 (27.2) 70 427 1.2
6 � 6 977 (9.3) 197 1,038 –5.9
12 � 12 1,931 (13.5) 817 1,903 1.5

aCalculations of diffusivity (Simpson 2001) take ponderosa pine and Douglas-fir specific gravity as 0.38 and 0.45 and moisture content as 112% and 97%,
respectively, giving diffusivities of 1.68 � 10–3 and 1.60 � 10–3 cm2/s, respectively.

bValues in parentheses are coefficients of variation.
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appendix a. finite difference two-dimensional heat flow analysis

Schematic of two-dimensional quadrant (Fig. A) of wood square for finite 
difference calculations of temperature during heating.

i direction (x) i direction (x) i direction (x) i direction (x) i direction (x) i direction (x)

j direction (y) T(1,1) T(2,1) — — T(n–1,1) T(n,1)
j direction (y) T(1,2) T(2,2) — — T(n–1,2) T(n,2)
j direction (y) — — — — — —
j direction (y) — — — — — —
j direction (y) T(1,n–1) T(2,n–1) — — T(n–1,n–1) T(n,n–1)
j direction (y) T(1,n) T(2,n) — — T(n–1,n) T(n,n)

Fig. A. Schematic of cross section with quadrant and typ-
ical finite difference grid points.

Finite Difference Equations

Surface temperatures (i or j � 1 in grid; Eq. (2) in text):
Ts � Th � a1 exp(b1 t1/2) � a2 exp(b2 t2/2) � a3 exp(b3 t3/2) � . . . � an exp(bn tn/2)

Interior temperatures (bold-faced print in grid):
Ti,j,t�1 � Ti,j,t � � �t/(�x)2 [(Ti�1,j,t – Ti,j,t) – (Ti,j.t – Ti–1,j,t)]

� � �t/(�y)2 [(Ti,j�1,t – Ti,j,t) – (Ti,j,t – Ti,j–1,t)]
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Center temperatures (italics in grid):
x direction:
Tn,j,t�1 � Tn,j,t � 2� �t/(�x)2 (Tn–1,j,t – Tn,j,t) � ��t/(�y)2 (Tn,j�1,t – 2Tn,j,t � Tn,j–1,t)

y direction:
Ti,n,t�1 � Ti,n,t � 2� �t/(�y)2 (Ti,n–1,t – Ti,n,t) � � �t/(�x)2 (Ti�1,n,t – 2Ti,n,t � Ti–1,n,t) (A.3)

Inner corner point (Tn,n in grid):
Tn,n,t�1 � Tn,n,t � 2 � �t/(�x2) (Tn–1,n,t – Tn,n,t) � 2� �t/(�y)2 (Tn,n–1,t – Tn,n,t)

appendix b. maclean two-dimensional heat flow equation for rectangular cross sections

The equation for rectangular cross sections is taken from MacLean (1932) and is the solution to the differential equation
of heat conduction in the two dimensions of a rectangular cross section. The temperature T at any point x and y is given by

T � Ts � (T0 – Ts)(16/�2)

�{sin(�x/a) sin(�y/b) exp[��2t(�x/a
2��y/b

2)]

�(1/3) sin(3�x/a) sin(�y/b) exp[��2t(9�x/a
2��y/b

2]

�(1/3) sin(�x/a) sin(3�y/b)
exp[��2t(�x/a

2�9�y/b
2]

�(1/5) sin(5�x/a) sin(�y/b) exp[��2t(25�x/a
2��y/b

2] (A.4)

�(1/5) sin(�x/a) sin(5�y/b) exp[��2t(�x/a
2�25�y/b

2]

�(1/7) sin(7�x/a) sin(�y/b exp[��2t(49�x/a
2��y/b

2]

�(1/7) sin(�x/a) sin(7�y/b) exp[��2t(�x/a
2�49�y/b

2]

� . . . }

where

Ts is surface temperature (which must be attained 
immediately),

T0 initial temperature,

a one cross-sectional dimension,

b other cross-sectional dimension,

�x thermal diffusivity in the x direction 
(dimension2/time),

�y thermal diffusivity in the y direction, and

t time.
Equation (A.4) converges quickly, so only the first few terms are necessary. In this report, seven terms were used. Because
thermal conductivity and thermal diffusivity do not differ much in the radial and tangential directions of wood, in Eq. (A.4)
we can set �x � �y (MacLean (1941). Equation (4) can easily be converted to calculate the temperature at the center of the
cross section by setting x � a/2 and y � b/2.


