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A finite-elei~rent solution is presented for analysis of concentric, mr~ltilayercd, orthotropic 
ek-lindcrs sr~hjected to loadings that ,  do not vary arollnd tlic circumference. Model fibers 
arc ;~nalyzecl, and stress distril)r~tions are cotnpared to those obtained, using a c1osc.d 
for111 solution technique. The inflr~ence of bo~mdary-shear restraint on internal stress 
distril)~~tion is stndied. Comparing results of the thrce-climensional finite-element i l~od<~l  
to valrles of axial stiffness and relative twisting angle? predicted using siinpler, t\vo- 
dinlcnsional methocls indicated that the two-dimensional ~~ lode l s  can give good estiniatc~s 
of thcsci paraineters, at lcast for the thin-wallet1 niodels. 
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Syinbols 

-4 Cell-w:lll cross-sectiolr area 
B Strain matrix 
(:i,i Elastic compliailces 
11 Matrix of elastic compliai~ces 
E,.,.,Ei,,E,, llodnli of' elasticity 
<:,., ,C:,.,,,G,, Shear moduli of elasticity 
P External n:iial force 
P.i Layer volume proportion 
P Internal 01, exterilal pressilre 
r,t,z Coordinate directioils 

cJ,r,tJ,,,(~+, Sl~ear stress components 
ti Axial stress 

$ Twist angle 
Superscripts 
'(prime) Coordinate system parallel and 

perpendicular to microfibrils 
e Element property 
T Transpose of vector or matrix 

c l l~nn t i ty  

Snbscript 

i j"' layer property 

INTRODUCTION 

il,~.,w Disp1acemc:nt components In approaching the thrt:e-dimel-~sioilal 
lli,vi Nodal displacements 

elastic allnlysis of woocl fillers, the simplest 
1': 11 Displacem~~nt at z = 2.0 cm 

logical geometric model appears to be the 
(Y ,411 angle 

circular cylinder. Solutions for the distribu- 
?,.I ,yra ,ytp  Shear str:liir componei~ts 
8 \'ector of element displaceinent tion of strc-sses aird displacements ill circu- 

con~ponc>nts lar isotropic and orthotropic cyliilders have 

c,-,.,tl ,,t,, Nornmal strain compoi~ents lxen availal~le for many years for some 
6 1 ,  Specified ?.train cornponelit specific loading conditions (Timoshenko 
1 1 , ~  Local elen~eilt coordinates aild Goodier 1951; Lekhnitskii 1963). A 
H Coordinate direction general treatment of the state of stresses 
Pij Poisson's ratios in a multilayered system of concentric, 
, Kormal sti.ess components anisotropic cylinders sul~jeoted to axial 
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loading does not appear to be available in 
closed form.' Tang ( 1972) attempted to 
sol\.c for stress distributions ill a four-lavered 
anisotropic cylindei sulljected to an axial 
force using the single orthotropic cylinder 
analysis of Lekhnitskii (1963). The single 
layer analysis that .was used to niodel the 
individual-layer bellavior predicts that the 
cylinder will twist in general, becallse of 
the application of axial forces. Twisting 
results from the fact that the axes of ma- 
terial symmetry are in general oriented at 
an angle to the cell a ~ i s  direction. The 
aillollllt of twisting depends on  the material 
properties and the orientation angle. In 
the multilayered cell subjected to axial 
loading, layers twist as a unit and, there- 
fore, ikernal  stresses develop because of 
the restraint of potelntial deformation of the 
individual layers. Interlayer compatibility 
\x7as achieved 11y ~natching l~olmdary condi- 
tions, in terins of stresses and displacements 
at layer interfaces, therel~y providing an 
estimate of multi-layered-cylincler response. 

Unfortunately, one of the l>oundary con- 
ditions chosen 1)y Tang does not appear to 
l)c rational. He :specified that at  the 
I~oundary between liiyers, on the tangential- 
loligitudinal plane the (T,, shear stress at the 
outer edge of the inner layer illust 11e equal 
to the (T,, shear stress at the illller edge of 
tlic outc'r layer. S'Vhile this requiren~ent 
may appear reason:lble, it is not valid 1)e- 
cause it iinplies that layers are free to twist 
with respect to each other, wllicll ill a 
normal wood filler clearlv is not the case. 
It nrould have I~eell tnorc rational to specify 
eclual truilsverse disl?lacements at the inter- 
face, although within the solutioi~ scheme 
given 11y Lekhnitsl.:ii ( 1963) this is not 
readily ;~ccoinplished. Using this assuinp- 
tion, in addition to specifying equal radial 
displaccnlents and radial stresscs at the con- 
tacting interlayer surfaces, would have pro- 

' Vvry rccvntly, Gillis ant1 hlark (1973) pre- 
\entvcl a closed-for111 sc~lution for stresses i r ~  lami- 
n;lted, coricentric, orihotropic c)-linclrrs. The 
irlethocl is conceptually capal~lc of predicting 
stvesses (uldcr gcnerul loading collditio~ls, I~u t  tlx 
11rethod \\,as used to stlldy only effects of nloist,~l.r- 
eolrtc~rt ch~~ngcs .  

vided a rnore rational set of boundary con- 
ditions. 

As a result of the particular boundary 
conditions adopted by Tang, rather large 
and diverse twisting angles are calculated 
for the various cell-wall layers, despite the 
fact that in a real fiber the various layers 
will have to twist as a unit. Furthermore, 
Tang then assumed that the angle of twist 
is equal in all layers in order to calculate 
the tot211 twisting of a fiber. This, in turn, 
~i7onld imply the introduction of additional 
shear stresses which, however, are not con- 
sidered in the stress ai~alysis given by Tang. 
Consecluently Ilis ailalysis scherne has some 
serious flaws in concept. 

The flaws become further evident if one 
examines the nu~nerical results obtained by 
Tang. One would expect that integration 
of the normalized axial layer stresses over 
the totill cell-wall area would yield miity, 
since the stresses are normalized with re- 
spect to the external stress. Using maxi~nuni 
and minimum valucs for (,ad1 laycr from 
Table 6 of Tang ( 1972) to calc~~late  ho~mds 
on the integral, its value, is found to be be- 
twcvn -1..52 artd -1.54 for tangential walls 
and bet\veen-1.18 and -1.26 for radial walls, 
1~1th  ill Case 3. Not only do the integrals 
differ apprt:ciably from unity, but also 
they are negative, illdicating axial layer 
stresses opposite in sign from the ap- 
plied (,sternal stresscs. Similarly, tange~~tial  
stresses should integrate to zero over the 
r;tdius to maintain equilibrium, but for Case 
3 integral relative stresses of -1.06 and 
-0.18 are obtained for tangential and ixdial 
\valls, respecti\iely. 

In view of these difficulties, it is not 
surprising that substantial differences were 
observed 11y Tang Iletween the results of 
his three-dimeusioilal analysis and those of 
the two-diineilsional analysis of hiark and 
Gillis ( 1970:). The specific comparisoll is 
not valid in any case for two reasons. First, 
Mark and CXllis used complete shear re- 
straint \vithout stating this explicitly (i.e. 
the in-pl;lne shear strain specified as zt:ro) 
and, seconcl, they gave stresses parellel and 
perpendicular to the microfibril in each 
layer, while Tang's data refer to the co- 



The purpose of this study is to calculate 
the stress distribution in inultilayered, con- 
centric, anisotropic cylinders. Of particular 
interest is the radial distribution of stress 
i~~tlucecl by the application of :11 axial force. 
A general formulation allowing investiga- 
tion of cylinder models subjected to axial 
forces, internal and external pressures with 
free and restrained boundaries is achieved 
convelliently using finite-element tech- 

)' ~liclues presented. Axial forces will be in- 
troduced by specifying axial displacelnents 
in individual elements. 

FIKITE-ELEMENT MOJlELS 

The circular cyliilder of Fig. 1 is assumed 
to be subjected to distribution of stresses 
that are independent of the 6 coordinate 
and possesses orthotropic material prop- 
erties with respect to the z'r't' coorclinate 
system. The axes of elastic symmetry are 
oriented at an angle a to the global (zr t )  
coordinate system. The constitutive law 
for the wall material, written with respect 
to the global coordinate system, is: 

I+(.. 1. Circular cylinder stll~jcctrtl to a 
I)ounda~ y stvt,<s distrihr~tion illdependent of the 0 

{ o }  = [DI { E }  (1) 

coodinatr. Axes of rlastic s y ~ ~ l l ~ ~ t ~ t r y  for the 
o1.thotropic cell-nlall ~,latr.ial arc. iuclinrd at anglr where: {'lT = ~urr~utt~utZ.bZr~urt~uZZ\ 

a to  axial divrction. 

ordillale \ystem parallel and perpe~~dicular 
to the longitl~dinal cell axi.s. Tlie presence 
or abst!nce of shear rc:straint (filler aggre- 
gates vs. single fibers) is an important fac- 
tor in determining the stress distribution 
olltainctd ill n given nlodel. Thus, i t  is not 
correct that the a11se111:e of shear stresses in 
the comlli~ied \fiddle lamella + Primary 
\\7all (51 + P )  is a feature of two-dimen- 
sional analysis, as suggested lly Tang, llnt 
depeilcls rather on  tl-ie presence of shear 
restraint. \T7ithout coi-iiplete shear restraint, 
shear stresses are found in 11 + P in 
the two-dimensional ;~~ialysis (Schlliewind 
1972). I t  is also 11ot correct that two- 
di~iiensional approacl~es cannot yield an 
estimate of filler twisi- in^' l~ecause such an 

<, 

analysis has llccn made previously assum- 
ing a tiller to 1)c a thin-walled cylinder 
(Sclrniewiird and Hanett 1969). 

if l=rr,2=tt,3=zz,4=zt,5=zr,6=tx; 

Cij  are transformed elastic stiffnesses. 

and [D] = 

Sincc applicd loads arc, asstullled axially 
symmetric, the radial ( u ) and tangential 
( v )  displace~neilts are indepr:ndent of the 
H coordinate. Allowing for an axial varia- 
tion of transversc~ displacerncnt, we assume: 

- 
C l l  C 1 2  C 1 4  O 

C 2 1  C 2 2  C 2 4  0 0 

' z41  C 4 2  c 4 4  0 0 

0 0 0 c 5 5  C 5 6  

0 0 0 c 6 5  C 6 6  

C 3 1  c 3 2  c 3 4  0 0 
b 



I'lanes perpendiculclr to the z axis are as- 
sumed to remain pl:lnc during deformation 
and the w displacen~ent is assumed to have 
tlic following form: 

Lrsillg displaceme ~t assumptions of equa- 
tions 3 and 4, tlle corresponding strains are 
co lup~~ted  in cylindrical coordinates ne- 
g lcc t i~~g terms where dependence of a 
strain conlponent on the t coordiilate is 
introcll~ced, since no t dependence i11 strain, 
stress, or loading is allowed. 

In cylindrical coclrdinates corresponding 
strains are given by' : 

i 
rr 

E 
tt 

Ytz 

zr 

'rt 

i 
Z Z 

Finite-element inodelling can now be ac- 
co~i~plisl~ecl 11y di\litling a 1ongituciin:ll sec- 
tion passing through the axis of the cylinder 
illto small elements. Each of the small ele- 
ments ill the section generates a ring-shaped 
solid of rc.volution ( Fig. 2 ) .  hlaterial prop- 
erties can I)c specif ed separately for each 
elemcnt, mllich allows for modelling of' the 
layered structl~re. :Because of the special 
syin~netry involved, the analysis is similar 
to those for plane stress and strain. Details 
arc given by Ziei1kic:wicz (1971) and only 
a 1)rief srunlnary will Ile presented her(.. 

A cluadrilateral, linear, isoparamet~ic ele- 
inent of the "sereudil?ity" type (Zieiikiewicz 
1971) is used to model radial and tangential 
displaceinei~ts. Eacl~ elcrneilt has the same 
axial strail1 e,,  = to. Displacement pararn- 

FIG. 2. Cylirtdrical ring elemcmt iisecl for 
finite-elemcnt analysis showing nol.mali~ed local 
coordin;rtes and displacement modes of elt.~nent. 

eters associatetl with the element (Fig. 2 )  
are therefore : 

Strains are given in ternis of the displace- 
n ~ e n t  parameters according to 

The di4placement fields are evpressetl in 
termc of the shape functions N,, N2, N3, 
'uld N I  \uch that 

where: Nl = (1 -C)  (1-11) 14 

N2 = (1-n)  ( l + t ; )  / 4  

are the sl~apt. functions for the linear 
cluadrilateral element in local coordinates. 
The strain matrix B is evaluated in terins 
of the local coordinates of the nor~nal- 
ized rectangle of Fig. 2. This matrix is 
presented in Fig. 3. 
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Frc:. 3 .  Si:rai~~ ~natrix I3 for axisylnlnetric clrladrilat~ral finite element of Fig. 2. 

The t2leinent stiffness nlatris i s  giv1.11 in 
glol~al coordinates by: 

where: dVol = rdrd0 

To facilitate integra.tio11, the numerical 
integration was perfor~lled with respect to 
local coordinates ?l,< of Fig. 2 and was ac- 
complished using a Four-point Gaussian 
(111adrai ure formula ( Zienkiewicz 1971 ) . 

Construined thick-u.ulletl orthotropic 
c!ylintler 

The finite-element analysis was evalrlated 
by comp:uing finite el'ement results with a 
closed form solution for the distribution of 
stresses in an axially constrained ( w  == 0 at 
z = z  ,,,:,., or equivalently t,, = O ) ,  clamped 
(v= 0 at z = z,,,,,) orthotropic cylinder sub- 
jected to an internal and external pressure 
( Lekhnitskii 1963). This closed form so111- 
tion was chosen because deformation pat- 
terns ;ind stress dis.tributions resemble 
those expected in the cell models. 

A suital~le set of 1n:~terial parameters and 
internal and external pressures were cllosen 
for purpose of comparison. 

E',.,. := 100 G',., == 50 = 0.2 
E',, = 300 G',., == 40 p',.t 0.3 
E',, I= 200 G',, == 30 p',, = 0.45 
0 = 10'' 

pi~l t , , r~~:~~ = 9000 
pf.\t<,rllal = 15000 
(units of E', G' and p are dynes cnl-" ). 

Results of the analysis presented in Fig. 4 
were derived using the cliscretizntion 

F i n i t e  E l e m e n t  
S o l u t i o n s  

\--I 
0.2 0.4 0.6 0.8 1.0 

R A D I U S  (cm) 
(a) 

Y1 

R A D I U S  (em) 

(b) 
FIG. 4, a. Shear and normal stresses produced 

in a pressrirized orthotropic cylinder with axial 
strains restrained and ends clamped; coinputed 
axial forces were -32629 dynes ant1 -32791 dynes 
for the closed for111 and finite e1emc:nt methods rc- 
spectively. b. Discretization scheme employed for 
finite-element analysis. Indicated specified forces 
correspond to applied internal and external pres- 
:,tires of 9,000 and 15,000 clyne c~~r- '  respectively. 
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.82 .90 1 .O 

R A D I U S  ( c m )  
Frc:. Ti. Discretization schenle ~ ~ s c d  for fi l~cr 111odel analyses. 

scheme of Fig. 4. [t may l)e see11 that the 
plotted points from the finite-element re- 
sults are in excellent agreement with the 
solid liiles derived flom the closed-form 
\elution. 

R A D I U S  ( c m )  

]TI(.. 6. Tangential ( v )  displacrri~ents plotted 
for \alllc of z = 0, 2, 13.5, ant1 13 cul for model 
1-3. 

Wont1 fiber inotlels 

The concentric orthotropic cyliilder ii~odel 
h:ls been employed by Tang (1972) to 
model the deformation of a wood fiber sub- 
jected to ail axial force. Improvernr:~~ts in 
the analysis of these models call 11e 
achieveti using the finite-element rnodel 
previously described. Since the finite-ele- 
lneilt analysis is a displacement forniula- 
tion, interlayer compatibility is autornati- 
cally insured. Application of the finite- 
element analysis techniclue to wood fiber 
model analyses requires only that dis- 
cretization scheme be einployed that rec- 
ognizes the material inhornogeneity across 
a fiber wall. 

The same six uarestrained nrodels 
analyzed 1)y Tang ( 1972) :' were moclelled 
using the discretization scheme of Fig. 5 
so that effects of the analysis schemc on 

:' hlotlels were eitlicr type I, reprrsenting 1.ac1ial 
cell \r,alls mitt1 larger fibril :males in S a  and S::, or 
type I1 representing tangential walls. Each type 
\\>as analyzed for three different sets of elastic 
constants for cell~llosc~. The inodels are denoted 
1-1, 1-2, 1-3, 11-1, 11-2 and. 11-3. 



Frc:. 7 .  Axial \-ariation of 07, and a,, fol. model 
I-,'3 plottrd for 1 = 0.905 c ~ n .  Shear stress ut ,  
1111lst 1)c' zero on thr  end s~~rfacct since no shear 
stress or 1. displacrmc,nt is specified. Nolmal stress 
o,, \vill gencl.ally 1)e non-zero on end surfacc since 
11, displacc~mc~nts artx sprlcified c.very\vhere. Exact 
valnc. of o,, at z := 11 is, ho\~e\rc,r, not dt,tt:m~ined 
; ~ l t l ~ o l ~ g h  I., oz7 ' e  dA = 1 on thr end sllrfacc.. 

co~npl~ted  results call 1)c evaluated ill com- 
parison to thc results presented by Tang 
i 1972). Iletailed r e s~~ l t s  are presented only 
for model 1-3. Figure 6 shows v displace- 
inents for model 1-3 as n fmlction of radius 
for constant v:llues of z. From syinrnetry 
it can 1)e shown that radial lines in these 
111odels should reillail1 straight duriilg de- 
fornlation, and except for the end effects, 
this conclllsio~) is verificd by the finite- 
element results. The end effect results 
from the fact that shear stresses inay 
exist. Since (r,+ shear stresst.~ are not speci- 
fied along the upper houiidary, the net 
twisting rnomcnt 011 any pl:me perpenciicu- 
lar to the z  axis of the cyli~ider must be 
identically zero, 1,ut locally (r,t shear stress 
goes to zero everywhere along the bound- 
ary z  = 14. The v displacements along the 
1i11e z = 1 4  are therefore 11ot linear with 
respect to the radial coordinate. Tht: varia- 
iton of (r+, and (r,,  wit11 respect to z for 
  nod el 1-3 is plotted in Fig. 7 for r I= 0.905 
~~111. 13isplaccnients a11d stresses predicted 
for tlic 111odels studied are produced by a 
spccificcl axial strain = t,, and t,, = 1. Thc 

axial force P produced 1)y this strain is 
gi\~en 1)y 

I = 217 l r : l ~ r d r  . (11) 

min 

A glol)al ada l  stress is defined 

an~d accordingly, 

l ~ u t ,  for the Tang models, the cross-section 
area of cell-~vall material is unity, there- 
fore: 

The v displacement of the outer I~ound- 
ary of tlhe uilrestrained fiber model 1-3 is 
shown in Fig. 8 as a function of z wit21 a 
straight line fitted through zero and the 
lower linear portion of the plotted data. 
Predicted variation of v displacerne~~t with 
z is 1ine;lr except near the upper boundary 

I71c:. 8. Vxriation of tangental t1ispl;~cemcnt 
\\,it11 z for modcl 1-3 at r = 1. 
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- . _  .......... 

4 t  
u2 z 
Qtt 

S  2 I S 1 I  , I  I 
- l r l " n r e s t r a i n e d  + p  FIG. 10. Stress distril~utions obtained for illode1 

[-3 nccordinp: to Tang ( 1972). 

results obtained by Tang (1972) are given 
in Fig. 10. Plotted stresses were computed 
at the center of the first row of elements. 
The distribution of stresses in models with 

1 

u - 

-1-  

boundary .<;hear restraint was also studied 
usiilg finite-element methods, and Fig. 911 
shows the stress distribution for model 1-3 

- M t P  

S 3  1 S 2 I S 1 l t I  
. . - . . -  

........ 

a-  - .- * r  (b) 

R e s t r a i n e d  
_- - -  

when v displacements on the boundary 
r = 1 are specified equal to zero (i.e. 
lmundary shear restraint). The v displace- - 

merit at z -= 2 and relative anrles of twist " 
are given in 7'able 1 with correspoilding re- 
sults of Tang (1972) for all six models. 

An estirr~ate of the angle of twist of a 
cylinder cell can be obtained on the l~asis 
of the composite stiffness of the wall Ina- 
terial ( Seh~nie\vind and Barrett 1969). For 

I 9 Stress distri1)ntion for ]nodel 1-3 \\rith 
no 1)1111ndar~ shear rrstraint ( :I )and \vith I)ollndnry 
slwar restraint ( b ) c.alculatct1 11sing finite-ele~nc>nt 
~ r~odc l .  

two-dimensional analyses, the composite 
\vull conlpliauces are given by 

of the rnodel where end effects exist. The 
rate of t\visting + per ~111it length of fiber where P,i == \lolume proportion of the jt l l  

for Illlit elongation is predicted for the layer. Application of a normal axial stress 
\vill produce, irl general, shear and normal ~nodt~ls studied I~ased oil the v displacenlelit 

a t z = 2 :  strains acc{:)rding to 

v2 .  0 
1 

t t  
3 = ------ 

2 r  - (15) 
i max zz (18) 

Therefore: ? z t  

v 2  0 
3 =' (16) The angle of twist for a corresponding thin- 

2 . walled cylmtler of unit length and radius 

7'lle radial tlistri1,ution of \tress ol~tained would he 
tor n-roclel 1-3 using finite-elenlent metl1ocl5 
I \  plotted in Fig. 9. Corresponding model $ I  = yZt = 5 3 2  nZ . (19)  
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- 

Model 
t 90 v 

c$ = lr 2.0 Tang (1972) ($, tt v2.0 @I($' 

-1 ttt (4 (degrees cm ) 
- 1 

(degrees cm ) 
-1 

(degrees cm ) 

- 

transverse displacement at z = 2 cm and r = 1 cm for unit axial strain 

angle of twist predicted using two-dimensional analysis. 

'-'-' degrees of twist per unit length of cell of unit external radius under unit 
axial strain 

The allgle of twist predicted rising two- 
dimensional al~alyses is also givcn in 
l a l ~ l e  1. 

The axial force required to produce unit 
elongation for restrained and utlrestrained 
~nodels call be estimated from the 2-D 
analysis. For a unit area tlie axial force is 
givcw 1)y P = 1/'S2:!. 1 for mlrcstrainetl cells 
and for restrained cells 

- 2 

I'redicted a ~ i a l  forces are shown in Table 
2 ill c o l ~ i p a r i ~ ) ~ ~  to result\ obtained froin 
the finite-element analysis. 

DlSCUSSION OF I<ESULTS 

The results of the finite-element stress 
analysis sho\vn in Figs. 9a and 911 are in- 
ternally consistent ill that the relative 
tangential stresses integrate to 0.00 2 0.02 
over the radius of the cell ant1 the rela- 
tive axial stresses integrate to 1.00 -t 0.02 
for all modcls studied. The results (Fig. 
9a) differ sul~stantially from tlie resl~lts ob- 
tai~rccl l)y Tang. Since Tang's approach is 
cluestionable and lsis results were o1)viously 

inconsiste~lt as already discussed, littlc 
woultl l)e gained by detailed comparisons. 

I t  would be: of interest, however. to make 
a comparison between results obtained 
by two-dlimensional and three-dinze~~sioilal 
analyses. Results for single model fibers 
with identical structural details and ma- 
terial ~~araiiieters are not available from 
the literature. since as previously stated the 
results oE Mark and Gillis (1970) cannot 
be used for this purpose. Such a con~pari- 
son cat-] 11e made on the basis of the calcu- 
lated vah~es of relative angle of twist 
shown in Table 1 and axial forces shown in 
Tal~le  2. As may 1)e expected on tlie basis 
of the divergence in results for stress dis- 
tribution, there is little numeric;ll resem- 
blance between the data of Tang and those 
obtained by the finite-element method. 
There is, however, fairly good agreement 
between finite-element results and those of 
tlie t\vo.-dimensional analysis, as may be 
seen from Tables 1 and 2. Twisting angles 
predicted by finite-element n~e t l~ods  are 
from 11 to 20% larger than estimated by 
two-dimlensiond nietliods, 11ut maximum 
axial forces differ 11y less than 3%. Similar 
strain fields iiilply si~nilar stress fields, and 



Model Unrestrained Restrained 

Finite Element 2-D Finite Element 2-D 

1-1 
11 11 11 11 

0.4965 x 10 dynes 0.5028 x 10 dynes 0.7631. x 10 dynes 0.7754 x 10 dynes 

11e11ce our resl~lts do not indicate major clif- 
f e r e~~ces  in the nature of the stress distribu- 
tions predicted 1)y two- and three-dirnen- 
sionnl n~lalyses. A significant exceptioil is 
tliat the two-dirnensio~~d analysis is in- 
capable of predicting radial stresses. Since 
radial stresses are a11v:~ys less than 10% of 
the axial mean stress (Figs. 9a ancl I)), this 
may not be a serious detriment for 2-D 
analysis thill-walled models of wood fillers. 
Compariilg parts a and 1) of Fig. 9 shows 
tliat introduction of shear restraint tends 
to reduce the radial variation of stress arid 
the maximum values of the normal stresses, 
particularly ill the S2 layer. This indicates 
that an improved mechmiical efficiency 
may be obtained when the fiber is re- 
strained. Ob\~iously, this is not totally un- 
expected since the fiber actually does have 
1)oundary restraint in its natural environ- 
nlcnt. Shear stresses predicted for the S1 
and hI + P layers in the unrestrained 
models vanish on the application of bomld- 
ary shear restraint, verifying the assertion 
prerented earlier. 

No at te~npt  wa\ made to allow for varia- 
tions in microfibril angles in tlie radial as 
compared to tlie tangential \valls of a givc.11 
cell. Some type of law of inixtures ap- 
proach rnight be used to calculate angle of 
twist, 1 ~ 1 t  of course this would not lead to 
a s~iitable assessl~ie~it of stresses in snch a 
dol11)le-co~nposite n~odcl. The data 11sed by 
'I'al~g indicate that three-fourths of the wall 

area is radial wall and one-fourth tai~gc.r~tial 
wall-in oither words a highly flattenet1 cell 
cross section. A cylindrical model may not 
be very appropriate for such a cell shape. 
A real cell of more nearly circular cross 
section, on the other hand, \ ~ o n l d  prol~ably 
not have a \ ~ r y  large difference in micro- 
fibril angles in the two wall areas. For a 
highly flattened cell cross section, a dif- 
ferent finite-element forlllulation that al- 
lows for a more realistic geometric model- 
ling would be preferable. 

The close: agreement between finite- 
element results and the two-dimrtnsional 
predictions for the models studied has 
sl~own the value of the two-dimensional 
analysis tecl~niques for the analysis of thin- 
walled cel'ls that can be considered to have 
a circular cross section. The finite-elemei~t 
method presented, however, represents a 
powerful a.pproach of great general validity, 
which will also allow accurate assessnleilt 
of stresses in thick-walled, circular, cylinder 
models. 
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