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ABSTRACT 

An analytical method that utilizes information generated through proofloading to estimate the 
correlation between lumber strength properties is reviewed. A computer simulation was conducted to 
determine the effects of sample size and proofload level and also the degree of true correlation between 
lumber properties on the estimates of the correlation coefficient. Results indicate that reasonable 
estimates of the correlation coefficient can be obtained using sample sizes of 100 or more with a 
minimum proofload that would be expected to break 40% (proofload level = 0.40) of the specimens 
tested. Additional studies are suggested, however, before the technique is used. 

Keywords: Correlation coefficient, concomitance, bending strength, tensile strength, computer sim- 
ulation. 

INTRODUCTION 

Studies by Suddarth et al. (1978) have shown that the degree of correlation 
between tension and bending strength may have a significant effect on the load- 
carrying capacity and reliability of structural systems such as the metal plate wood 
truss. This cofunctioning, or concomitance, of properties in a piece of lumber has 
been the subject of a number of investigations concerning the strength of wood 
subject to combined stresses (Newlin and Trayer 1956; Norris 1962; Senft and 
Suddarth 1970; Zahn 1982). 

Galligan et al. (1979) suggested an approach using a novel use of proofloading 
to estimate the correlation or degree of concomitance between two lumber strength 
properties. This approach has already been shown to be useful but not without 
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TABLE I .  Summary ~yf 'esf~rnufes qyf'the correlation qf're.s~duals, i , in the regression rnodel bused on 
fhc 11.o1.X c!f'(;allrgun e f  ul. (1979). 

Approximate 
Est~maled 95% 

Surv~vor Proof- restdual confidence 
Proofload failure load correlation interval 

fa~lure mode mode level 9) for 

Southern pine 
No. -7 KD Tension Bending 1,657 0.4 (-0.2, 0.7) 

Soi~thern Pine 
No. 2 KD Compression Bending 3,544 0 . 3  (-0.5, 0.1) 

Hcni-Fir 1.5E MSR Tension Bending 2,857 0.9 Above 0.75 
or  above 

Hem-Fir 1.5E MSR Compression Bending 4.038 0.6 (0.3, 0.8) 

some limitations (Galligan et al. 1979; Tichy 198 1 ; Johnson and Galligan 1982). 
Applying this procedure in an experimental design has sometimes resulted in 
correlation estimates with extremely wide confidence limits (Table 1). However. 
before the technique can be used efficiently in the design or analysis of concom- 
itance studies, we need to know how the experimental parameters influence the 
accuracy of the estimates of the correlation coefficient. 

This paper reports the results of computer simulations of the effect of sample 
size, proofload level, and degree of true correlation on the accuracy of the proofload 
level, and degree of true correlation on the accuracy of the proofloading procedure 
in estimating the true correlation between two lumber strength properties. The 
simulations were limited to an unconditional form of the concomitant equation 
in which correlation coefficient estimates depend only on the strength estimates 
and not on estimates of nondestructive properties such as knot size and modulus 
of elasticity (MOE). 

BACKGROUND 

Suppose we want to estimate the degree of correlation between two strength 
properties such as bending and tensile strength. Also suppose that predictor vari- 
ables such as knot size or MOE are not available. First, we obtain a sample of N 
specimens, and proofload each specimen in bending to a stress level L. If a 
specimen does not fail in bending at this level, then it is tested to failure in tension. 
Under this scheme we observe either 

b, = bending strength if bJ 5 L 

t, = tensile strength if bJ > L 

for each of N specimens. 
Let F denote j values where bJ is observed. Assuming a bivariate normal dis- 

tribution for (b,, t,), we obtain the likelihood 
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where 

= IL - pb - ~ ( ~ b l ~ t ) ( ~ j  - ~ t ) l / ~ b m  
pb and ab2 = the mean and variance of the samples failed in bending 
p, and o,Z = the mean and variance of the samples failed in tension 

p = the correlation between b and t 

Given values of p,, a,, p,, and a,, the maximum likelihood estimate, f i ,  can be 
obtained by minimizing minus 2 times the natural logarithm of the likelihood 
given in Eq. (1). 

where c, is a constant. This minimization involves using a search procedure. 
Given values of p,,, p,, ab, and a,, only the last term of Eq. (2) changes for different 
p values. 

Note from Eq. (2) that the estimate i, of p depends upon where our proofloads 
and observations are in a standard normal distribution and not on particular 
values of pb, p,, ab, and a,. Even a, is expressible as a standardized variable and 
standardized load. 

Theoretically, estimates for all the parameters could be obtained by maximizing 
the likelihood over all unknown parameters. However, in practice, this proved 
impractical. For our simulations, we treated all parameters except p as known. 
This is quite realistic in the present application because the results of a relatively 
large sample of specimens broken in tension or in bending are available (Galligan 
et al. 1979). The sample means and standard deviations then provide accurate 
estimated values for p,,. p,, a,,, and a,. 

THE SIMULATION 

To study the proofload procedure under ideal conditions, we conducted the 
simulation using a normal distribution where p was the only unknown parameter, 
and the true values of the sample means and standard deviations were used. 

We started by generating trivariate normal observations' 

' Recall that statistical notation for a normal distribution of p dimension is N,{p, Xi when p is the 
number of dimensions, is a vector of means, and X is the variance-covariance matrix. The symbol 
- means "is distributed as." 
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where the parameter values (see Appendix) except pbt were based on the results 
of other rather extensive studies. As noted above, if the values of pb, p,, ab, 0, are 
known, the distribution of the estimate of correlation, j, does not depend on their 
particular values. 

Data sets with either 20, 40, 60, 80, 100, 200, or 300 samples were generated 
according to Eq. (3) using the GGNSM subroutine in the IMSL package (IMSL 
1979). In many laboratory situations a sample size of N = 300 would probably 
represent a practical extreme for estimating lumber properties. Small sample sizes 
were included in the analysis as a reference base for those who want to use the 
procedure with a limited number of samples. 

The proofload level and true bending-tension correlation, p, were varied in a 
factorial arrangement of levels. The proofloads were selected percentiles of the 
bending strength distribution corresponding to the expected proportions 0.2, 0.4, 
0.5, or 0.6 of specimens broken in bending. A range of true correlation, p = 0.2, 
0.6, 0.8, and 0.9, was selected because, a priori, we expected a high positive 
correlation between strength properties. For N = 100 and N = 300, additional 
proofloads of 0.7,0.8, and 0.9 were considered to better understand the procedures 
at high proofloads. 

For each set of N observations generated, the value of p which minimized Eq. 
(2) was obtained. A search procedure, based on the algorithm of Davies, Swann, 
and Campey (Adby and Dempster 1974) was used for this purpose. Convergence 
of the search was defined as having occurred when successive iterations of the 
procedure produced estimated minimums of Eq. (2) occurring at values of p that 
varied by less than 0.0000 1. Calculations were performed in double precision. 
For larger sample sizes no problem arose with the search technique because 
numerous examples showed -2 ln(L) to be a smooth function and to have no 
local minima. For small samples, however, there were some cases in which the 
value of -2 In(L) had two minima in the region - 1 to 1 for p. Thus, the starting 
point of the search could determine to which minimum the procedure converged. 
Usually one point of convergence was for a value of j less than zero and the other 
for b greater than zero, with one of these local systems having a much smaller 
value of -2 ln(L) than the other. Because the values of -2 In(L) descend slowly 
for different L values to each minimum, convergence to the wrong minimum was 
easily eliminated by using a grid search for p and using the resulting best i, value 
in a starting point for the more extensive search described earlier. 

We did restrict j to the range -0.99 to 0.99 to avoid numerical problems when 
evaluating the normal integral. The value of a, in the last term in Eq. (2) was 
sometimes greater than los without this restriction. We do not believe that this 
minor truncation of the range of $ appreciably affects the properties reported. 

For each sample size and for each of the 4 x 4 = 16 combinations of proofload 
level and p, a total of 500 data sets were generated. Thus, 500 i, values were 
calculated for each situation. Several summary statistics were calculated from 
each collection of 500 j values. 
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Relative 
Frequency 

FIG;. 1. Typical 
0.5). 

frequency distribution (sample size = 300, true correlation = 0.6, proofload level = 

sample mean: 

sample standard deviation: [z 0, - b)'/soo I' 
bias: 

- 
; - P  
500 

mean square error (MSE): (i,i - pI2 

, = I  500 
500 

average absolute error (AAE): l i i  - P I  
500 

sample standard deviation 
coefficient of variation (COV): 

sample mean 

For each set of 500 estimates, a frequency distribution was also produced. A 
typical example is given in Fig. 1. Each cell extends a distance 0.025 from the 
printed class mark. From this and the other frequency distributions of the 500 i, 
values, it appears that the estimator is nearly normally distributed for the cases 
studied where N was at least 100. 
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TABLE 2. Esf~tnated corrc~lation between destructive fests .I  Sample size = 20. Based on 500 trials. 

Proofload level 
Truc (proportion of populat~on) 

corre- 
lat~on Measurement 0.2 0.4 0.5 0.6 

0.2 Mcan 0.1796 
S D 2  0.5831 
Bias 0 . 0 2 0 4  
MSE3 0.3405 
AAE4 0.4958 

0.6 Mean 
S D 
Bias 
MSE 
AAE 

0.8 Mcan 
S D  
Bias 
MSE 
AAE 

0.9 Mean 
S D  
Bias 
MSE 
AAE 

I Convergence to a boundary polnt occurred frequently 
' SD = standard dev~atlon. 
' MSE = mcan squared error 
' AAE = average absolute error 

RESULTS 

Tables 2-8 summarize the results of the simulation in terms of the five summary 
statistics: sample mean, standard deviation, bias, MSE, and AAE. Of the five 
statistics, MSE is especially useful in spotting trends in the tables. From these 
tables and the computer runs on which they are based, a number of general patterns 
emerge. 

1. Convergence problems existed for the small sample sizes of N = 20 and 
N = 40. Convergence to a boundary point occurred with great regularity. 
This problem rapidly disappeared as the sample size increased. For N = 60 
there was little problem, and by N = 80 the occurrences had disappeared. 

2. The bias, if any, of the maximum likelihood estimator, i ,  has no discernible 
pattern of overestimating or underestimating p. The bias is usually larger 
for the extreme proofload levels (0.2 and 0.9). This difference in the effect 
of proofload level decreases as N increases so that by N = 100 it has virtually 
disappeared. 

3. As can be seen from the values of MSE and AAE, no one proofload level is 
best. This is because the minimum value does not occur at the same proofload 
level for all correlations. 

4. A proofload that is expected to break only 0.2 (or 20%) of the samples is 
never best, and the variability of is much larger at this proofload. For small 
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TABLE 3. Estimated correlation between destructive tests.' Sample size = 40. Based on 500 trials. 

Proofload level 
True (proport~on of  population) 

corre- 
lat~on Measurement 0.2 0.4 0.5 0.6 

0.2 Mean 0.1787 0.1935 0.203 1 0.1945 
SD2 0.4668 0.3286 0.2989 0.2752 
Bias -0.0213 -0.0065 0.003 1 0 . 0 0 5 5  
MSE3 0.2 184 0.1080 0.0894 0.0758 
AAE4 0.3792 0.2657 0.2361 0.2198 

0.6 Mean 0.5303 0.6 174 0.59 18 0.6146 
S D 0.40 12 0.2045 0.2090 0.1844 
Bias 0 . 0 6 9 7  0.01 74 0 . 0 0 8 2  0.0146 
MSE 0.1658 0.0421 0.0437 0.0342 
AAE 0.2860 0.1608 0.1596 0.1474 

0.8 Mean 0.7485 0.7979 0.8070 0.8055 
S D  0.31 17 0.1393 0.1250 0.1165 
Bias -0.05 15 0 . 0 0 2  1 0.0070 0.0055 
MSE 0.0998 0.0 194 0.0157 0.0 136 
AAE 0.1749 0.1063 0.0950 0.0906 

0.9 Mean 0.89 12 0.9017 0.9080 0.9024 
S D  0.1516 0.076 1 0.07 19 0.07 17 
Bias -0.0088 0.00 17 0.0080 0.0024 
MSE 0.023 1 0.0058 0.0052 0.005 1 
AAE 0.0825 0.0601 0.0583 0.0568 

I Convergence to a boundary polnt occurred frequently. 
' SD = standard dewation. 
' MSF = mean squared error 
' AAE = average absolute error. 

TABLE 4 Ect~muted correlation between destructive tests. Sample stze = 60. Based on 500 tnals. 

Proofload level 
True (proportion of population) 
corrc- 
lat~on Measurement 0.2 0.4 0.5 0.6 
- - - -- -- -- 

0.2 Mean 0.1430 0.1998 0.1959 
SD' 0.3986 0.26 16 0.2229 
Bias 0 . 0 5 7 0  -0.0002 -0.004 1 
MSE2 0.1621 0.0684 0.0497 
AAE3 0.3237 0.2146 0.1776 

0.6 Mean 0.5582 0.5939 0.5993 
S D 0.2986 0.1789 0.1666 
Bias -0.04 18 0 . 0 0 6  1 0 . 0 0 0 7  
MSE 0.0909 0.032 1 0.0278 
AAE 0.2 138 0.1380 0.1318 

0.8 Mean 0.7793 0.7976 0.7997 
S D  0.1974 0.1042 0.0960 
Bias -0.0207 -0.0024 -0.0003 
MSE 0.0394 0.0 109 0.0092 
AAE 0.1 197 0.0822 0.0755 

0.9 Mean 0.90 13 0.9004 0.9048 
S D 0.08 1 1  0.0622 0.0555 
Bias 0.00 13 0.0004 0.0048 
MSE 0.0066 0.0039 0.003 1 
AAE 0.06 17 0.0498 0.0449 

I SD - standard dev~at~on.  
MSE = mean squared error. 

' AAE = average absolute error. 
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TABLE 5. Estimated correlation between destructive tesrs. Sarrrple size = 80. Based on 500 trials 

Proofload level 
True (proportion of  populat~on) 

corre- 
lat~on Measurement 0.2 0.4 0.5 0.6 

0.2 Mean  0.1951 0.2025 0.2046 0.1989 
S D '  0.3278 0.2 182 0.1905 0.1899 
Bias -0.0049 0.0025 0.0046 -0.001 1 
MSEL 0.1075 0.0476 0.0363 0.036 1 
A A E 3  0.2621 0.1764 0.1484 0.1525 

0.6 Mean  0.5768 0.5952 0.6038 0.6096 
S D  0.2499 0.1484 0.1395 0.1289 
Bias -0.0232 -0.0048 0.0038 0.0096 
M S E  0.0630 0.0220 0.0195 0.0 167 
A A E  0.1819 0.1155 0.1 129 0.1052 

0.8 Mean  0.7941 0.7977 0.8082 0.8023 
S D  0.1281 0.0895 0.0767 0.0856 
Bias -0.0059 -0.0023 0.0082 0.0023 
M S E  0.0 164 0.0080 0.0060 0.0073 
A A E  0.0944 0.0709 0.06 13 0.0690 

0.9 M e a n  0.9034 0.90 13 0.9029 0.9023 
S D  0.0667 0.0521 0.0485 0.0498 
Bias 0.0034 0.00 13 0.0029 0.0023 
M S E  0.0045 0.0027 0.0024 0.0025 
A A E  0.0529 0.04 16 0.0390 0.0399 

I SII = standard dev~ation. 
' MSE = mean squared error. 
' AAE = average absolute error. 

TABLE 6. Estimated correlation between destructive tests. Sample size = 100. Based on 500 trials. 

True Proofload level (proport~on of population) 
corre- Measure- 
lat~on ment 0.2 0.4 0.5 0.6 0.7 0.8 0.9 

0.2 Mean  0.1946 0.1912 0.0283 0.2015 0.2000 0.2002 0.1994 
S D 1  0.3079 0.1875 0.1723 0.1709 0.1593 0.1566 0.1931 
Bias 0 . 0 0 5 4  0.0088 0.0083 0.00 15 0.0000 0.0002 -0.0006 
MSE' 0.0948 0.0353 0.0298 0.0292 0.0254 0.0245 0.0373 
AAE'  0.2465 0.1506 0.1380 0.1399 0.1296 0.1236 0.1508 

0.6 M e a n  0.5655 0.5967 0.6018 0.6004 0.5969 0.6001 0.5981 
S D  0.2145 0.1366 0.1214 0.1109 0.1093 0.1194 0.1622 
Bias -0.0345 -0.0033 0.0018 0.0004 -0.003 1 0.0001 0.00 19 
M S E  0.0472 0.0187 0.0147 0.0123 0.0120 0.0143 0.0263 
A A E  0.1560 0.1066 0.0962 0.0886 0.0869 0.0947 0.1200 

0.8 Mean 0.7901 0.7994 0.8039 0.8025 0.8036 0.8028 0.8094 
S D  0.1303 0.0788 0.0752 0.0737 0.0718 0.0786 0.0956 
Bias -0.0099 -0.0006 0.0039 0.0025 0.0036 0.0028 0.0094 
M S E  0.0 17 1 0.0062 0.0057 0.0054 0.0052 0.0062 0.0092 
A A E  0.0938 0.0617 0.0585 0.0580 0.0565 0.0619 - 

0.9 Mean  0.9010 0.9050 0.9042 0.9038 0.9037 0.9019 0.9022 
S D  0.0587 0.045 1 0.0408 0.0471 0.0448 0.0497 0.0528 
Bias 0.00 10 0.0050 0.0042 0.0038 0.0037 0.001 9 0.0022 
M S E  0.0035 0.0021 0.0017 0.0022 0.0020 0.0025 0.0028 
A A E  0.0463 0.0363 0.0323 0.0370 0.0356 0.0401 - 

' SD = standard dev~ation. 
' MSE = mean squared error. 
' AAE - average absolute error. 
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TABLE 7. E~fimated c~orrc~lation between destructive tests. Sample size = 200. Based on 500 trials. 

Proofload level 
True (proportion of population) 
corrc- 
lat~on Measurement 0.2 0.4 0.5 0.6 

0.2 Mean 0.1774 0.1941 0.1992 0.1927 
S D L  0.2106 0.1377 0.1234 0.1 110 
Bias -0.0226 -0.0059 -0.0008 0 . 0 0 7 3  
MSE2 0.0449 0.0 190 0.01 52 0.0 124 
AAE1 0.1680 0.1 100 0.0976 0.088 1 

0.6 Mean 0.5950 0.6077 0.5944 0.6042 
S D  0.1379 0.0904 0.0865 0.0764 
Bias -0.0050 0.0077 -0.0056 0.0042 
MSE 0.0190 0.0082 0.0075 0.0059 
A AE 0.1034 0.0728 0.0693 0.0626 

0.8 Mean 0.797 1 0.8030 0.7979 0.7992 
SD 0.0782 0.0529 0.05 18 0.05 12 
Bias 0 . 0 0 2 8  0.0030 -0.0021 0 . 0 0 0 8  
MSE 0.006 1 0.0028 0.0027 0.0026 
A AE 0.0622 0.0434 0.0414 0.0408 

0.9 Mean 0.9009 0.8996 0.9019 0.9004 
SD 0.0437 0.0347 0.0302 0.03 1 1 
Bias 0.0009 0 . 0 0 0 4  0.00 19 0.0004 
MSE 0.0019 0.00 12 0.0009 0.0010 
AAE 0.0349 0.0267 0.0246 0.0245 

I SD = standard deviat~on. 
MSE = mean squared error. 

' AAE = average absolute error 

TABLE 8. Estimuted correlation between destructive rccsts. Sample size = 300. Based on 500 trials. 

True Proofload level (proponion of populat~on) 
come- Measure- 
lation ment 0.2 0 4 0.5 0.6 0.7 0.8 0.9 

0.2 Mcan 0.1856 0.2020 0.2004 0.2017 0.1950 0.2057 0.1961 
S D '  0.181 7 0.1069 0.0981 0.0921 0.0895 0.0903 0.1041 
Bias 0 . 0 1 4 4  0.0020 0.0004 0.0017 0 . 0 0 5 0  0.0057 -0.0039 
MSE' 0.0332 0.01 14 0.0096 0.0085 0.0080 0.0082 0.0108 
AAE' 0.1431 0.0853 0.0785 0.071 1 0.0728 0.0725 0.0819 

0.6 Mean 0.5999 0.5998 0.5985 0.5994 0.5980 0.5971 0.6036 
S D  0.1037 0.0762 0.0694 0.0679 0.0649 0.0695 0.0779 
Bias 0 . 0 0 0 1  -0.0002 0 . 0 0 1 5  -0.0006 -0.0020 -0.0029 0.0036 
MSE 0.0107 0.0058 0.0048 0.0046 0.0042 0.0048 0.0061 
AAE 0.0809 0.0607 0.0550 0.0537 0.0520 0.0548 0.0625 

0.8 Mean 0.8006 0.8035 0.7968 0.8005 0.8006 0.8056 0.8070 
SD 0.0579 0.0453 0.0434 0.0401 0.0400 0.0457 0.0530 
Bias 0.0006 0.0035 -0.0032 0.0005 0.0006 0.0056 0.0070 
MSE 0.0033 0.0021 0.0019 0.0016 0.0016 0.0021 0.0029 
AAE 0.0456 0.0362 0.0346 0.0316 0.0319 0.0366 0.0427 

0.9 Mean 0.9020 0.9002 0.8997 0.9007 0.9008 0.9011 0.9025 
SD 0.0329 0.0263 0.0257 0.0264 0.0264 0.0294 0.0312 
Bias 0.0020 0.0002 0 . 0 0 0 3  0.0007 0.0008 0.0011 0.0025 
MSE 0.0011 0.0007 0.0007 0.0007 0.0007 0.0009 0.0010 
AAE 0.0263 0.02l0 0.0209 0.021 1 0.0207 0.0229 0.0252 

I SD = standard devlation 
MSE = mean squared error. 

' AAE - average absolute error. 
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PROOF LOAD LEVEL 

FIG. 2. Effect of sample size, proofload level, and true correlation ( P )  on the precision ofthe estimate 
of the correlation coefficient (i) for sample sizes of 100 (- - -) and 300 (-1. 

PROOF LOAD LEVEL 

FIG. 3. Effect of sample size (N) and proofload level on the 9S0/0 confidence interval ofthe correlation 
estimate for a sample having a true correlation coefficient of 0.80. 
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0 'I I I I 
0 5 0  100 150 2 0 0  2 5 0  300 

SAMPLE SIZE 

FIG. 4. Effect of sample size and true correlation coefficient on the average absolute error in 
estimating the correlation coefficient for proofload levels of 0.20 (- - -) and 0.50 (-). 

samples, a proofload of 0.2 is relatively poor. For N = 100 and larger, the 
difference in a proofload of 0.2 and 0.4 has decreased substantially. 

5. A proofload that is expected to break 0.6 (or 60%) of the specimens is usually 
close to the best. Proofloads as small as 0.4 appear reasonably good, partic- 
ularly for sample sizes of 60 or more. 

6. It appears that the optimal proofload decreases as the true correlation coef- 
ficient, p, increases. (See contour plots, Fig. 5.) 

7. Using k 2  times the square root of the MSE gives a range in which approx- 
imately 95% of the estimates of p fell. The tables show that except for 
proofload 0.2 we should be within 0.38 of the true correlation 95% of the 
time for N = 100 and within 0.2 1 of p for N = 300. 

The interaction of sample size, proofload level, and true correlation coefficient 
on our ability to estimate the correlation is shown in Figs. 2, 3, and 4. Figure 2 
shows the coefficient of variation of the estimates plotted against the proofload 
level. Separate lines for N = 100 and N = 300 are produced for true p values of 
0.6, 0.8, and 0.9. The estimates for p = 0.2 were considerably more variable and 
are not included in Fig. 2. For the higher correlations, the desirability of using a 
proofload level of 0.4 to 0.8 is evident. 

Figure 3 shows only the p = 0.80 data and plots estimated regions containing 
95% of the estimate (i.e., K -t 2\/MSE) versus the proofload level. Separate curves 
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T R U E  C O R R E L R T I O N  T R U E  C O R R E L R T I O N  

T R U E  C O R R E L R T I O N  T R U E  C O R R E L R T I O N  

FIG. 5. Contours of fitted relationships between dependent variables measuring the quality of 
estimation and the independent variables measuring the proofload level and true correlation. a. Stan- 
dard deviation (coefficient of determination (R2) = 0.97, sample size (N) = 100); b. Average absolute 
error (R2 = 0.97, N = 100); C. Standard deviation (RZ = 0.96, N = 300); and d. Average absolute error 
(R2 = 0.96, N = 300). 

for N = 100 and N = 300 are produced. Result (7) above is graphically displayed 
here for this p value. 

Figure 4 shows the effect of sample size and true correlation on the AAE of the 
estimates for proofload levels of 0.2 and 0.5. As expected, the values of AAE 
decrease as the sample size increases. However, the decrease from N = 100 to 
N = 300 is small compared to earlier decreases and indicates that with respect to 
absolute error N = 100 might be a very practical sample size. 

To summarize recommendations on the proof oad level for different values of 
the true correlation coefficient, a two-dimensional quadratic model was fit using 
p and proofload level as the independent variables and the values o f t  in Tables 
6 and 8 as the dependent variable. For example, the plot for AAE was obtained 
by fitting the values in Table 8 where proofload level and true correction were 
considered independent variables. The quadratic model fit to the data was 
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where 

Y = value of the AAE 
x, = true correlation 
x, = proofload level 

The coefficient of determination, R2, for this model was 0.97. Contours of equal 
response of some of the resulting curves are given in Fig. 5. The R2 values indicated 
a reasonable fit for all curves. These curves can be used to help decide an appro- 
priate proofload level based on a prior guess of the true correlation. As mentioned 
previously, it appears from the contours that the optimal proofload decreases 
somewhat as p increases. 

CONCLUSIONS 

The estimates of concomitance appear reasonable using sample sizes of 100 or 
more and a proofload level of 0.40 or higher if the true correlation coefficient is 
at least 0.60. 

It is theoretically possible that this type of procedure might be extended to 
obtain painvise estimates of the correlation between three or more strength prop- 
erties using a series of loads. For instance, a sample could be proofloaded in 
bending, survivors proofloaded in tension, and then these last survivors failed in 
compression. Although this procedure may work with other materials, its appli- 
cability to wood is questionable because of possible damage to the specimens 
inflicted by multiple loadings and higher proofload levels. 

In conducting simulation studies of truss performance, it might be desirable to 
use the conditional form of Eq. (2) in which estimates of p depend on some 
parameters measured nondestructively such as MOE and knot size. These results 
and those of earlier studies suggest that a greater understanding of the uncondi- 
tional form is needed before the more complex case can be investigated. In par- 
ticular, the effect of using the mean and standard deviation estimates for the 
samples that failed in bending and tension (p,, p,, a,, and 0,) proofloading should 
be studied. Also, the optimal allocation of resources given a fixed number of pieces 
available for testing should be addressed. 
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APPENDIX 

The actual parameter values used in Eq. (3) to generate the observations used in the simulation are 
the results of large-scale studies of the strength properties of lumber. The distribution of the estimate 
of correlation, 6, does not depend upon their particular values. The values used were as follows: 

b, = 6,400 psi ub2 = 3,240,000 
p, = 4,900 psi a,Z = 2,722,500 




