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ABSTRACT

Numerical modeling, such as finite element analysis (FEA), of complex structures and complex ma-
terials is a useful tool for stress analysis and for failure modeling. Although FEA of wood as an anisotropic
continuum is used, numerical modeling of realistic wood structures, including details of wood anatomy
and variations in structure within specimens, has been beyond the capabilities of FEA and other methods.
In contrast, the recently derived material point method (MPM) has features that make it amenable to
analysis of realistic wood structures. To demonstrate the capabilities of MPM, simulations were done for
wood in transverse compression. Some advantages of MPM are that it is easy to discretize micrographs
of wood specimens into a numerical model, it can handle large deformations, it can model elastic-plastic
cell-wall properties, and it automatically accounts for contact between cell walls. MPM simulations were
run for softwood and hardwood loaded in either radial or tangential compression. The simulations
reproduced many features of wood compression, gave insight into effects of wood anatomy on compres-
sion, and may be the first numerical calculations of realistic wood structures extended through to full

densification without numerical difficulties.
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INTRODUCTION

Figure 1 shows three regions during quasi-
static, transverse compression of wood (Bodig
1963, 1965, 1966). At low strain, the deforma-
tion is linear and elastic. This region ends in a
collapse region of relatively constant stress. The
collapse is initiated by elastic or plastic buckling
of cell walls or by fracture of cell walls. At very
high strains, the collapsed cell walls contact
other cell walls, and the stress increases rapidly
during wood densification. Although all wood
exhibits these general features, key details of
compression properties are dependent on various
anatomical features of the wood specimen such
as density, percentage of latewood material, ray
volume, etc., and on loading direction with re-
spect to radial and tangential directions (Bodig
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1963, 1965, 1966; Kennedy 1968; Kunesh 1968;
Gibson et al. 1981; Easterling et al. 1982). The
goal of this paper is to demonstrate a numerical
method that can address details about the effect
of wood anatomy on the transverse compression
and densification of wood. Results on compres-
sion of wood are relevant to wood in structural
design and in processing of wood-based com-
posites (Bodig and Jayne 1982).

Gibson and Ashby (Gibson et al. 1982; Gib-
son and Ashby 1997) derived analytical models
for 2D foams that are approximately applicable
to analysis of wood (Gibson et al. 1981; Easter-
ling et al. 1982). These models describe a foam
(or wood) structure as a regular array of hexago-
nal cells (see Fig. 1 insert) and derive results for
initial elastic modulus and initiation of failure by
either elastic or plastic buckling. These models
capture the essential mechanisms of wood fail-
ure, and have been useful for interpreting com-
pression experiments on wood (Tabarsa 1999;
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Fic. 1. Schematic view of a transverse compression

stress-strain curve for wood. The dotted lines show the
method used to extract initial modulus (E), stress and strain
for the onset of buckling (o, and &,) and the stress and
strain for the onset of densification (o, and &,). The insert
shows a piece of a regular hexagonal array.

Tabarsa and Chui 2000, 2001). Analytical foam
models, however, are limited to low-density
foams (#/] << 1 for which the mechanisms mod-
eled dominate the deformation) and can not be
extended into wood densification. Furthermore,
any model, analytical or numerical, that uses a
regular array of cells can not handle effects of
variations in cell structure due to wood anatomy.
Work on these problems requires numerical
modeling of realistic wood structures.

Finite element analysis (FEA) is a common
method for numerical modeling of structures,
but there are at least four reasons FEA has dif-
ficulty modeling realistic wood specimens
(Bardenhagen et al. 2005). First, the structure of
wood is complex. It is very difficult to discretize
such structures into an FEA mesh. The common
FEA practice of reducing analysis to a small
idealized structure limits its value for numerical
modeling of the details or failure mechanisms
(Smith et al. 2003). Second, the densification of
wood involves contact between cell walls. Al-
though contact methods are available in FEA,
they are not fully developed for analysis of ar-
bitrary contact. Furthermore, it would be diffi-
cult to mesh contact elements within realistic
structures. Third, buckling of walls and subse-
quent densification requires large deformations.
The elements in an FEA mesh would become
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too distorted at high strains and numerical prob-
lems would occur. Fourth, the number of ele-
ments required to accurately mesh realistic wood
morphology is computationally expensive
(Smith et al. 2003).

To date, FEA work on wood compression has
been limited to specialized problems and no
work has considered densification of wood. For
example, Pellicane et al. (1994a, 1994b) used
continuum FEA to model an ASTM specimen
for transverse compression. The model was for a
linear elastic, isotropic material and did not at-
tempt to consider any details of wood structure.
Recently, Shiari (Shiari and Wild 2004) used
FEA to consider compression including large
deformations and contact. This analysis, how-
ever, was limited to a single wood cell and only
considered linear elastic material properties.
Analogously, FEA results on foams have fo-
cused on modest deformation and idealized
meshes (Zhu et al. 1997).

Recently, lattice methods have been sug-
gested as a potential morphology-based tool in
which the wood structure is replaced by a model
of rod and spring elements (Smith et al. 2003;
Landis et al. 2002; Davids et al. 2003). The hope
is that lattice models may be more efficient than
FEA analysis and be able to describe realistic
wood structures. To date, however, lattice mod-
els have resorted to regular arrays of springs and
rods and have been limited to linear elastic ma-
terial properties. Variations in wood structure
have been introduced by allowing strength and/
or stiffness properties of the elements to be
statistical quantities. The choice of statistical
parameters, however, while guided by experi-
mental results, must include some ad hoc as-
sumptions (Landis et al. 2002). Lattice models
have focused on longitudinal properties of wood
where the rods are wood fibers and springs rep-
resent transverse properties (Landis et al. 2002;
Davids et al. 2003). In principle, lattice models
could be applied to transverse properties or 3D
modeling, but that capability has not been dem-
onstrated.

The goal of this paper is to develop the ma-
terial point method (MPM) as a potential tool for
numerical modeling of wood that is capable of
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modeling many details of wood anatomy. The
idea for use of MPM on wood was derived from
the recent successful application of MPM to 3D
foams (Bardenhagen et al. 2005; Brydon et al.
2005). Those results showed that prior problems
associated with numerical modeling of foam (or
wood) are either absent or less severe when us-
ing MPM (Bardenhagen et al. 2005). First, it is
very easy to discretize realistic structures in
MPM. The process is analogous to digitization
of an image into pixels. Second, MPM automati-
cally handles contact and thus can be extended
to high strain or densification without numerical
difficulty. Third, MPM can handle realistic ma-
terial models and large deformations. Fourth, as
the results presented here demonstrate, MPM
can handle large calculations.

The NumERICAL METHODS section briefly de-
scribes the material point method (MPM) and
the discretization of micrographs of real wood
into a numerical model. The ResuLTs AND Dis-
cussIoN section describes MPM simulations of
compression on loblolly pine, yellow poplar, and
ponderosa pine. The results include compression
in the radial and tangential directions, compres-
sion of softwood vs. hardwood, the effect of cell-
wall properties, and the effect of loading rate.
The simulations reproduced many features of
wood compression (see Fig. 1) and may be the
first numerical calculations that extended
through to full densification (the calculations
were extended to 60% compressive strain). The
results are compared to foam-theory models.
The emphasis of this paper is on demonstration
of MPM numerical capabilities for analysis of
wood in compression. The CoNcLUSIONS AND Fu-
TURE WORK section suggests potential applica-
tions for MPM modeling as a general tool for
analysis of wood including future direct com-
parisons between numerical modeling and ex-
periments.

NUMERICAL METHODS
Material point method

The material point method (MPM) has been
developed as a numerical method for solving
problems in dynamic solid mechanics (Sulsky et
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al. 1994, 1995; Sulsky and Schreyer 1996; Zhou
1998). In MPM, a solid body is discretized into
a collection of points much as a computer image
is represented by pixels. As the dynamic analy-
sis proceeds, the solution is tracked on the ma-
terial points by updating all required properties
such as position, velocity, acceleration, stress
state, etc. At each time step, the particle infor-
mation is extrapolated to a background grid,
which serves as a calculational tool to solve the
equations of motion. Once the equations are
solved, the grid-based solution is used to update
all particle properties. This combination of La-
grangian and Eulerian methods has proven use-
ful for solving solid mechanics problems includ-
ing those with large deformations or rotations
and involving materials with history-dependent
properties such as plasticity or viscoelasticity ef-
fects (Sulsky et al. 1994). MPM is amendable to
parallel computation (Parker 2002), implicit in-
tegration methods (Guilkey and Weiss 2003),
and generalized interpolation schemes that can
optimize accuracy (Bardenhagen and Kober
2004). MPM also has advantages for dealing
with explicit cracks and crack propagation
(Nairn 2003; Guo and Nairn 2004) and for
analyses involving coupled thermal conductivity
or moisture diffusion (Nairn 2005b).

Although MPM uses a background grid and is
frequently compared to finite element methods,
a new derivation or MPM (Bardenhagen and
Kober 2004) presents it as a Petrov-Galerkin
method that has similarities with meshless meth-
ods such as Element-Free Galerkin (EFG) meth-
ods (Belytschko et al. 1994) and Meshless-Local
Petrov-Galerkin (MLPG) methods (Atluri and
Shen 2002). The “meshless” aspect of MPM,
despite the use of a grid, derives from the fact
that the body and the solution are described on
the particles while the grid is used solely for
calculations. The meshless features of MPM
have advantages for simulation of transverse
compression in wood. First, it is easy to dis-
cretize actual wood anatomy simply by transla-
tion of pixels in a computer image of a wood
micrographs into an MPM model for wood. Sec-
ond, MPM can handle large deformations and
large compression strains without any mesh dis-
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tortion. The particles translate through the mesh,
but the grid never changes and hence never dis-
torts. Third, MPM automatically handles contact
between particles and thus automatically handles
cell-wall contact at high compressive strain dur-
ing wood densification.

Numerical analysis of wood

Figure 2A shows an SEM micrograph of un-
compressed mature loblolly pine (Pinus taeda)
(Kultikova 1999). The resolution of the image,
as obtained, was 360 x 234 pixels and it images
an area of 0.832 x 0.541 mm. To analyze this
wood anatomy in MPM, the image was con-
verted into a 256 level grayscale bitmap image
(a standard, uncompressed, BMP file (Bourke
2004)). Next, an MPM background mesh was
defined with any number of regular, quadrilat-
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Fic. 2. A. SEM micrograph of uncompressed mature
loblolly pine (from Kultikova 1999). The micrograph im-
ages and area of 0.832 x 0.541 mm. B. MPM discretization
of the image using 150 x 97 elements or 300 x 194 =
58200 potential locations for particles.
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eral elements covering an area greater than or
equal to the image area. Each element in the
mesh was assigned to have four possible loca-
tions for material points each representing one
quarter of the element area. Our 2D MPM code
(Nairn 2005a) was then revised to map the BMP
image to the mesh and evaluate the intensity of
the image corresponding to each potential mate-
rial point location. Based on the average image
intensity, each location was either assigned to
have a material point representing cell-wall ma-
terial or to be vacant representing cell lumen or
other open space. For the image in Fig. 2A, cell-
wall material was identified with intensity 150
or greater (within a gray scale from 0 for black
to 255 for white). The resolution of the MPM
discretization could be adjusted arbitrarily to
vary accuracy of digitizing the image. The result
in Fig. 2B is an MPM model using a background
grid for the image of 150 x 97 elements. This
background grid provides for 300 x 194 =
58,020 potential locations for particles. The in-
dividual material points in Fig. 2B are drawn as
square blocks, but are barely distinguishable.
The background grid was omitted for clarity
Individual cell walls are layered structures,
but the layers are beyond the resolution of these
calculations. Here cell-wall material was treated
as a transversely isotropic continuum with the
unique axis in the axial direction having a high
modulus while the two directions in the trans-
verse plane have equal moduli. Typical results
for transverse-plane cell-wall modulus are
around 10 GPa (Easterling et al. 1982). Re-
cently, Tabarsa extracted transverse cell proper-
ties by experiments coupled with analysis of the
cell anatomy of particular specimens (Tabarsa
1999; Tabarsa and Chui 2000, 2001). The results
were 10.2—10.6 GPa for white spruce and 10.3
GPa for jack pine. All calculations in this paper
assumed cell-wall properties with a transverse
modulus of E,, = 10.6 GPa, a Poisson’s ratio of
v = 0.33, and a density of p, = 1500 kg/m’
(Easterling et al. 1982). Using this cell-wall den-
sity, the bulk density of the digitized MPM
model in Fig. 2B is 910 kg/m’ (35,352 particles
or p/p,, = 0.607) varying from 605 kg/m> (p/p,,
= 0.404) in the earlywood region to 1186 kg/m’
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(p/p,, = 0.791) in the latewood region. This
bulk density is higher than reported in Kultikova
(1999) of 570 kg/m>, which is either a conse-
quence of the resolution of the image, the spe-
cific region in the image, the actual value for
cell-wall density, or an effect on cell-wall ap-
pearance caused by surface preparation for the
SEM micrograph. The goal of this paper is to
demonstrate MPM modeling, and thus the pre-
cise density was not crucial.

To simulate cell collapse by plastic deforma-
tion, the cell-wall material was assumed to be
elastic-plastic (using a standard non-hardening,
plasticity flow model for material modeling)
with yielding occurring when the von-Mises
stress reaches a critical value. In two-dimen-
sional calculations (with the x-y plane being the
transverse plane of analysis), the von-Mises cri-
terion is

2 2 2
E [(O-xx - O-yy) + (O-xx - Uzz) + (UZZ - O-yy)
+ 6T§y] =0 (1)

For plane stress analysis, o,, = 0 and the ma-
terial property o, corresponds to the yield stress
under uniaxial tension (yielding when o, =
oy). For plane strain analysis, o, = v(o,, +0,,)
and the yield criterion is modified to:

(02 + O'iy)(l —v—v7) - 0,,0,,(1+2v— 21%)

+62 =0 @

Under plain strain conditions, uniaxial tension
will result in yielding when

Oy

O =——F—— 3)

XX
\V1-v+v’

For v = 0.33, the effective axial yield stress is
equal to 1.1330,. The work of Tabarsa (1999;
Tabarsa and Chui 2000, 2001) estimated axial
yield stresses of 431 MPa for white spruce and
474 MPa for jack pine. Here the yield stress was
varied from o, = 100 MPa to very high values
(to simulate an elastic response). Most calcula-
tions used o, = 500 MPa. The convergence
tests used plane stress conditions, but all other
calculations used plain strain conditions.
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The boundary conditions for radial compres-
sion are illustrated in Fig. 2B. The right side of
the specimen was compressed at a constant rate
by a rigid piston. The left side of the specimen
was restrained with zero-displacement boundary
conditions. The top and bottom of the specimen
were restrained by rigid particles to confine
compression to the axial direction. To monitor
axial stress on the wood, a layer of particles was
inserted between the wood material and the
zero-displacement boundary condition on the
left edge. The applied stress was calculated from
the average stress in these particles. The modu-
lus and density of the extra particles were very
high such that their deformation was negligible
during the analysis. For transverse loading the
piston was moved to the top, the lateral walls were
moved to the left and right edges, and the zero-
displacement boundary conditions and high-
modulus particles were moved to the bottom.

All calculations were done using two-
dimensional, explicit MPM code (Nairn 2005a).
This serial code was run on single-processor,
Linux cluster nodes ranging from 1.4 GHz to 2.8
GHz processor speeds. In explicit code, the time
step is limited to 7, = d/c; where d is the
minimal dimension of the elements in the back-
ground grid and ¢, is the wave speed of the
cell-wall material. The longitudinal wave speed
of the assumed cell-wall material was ¢, = V(E/
p) = 2665 m/s and typical element dimensions
were d = 5 microns. Typical time steps were
therefore on the order 2 x 10™® msec. These
small time steps precluded simulations at typical
loading rates used in quasi-static compression
experiments. Work on compression of foam,
however, shows that quasi-static results can be
obtained provided the loading rate is lower than
about 3% of the wave speed of the material
(Bardenhagen et al. 2005). Some results below
show slightly slower speeds are needed for elas-
tic-plastic wood specimens.

RESULTS AND DISCUSSION
Convergence

Figure 3 shows results of transverse compres-
sion in the radial direction on the specimen in



Nairn—SIMULATION OF TRANSVERSE COMPRESSION IN WOOD

i T
\.' “'I fn,;' I'H}
|
7000} ] r,||'«|.' I
6000} o P 4
||I i J‘;I.I\"
VN
T 5000 I iu':lltljlr'\wa -
s A m'ﬂxllff"f
= 4000 - -”ft-"'-i:/{ J
"
& 3000 A .
180 J| P
e o
2000 |- 120 e -
R
1000 - ’ff"ﬁ;f e ap 20
I@iﬁ L 1 1 L
8o 0.1 0.2 0.3 0.4 0.5 0.6 07
Strain
Fic. 3. Radial compression of loblolly pine, assuming

the cell walls are linear elastic, as a function of resolution of
the MPM model. The numbers indicate the number of par-
ticles in the horizontal direction across the wood specimen.

Fig. 2B compressed at 50 m/s (1.88% of wave
speed) to compression strain of 0.6. These cal-
culations used linear elastic cell-wall properties
and varied the total number of particle positions
in the horizontal direction. The results are reso-
lution dependent for crude meshes (less than 200
particles), but converge for fine meshes (more
than 300 particles). The maximum resolution
used, or 360, exactly matched the number of
pixels in the image. All subsequent calculations
for this specimen used 300 particles as a com-
promise between adequate convergences and
calculation speed. The convergence simulations
were repeated for elastic-plastic cell-wall mate-
rial with o, = 500 MPa (results not shown);
again a resolution of 300 particles was found to
be adequate.

Both the elastic simulations (Fig. 3) and the
elastic-plastic simulations had cell-wall col-
lapse. The elastic material had elastic buckling,
while the elastic-plastic material had plastic col-
lapse of the cell walls. The plastic collapse oc-
curred at lower stress than the elastic buckling.
Experimental observations suggest that plastic
collapse is the dominant mechanism in compres-
sion failure (Tabarsa and Chui 2000); thus the
simulations in this paper focused on elastic-
plastic material properties. There was little evi-
dence of dynamic effects in the elastic results
indicating that 50 m/s (1.88% of wave speed)
was sufficiently slow for quasi-static results in
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agreement with elastic foam results in Barden-
hagen et al. 2005. In contrast, dynamic effects,
as evidenced by oscillations at early times, were
apparent of the elastic-plastic simulations (see
50 m/s curve in Fig. 4 below). These increased
dynamics effects were probably due to slower
plastic wave speeds (Kolsky 1963).

Radial compression in softwood

Figure 4 shows the results of radial compres-
sion at various speeds for the specimen in Fig.
2B using elastic-plastic cell-wall properties with
oy = 500 MPa. Dynamic effects were large for
loading speed of 50 m/s (1.88% of wave speed)
but were greatly reduced for loading speed of 25
m/s (0.94% of wave speed). For all speeds less
that 10 m/s (0.38% of wave speed), dynamic
effects were absent and the results were judged
to be representative of quasi-static loading. The
slowest loading speed of 1 m/s showed differ-
ences at high compression strain, but these may
be a consequence of round-off error because
those calculations required 5 to 10 times more
time steps to reach high compression strain. All
subsequent calculations used a loading rate of 10
m/s (0.38% of wave speed) to obtain results as
quickly as possible but still within the range of
quasi-static loading.

Figure 5 shows the results of radial compres-
sion at 10 m/s using elastic-plastic cell-wall
properties with o, = 100 MPa, 500 MPa, or
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Fic. 4. MPM simulations of radial compression in lob-
lolly pine using elastic-plastic cell properties (o, = 500
MPa) as a function of the loading rate.
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Fic. 5. MPM simulations of radial compression in lob-
lolly pine using elastic-plastic cell properties with various
yield stresses and for linear-elastic cell-wall properties. The
linear-elastic results and o, = 2500 MPa results and nearly
identical and thus indistinguishable in the figure. The dotted
horizontal lines are predictions of elastic buckling stress and
plastic buckling stress (for o, = 500 MPa or 100 MPa
using foam theory. “Latewood Yielding” indicates onset of
yielding in latewood cells.

2500 MPa, and for linear elastic cell-wall prop-
erties. There were few differences between the
elastic results and the o, = 2500 MPa results
(the two curves superpose in Fig. 5) indicating
that a yield stress of 2500 MPa was sufficiently
high such that cell collapse was by elastic, rather
than plastic buckling. For yield stress lower than
about 1000 MPa, the dominant failure mode was
plastic collapse. The stress at which plastic col-
lapse occurred was approximately proportional
to yield stress.

To show wood densification, Fig. 6 has snap-
shots of the geometry at various compressive
strains for a yield stress of o, = 500 MPa. At ¢
= 0.048, the stress-strain curve was at the onset
of plastic collapse and plastic energy can be seen
within the earlywood zone with more yielding
closer to the loading piston. As observed experi-
mentally, cell collapse in radial loading occurs
in earlywood (Bodig 1965; Tabarsa and Chui
2000) at cell walls under the highest stress (i.e.,
the thinnest cell walls in load-bearing paths).
The results at ¢ = 0.168 were at the beginning
of densification. All yielding was still confined
to the earlywood zone. At ¢ = 0.24, there was a
secondary yield point (see “Latewood Yielding”
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humps in curves in Fig. 5) corresponding to the
onset of plastic collapse in the latewood zone.
Figure 6 shows plastic yielding spreading
throughout the latewood at ¢ = 0.288 (slightly
beyond the ¢ = 0.24 hump). Finally, higher
strains (¢ = 0.457 and 0.600) showed continued
yielding and densification. Thus MPM simula-
tions are capable of tracking the structure of
wood from plastic collapse and well into the
densification zone. Although no microscopy of
the densification of this specific specimen was
available, the structure of collapsed and densi-
fied wood was very similar to images of com-
pressed wood (Kultikova 1999).

Tangential compression in softwood

The compression simulations were repeated
for tangential compression by loading in the ver-
tical direction. The results as a function of rate
were analogous to the radial results (see Fig. 4)
and are not repeated here. Figure 7 shows the
results of tangential compression at 10 m/s using
elastic-plastic cell-wall properties with o, =
100 MPa, 500 MPa, or 2500 MPa, and for linear
elastic cell-wall properties. There were few dif-
ferences between the elastic results and the o,
= 2500 MPa results, indicating that that yield
stress was sufficiently high that deformation was
dominated by elastic processes. For yield
stresses lower than about 1000 MPa, the domi-
nant failure modes were plastic collapse fol-
lowed by densification. The plastic collapse oc-
curred throughout the specimen. When com-
pared to radial loading (see radial results for o
= 500 MPa repeated from Fig. 5 for compari-
son), the plastic collapse in tangential loading
required higher loads because it involved thick-
walled latewood cells rather then being confined
to thin-walled, earlywood cells. Furthermore,
the second plastic collapse in the radial compres-
sion at a strain of 0.24 caused by the onset of
latewood plastic collapse is not seen in tangen-
tial compression because that mechanism was
not present. Once both earlywood and latewood
plastic collapse has occurred (for strains above
about 0.26), the stresses during remaining den-
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Fic. 6. Wood structure during radial compression as a function of applied compressive strain, €. A. ¢ = 0.048. B. ¢
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= 0.600. The colors indicate cumulative plastic energy dissipation with blue

zones indicating zero plastic work to red zones and lighter colors with high plastic energy.

sification were similar for radial and tangential
compression. These results agree with experi-
mental observations on softwood with distinct
earlywood and latewood zones (Bodig 1963).
The interpretation is that the latewood zones act
as columns of reinforcement during tangential
loading that increase both stiffness and plastic
collapse stress (Bodig 1963).

Figure 8 has snapshots of tangential densifi-
cation at various compressive strains for a yield

stress of o, = 500 MPa. In contrast to radial
compression, plastic collapse occurs simulta-
neously in earlywood and latewood as shown
when ¢ = 0.186. At higher strains there is con-
tinued densification. In addition, the latewood
material moves into the earlywood zone, thus
compressing that zone in two directions. Again,
MPM simulations are capable of tracking the
structure of wood from plastic collapse through
to densification.
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Fic. 7. MPM simulations of tangential compression in
loblolly pine using elastic-plastic cell properties with vari-
ous yield stresses and for linear-elastic cell-wall properties.
The dotted horizontal lines are predictions of plastic buck-
ling using foam theory.

Radial and tangential compression
in hardwood

Hardwoods differ from softwoods in their
anatomy and therefore have differences in com-
pression properties. For example, hardwoods
have wider ray cells in the radial direction
(Haygreen and Bowyer 1996) that can reinforce
radial compression. Hardwoods also have vessel
elements or pores (Haygreen and Bowyer 1996)
that should influence compression and densifica-
tion. To investigate the effects of hardwood
anatomy, compression simulations were done on
mature yellow poplar (Liriodendron tulipifera)—
a diffuse porous hardwood. Figure 9A shows an
SEM micrograph of uncompressed yellow pop-
lar (Kultikova 1999). The resolution of the im-
age, as obtained, was 497 x 325 pixels and it
images an area of 0.802 x 0.524 mm. This image
was converted to a bitmap file and then mapped
to a background grid for the image of 150 x 98
elements. This background grid provides for
300 x 196 = 58,800 potential locations for par-
ticles. The MPM model had 33,084 particles for
a bulk density of 844 kg/m® (p/p,, = 0.563)
compared to the reported density of 610 kg/m?
(Kultikova 1999). Higher resolution images with
attention to surface preparation and digitization
may be needed for more accurate MPM model
construction.
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The MPM model for the specimen in Fig. 9A
was subjected to radial and tangential compres-
sion at 10 m/s using elastic-plastic cell-wall
properties with o, = 500 MPa. Figures 9B (ra-
dial loading) and 9C (tangential loading) illus-
trate load-carrying paths or magnitude of the
stress in the direction of loading. Clearly the ray
cells bear load that reinforced this hardwood
during radial compression. There were fewer
and less organized load-bearing paths during
tangential loading. Figure 10 shows stress-strain
curves for radial and tangential compression. In
this hardwood, the radial direction was stiffer
and required higher loads for buckling than the
tangential direction. These results are the reverse
of the softwood results. Experimental observa-
tions typically show that softwoods are stiffer
and have higher plateau stress in the tangen-
tial direction while hardwoods are similar in the
tangential and radial directions or are stiffer with
higher plateau stress in radial compres-
sion (Bodig 1965). MPM simulations agree
with these observations with Fig. 9B provid-
ing visualization of reinforcement by the ray
cells.

Larger, lower density specimen

One final, and largest calculation, was done
for ponderosa pine (Pinus ponderosa) in tangen-
tial loading. An image was scanned from a fig-
ure in Haygreen and Bowyer 1996. The un-
strained, digitized MPM model is shown in Fig.
11A. The image covers an area approximately
1.00 x 1.29 mm. The mesh behind the image had
200 x 258 elements or 400 x 516 = 206,400
particle locations. The MPM model had 76,242
particles for a bulk density of 554 kg/m?® (p/p,,
= 0.369) that is closer to the density of many
woods and lower than in other calculations. An
MPM simulation was done for loading in the
tangential direction at 10 m/s and having o, =
500 MPa. Figure 11B shows the specimen at &
= 0.186, which is near the middle of the post-
buckling, plateau region. The initial damage was
concentrated around the resin canal near the bot-
tom of the specimen. Many regions of early-
wood cells, particularly those with thin walls,
have collapsed. The latewood zone has under-
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Fic. 8. Wood structure during tangential compression
as a function of applied compressive strain, €. A. & = 0.146.
B. e = 0.297. C. ¢ = 0.446. D. ¢ = 0.595. The colors
indicate cumulative plastic energy dissipation with blue
zones indicating zero plastic work to red zones and lighter
colors with high plastic energy.

gone macroscopic buckling. The compressive
stress-strain curve for this specimen is shown in
Fig. 10. The results were similar to other results
except at lower stresses due to the lower density.

Mechanical properties

Figure 1 shows key features of transverse
compression in wood including the initial elastic

Fic. 9. A. SEM micrograph of uncompressed mature
yellow poplar (from Kultikova 1999). The micrograph im-
ages an area of 0.802 x 0.524 mm. B. MPM results in radial
compression at € = 0.150. C. MPM results in tangential
compression at € = 0.153. The colors indicate stress in the
direction of loading with green and lighter colors indicating
more compression.

modulus (slope of the initial linear portion of the
curve), onset of yielding by plastic (or elastic)
buckling at a stress o, (and strain g,), and start
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Fic. 10. MPM simulations of radial and tangential com-
pression of yellow poplar and for tangential compression of
ponderosa pine. The calculations used elastic-plastic cell
properties with o, = 500 MPa. The dotted horizontal lines
are predictions of plastic buckling using foam theory.

of densification at defined stress ¢, (and strain
g,). Table 1 has the results of extracting the key
features from each of the simulation results as a
function of the assumed yield stress or for an
elastic material (% yield stress). For loblolly
pine, the initial modulus was slightly higher in
tangential loading compared to radial loading
due to reinforcement effect of the latewood re-
gion during tangential loading. The separate ear-
lywood and latewood moduli (E,,,,, and E,,)
were estimated by equating the radial and tan-
gential moduli to transverse (series) and axial
(parallel) moduli of a unidirectional composite
(where the latewood plays the role of the fiber
reinforcement) (Jones 1975). The results are

1 1 Veur Va e
= =y @)

Eradial 2740 Eearly Elate
Etangential = 3252 = Vearl early + VlateElate (5)
where V,,,,, and V,,,, are volume fractions of the

early and latewood regions. Evaluating V,,,,,, =
0.473 and V,,,, = 0.527 (see Fig. 2) and solving
gives E,,,;,, = 1919 MPa and E,,, = 4449
MPa. The situation for yellow-poplar is re-
versed. For that hardwood, the wider ray cells
reinforced the radial loading resulting in slightly

higher modulus in radial loading than in tangen-
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pine. A. The unstrained state. B. After tangential compres-
sion to ¢ = 0.186.

Wood structure in an MPM model of ponderosa
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TaBLE 1. Evaluation of initial modulus (E), stress and strain for the onset of buckling (o, and &) and the stress and strain
for the onset of densification (o4 and &) from the MPM simulations as a function of assumed yield stress (% yield stress
indicates elastic material). The “Elastic Loading” region (see Fig. 1) and the buckling and densification stresses and
strains are illustrated in Fig. 1; the modulus is the slope of the “Elastic Loading” region.

Species Direction oy (MPa) E (MPa) o, (MPa) g, o, (MPa) &y
Loblolly pine Radial 100 2740 16.7 0.43% 40.0 24.8%
Loblolly pine Radial 500 2740 54.2 1.80% 161.4 27.1%
Loblolly pine Radial 2500 2740 90.7 3.13% 238.4 27.7%
Loblolly pine Radial o0 2740 92.6 3.20% 213.4 28.1%
Loblolly pine Tangential 100 3252 39.1 1.32% 79.9 29.9%
Loblolly pine Tangential 500 3252 173.6 5.45% 330.4 29.5%
Loblolly pine Tangential 2500 3252 — — — —
Loblolly pine Tangential o 3252 — — — —
Yellow poplar Radial 500 3731 102.1 2.75% 2211 31.4%
Yellow poplar Tangential 500 2479 71.4 2.75% 192.4 30.7%
Ponderosa pine Tangential 500 648 15.2 2.47% 63.8 36.2%

tial loading. The modulus for ponderosa pine
was lower due to its lower density.

The onset of buckling scales with o, for o, =
100 and o, = 500 MPa indicating that the pre-
dominant failure mechanism was by plastic
buckling of cell walls. Plots of plastic energy
(see Figs. 6 and 8) confirm this observation. The
buckling load for ponderosa pine was lower be-
cause the lower density resulted in thinner cell
walls that buckled at lower loads. The buckling
for o, = 2500 MPa and for elastic properties
were indistinguishable for radial compression

Comparison to foam theory

Gibson et al. 1982, calculated the initial
modulus and the elastic and plastic buckling
stresses for a 2D foam modeled as a regular
array of hexagonal cells as a function of ¢, /, and
0 (see Fig. 1). For a symmetric hexagonal array
(6 = 30°), the results are

pe 4E,, <5>3
_\/5 .

o), (elastic) = —

and difficult to detect for tangential loading. The 10

initiation of failure in these two simulations was N

thus by elastic buckling. Observations of real o, (plastic) = %j’ <f) (6)
wood (Tabarsa 1999; Tabarsa and Chui 2000, 3 \!

2001) suggest that plastic buckling is the pre-
dominant failure mechanism; thus the lower
yield stress results are more representative of
actual wood compression.

The method used to identify densification
strain (see Fig. 1) gave results that were inde-
pendent of loading direction and increased with
the total free-volume in the undeformed state.
The loblolly pine simulation had 39.3% free vol-
ume and densification began at an average &, =
27.5%. The yellow-poplar simulation had
slightly more free volume (43.7%) and a slightly
higher average ¢, = 31.5%. Finally, the lowest
density ponderosa pine had 63.1% free volume
and the highest e, = 36.2%.

For a regular hexagonal array, Gibson et al.
1982, further calculated the key thickness ratio
to be

(7

This theory was derived for low-density foams
(p/p,,, ¥/l << 1) because the deformation was
assumed to be predominantly bending of wall
elements and the thickness ratio assumes thin
walls. Because the calculations in this paper, and
most real wood, have moderate density, it is use-
ful to generalize the thickness ratio calculation
to one that works at any foam density:
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)

Comparison of Eq. (8) to Eq. (7) shows that the
low-density result is within 5% for p/p,, < 0.2
but is off by more the 20% for p/p,, > 0.64. The
calculations in this paper used the more accurate
result in Eq. (8). Note that although this ap-
proach improved the calculation of #/, the me-
chanical property equations are still based on
low-density foams and will lose accuracy as #//
increases. Nevertheless, it is useful to compare
predictions to simulations to assess both the
simulations and the accuracy of foam theory.
Foam theory calculations, with MPM results
in parentheses, are given in Table 2. All foam
theory calculations are consistent with MPM
simulations indicating the numerical modeling
derived reasonable results. The MPM results,
however, are expected to be more accurate be-
cause they model the entire structure and make
no approximations about deformation mecha-
nisms or density. All foam theory moduli are too
high except for radial loading of loblolly pine.
The tangential modulus has the largest error,
which is due to the assumption of deformation
only by bending. Bending deformation scales as
the cube of the thickness of the walls (Gibson et
al. 1982). As the walls get thicker, the bending
stiffness gets large and the calculation needs to
account for axial deformation as well. The error
in the foam theory is a consequence of ignoring
this axial deformation. The foam theory modu-
lus in the radial direction is too low because it
fails to account for files of radial cells that pro-
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vide a straight path for baring axial load (see
Fig. 2). In contrast, the cells in a regular hex-
agonal array alternate and disrupt radial load-
bearing paths. The load-bearing paths in loblolly
pine can be confirmed in the MPM results by
plotting stress in the loading direction prior to
buckling.

The foam theory elastic and plastic buckling
loads are shown as dotted horizontal lines in
Figs. 4, 7, and 10. In general, foam theory over-
estimates the stress at the onset of plastic buck-
ling. In real wood, the initiation of buckling will
occur at imperfections or where the cell walls
are thin and the stress is high. Foam theory,
however, assumes a regular array and can not
model variations in wood anatomy. The one ex-
ception was for radial loading of loblolly pine at
low yield stress where the foam theory predic-
tion was lower than numerical results. This
simulation, however, had very little elastic de-
formation, which made it difficult to precisely
determine the onset of buckling. The trends of
all other results are more representative and sug-
gest that failure modeling of wood that is
influenced by wood anatomy requires full mod-
eling of real-wood morphology. Models based
on idealized structures and regular arrays are of
limited use.

Limitations

MPM simulations of deformation in wood
were found to be a useful tool for numerical
modeling of realistic wood structures. This sec-
tion discusses some limitations of the results.
The calculations were not small. Typical calcu-

TaBLE 2.  Comparison of foam theory predictions for initial modulus (E) and for elastic and plastic buckling stress (o)
to MPM results as a function of assumed yield stress. The numbers are foam theory calculations, the numbers in

parentheses are the MPM results.

Species Direction/wood oy (MPa) E (MPa) o, (MPa) (elastic) o, (MPa) (plastic)
Loblolly pine Radial/early 100 1510 (1919) 144 (-) 11.8 (16.7)
Loblolly pine Radial/early 500 1510 (1919) 144 (-) 58.8 (54.2)
Loblolly pine Radial/early 2500 1510 (1919) 144 (90.7) 294 (-)
Loblolly pine Radial/late 100 20390 (4449) 1942 (-) 66.7 (39.1)
Loblolly pine Radial/late 500 20390 (4449) 1942 (-) 333.3(173.6)
Loblolly pine Radial/late 2500 20390 (4449) 1942 (-) 1667 (-)
Yellow poplar Average/bulk 500 4965 (3105) 473 (-) 130 (86.8)
Ponderosa pine Tangential/bulk 500 1111 (648) 106 (-) 479 (15.2)
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lations to 60% compression strain required 4 to
100 hours (depending on processor speed and
load). The longest calculations (for loading at 1
m/s) took 13 days. But, these calculations were
done with explicit, serial code. MPM is readily
amenable to an implicit algorithm (Guilkey and
Weiss 2003), which would permit longer time
steps, and to massive parallelization (Parker
2002). It is expected the calculations could be
sped up by an factor at least 10,000. A factor of
100 is already available as demonstrated by 3D
foam calculations with 8,000,000 particles on 48
processors completing in times similar to the
calculations in this paper (Brydon and Barden-
hagen 2005). An increase in efficiency or a re-
striction to small strains could be exploited for
some combination of larger calculations, slower
loading speeds, or extension into realistic, three-
dimensional wood structures.

Most calculations had MPM models with den-
sities higher than typical wood. As a conse-
quence, the stiffness and failure loads are higher
than typical experimental results. For direct
comparison between MPM results and experi-
ments, it will be important to match the density
of the wood to the density of the numerical cal-
culations. More realistic density is easily mod-
eled by using high-resolution microscopy with
properly prepared surfaces coupled with careful
mapping of the intensity of the images into cell-
wall material. There are no problems associated
with MPM modeling at any density.

Finally, there are three areas where MPM
code development would increase the realism
and accuracy of the simulations. First, these cal-
culations used conventional MPM methods. The
recently derived generalized MPM (GIMP) pro-
vides tools for modifying shape functions that
improves accuracy at large deformations
(Bardenhagen and Kober 2004). Second, al-
though MPM automatically handles contact be-
tween cell walls and permits calculations to high
densification, the physics of this automatic con-
tact is by stick boundary conditions. These con-
ditions are probably adequate for modeling of
compression, but might lack realism for future
work such as numerical modeling of the me-
chanical properties wood after densification
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(Kultikova 1999). Alternate contact methods in
MPM are available for modeling frictional slid-
ing between different objects (Bardenhagen et
al. 2000, 2001) or across crack surfaces (Nairn
2003), but contact between cell walls in wood or
foam 1is self contact within the same object.
Implementing self contact would be a valuable
addition to MPM. Third, the simulations might
be improved with altered boundary conditions.
The simulations here used a rigid wall on both
sides of the specimen. This wall confined the
specimen and gave very stable results. The re-
sults are appropriate for compression of speci-
mens restrained on the edges. Altered boundary
conditions, such as flexible walls or wall prop-
erties based on bulk specimen properties, might
be important for analysis of other loading con-
figurations.

CONCLUSIONS AND FUTURE WORK

A major drawback to numerical modeling of
wood in the past has been the ability of various
methods to deal with actual wood structures.
This paper has demonstrated that the material
point method (MPM) can handle large-scale,
morphology-based models of real wood. It is
easy to discretize a micrograph of wood into an
MPM model. Once discretized the MPM calcu-
lations are very stable, can be carried out to large
deformations, can include elastic-plastic proper-
ties, and can automatically model contact be-
tween cell walls. This capability was used here
to study transverse compression in wood. It was
possible to identify key effects of wood anatomy
that explain differences between radial loading
and tangential loading and between wood spe-
cies. The results were compared to foam theory.
Although foam theory captures some key defor-
mation mechanisms in transverse properties of
wood, it is not capable of analyzing more com-
plex phenomena associated with variable wood
anatomy.

Some potential applications for MPM model-
ing of realistic wood structures are:

® Direct comparison of experimental observa-
tions of failure in wood coupled with MPM
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modeling of the morphology of the specimen:
MPM modeling could be used to interpret ex-
perimental results, to extract material proper-
ties of cell walls, and to develop new failure
models for wood. This work is not limited to
compression loading; it could model any
loading conditions.

® Extension to realistic three-dimension models
of wood: X-ray tomography methods should
be able to resolve slices of wood specimens
(Smith et al. 2001). Each slice could be dig-
itized into a plane of the model analogous to
the methods used here for a single 2D image.
A collection of slices would automatically be
assembled into a valid 3D model. Unlike FEA
meshes, where connectivity between slices
would be difficult, assignment of material
points within a 3D grid from tomography data
would be sufficient to fully define the 3D
structure (Brydon et al. 2005). 3D models
could be used to study the effect of three-
dimensional variations in wood anatomy.

® Modeling of the processing of wood-based
composites: One area of MPM research is de-
veloping capabilities for simulations with
fluid-structure interactions (Guilkey et al.
2003). This capability could be used to model
processing of wood-based composites includ-
ing interactions between adhesives and wood
and compression of wood phases within the
composite. MPM modeling can easily accom-
modate moisture- and temperature-dependent
constitutive laws for the wood.

® Modeling of drying processes in wood: An-
other MPM development has demonstrated
coupled dynamic mechanics and diffusion
calculations (Nairn 2005b). This capability
could be used to study the effect of 2D and 3D
variations in wood anatomy on the wood-
drying process. Coupling the drying process
to mechanics calculations and MPM fracture
algorithms (Nairn 2003) might be able to
model cracking during drying.
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