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ABSTRACT

A finite-element solution is presented for analysis of concentric, multilayered, orthotropic
cylinders subjected to loadings that do not vary around the circumference. Model fibers
are analyzed, and stress distributions are compared to thosc obtained, using a closed

form solution technique.

The influence of boundary-shear restraint on internal stress

distribution is studied. Comparing results of the three-dimensional finite-element model
to values of axial stiffness and relative twisting angles predicted using simpler, two-
dimensional methods indicated that the two-dimensional models can give good estimates
of these parameters, at least for the thin-walled models.

Additional keywords: Mathematical analysis, layered systems, finite element, cell mechanics.
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Symbols
Cell-wall cross-section area
Strain matrix
Elastic compliances
Matrix of elastic compliances
Moduli of elasticity
Shear moduli of elasticity
External axial force
Layer volume proportion
Internal or external pressure
Coordinate directions

Composite-laver
component

Displacement components

Nodal displacements

Displacement at z=2.0 ¢m

An angle

Shear strain components

Vector of element displacement
components

Normal strain components

Specified strain component

Local element coordinates

Coordinate direction

Poisson’s ratios

Normal stress components

compliance

WOOD AND FIBLER

ort,019,01,  Shear stress components

& Axial stress

@ Twist angle

Superscripts

’(prime) Coordinate system parallel and

perpendicular to microfibrils

e Element property
T Transpose of vector or matrix
quantity
Subscript
j i layer property
INTRODUCTION

In approaching the three-dimensional
elastic analysis of wood fibers, the simplest
logical geometric model appears to be the
circular cylinder. Solutions for the distribu-
tion of stresses and displacements in circu-
lar isotropic and orthotropic cylinders have
been available for many years for some
specific loading conditions (Timoshenko
and Goodier 1951; Lekhnitskii 1963). A
general treatment of the state of stresses
in a multilayered system of concentric,
anisotropic cylinders subjected to axial
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loading does not appear to be available in
closed form.! Tang (1972) attempted to
solve for stress distributions in a four-layered
anisotropic cylinder subjected to an axial
force using the single orthotropic cylinder
analysis of Lekhnitskii (1963). The single
layer analysis that was used to model the
individual-layer behavior predicts that the
cylinder will twist in general, because of
the application of axial forces. Twisting
results from the fact that the axes of ma-
terial symmetry are in general oriented at
an angle to the cell axis direction. The
amount of twisting depends on the material
properties and the orientation angle. In
the multilayered cell subjected to axial
loading, layers twist as a unit and, there-
fore, internal stresses develop because of
the restraint of potential deformation of the
individual layers. Interlayer compatibility
was achieved by matching boundary condi-
tions, in terms of stresses and displacements
at layer interfaces, thereby providing an
estimate of multi-layered-cylinder response.

Unfortunately, one of the boundary con-
ditions chosen by Tang does not appear to
be rational. He specified that at the
boundary between layers, on the tangential-
longitudinal plane the o, shear stress at the
outer edge of the inner layer must be equal
to the o, shear stress at the inner edge of
the outer layer. While this requirement
may appear reasonable, it is not valid be-
cause it implies that layers are free to twist
with respect to each other, which in a
normal wood fiber clearly is not the case.
It would have been more rational to specify
equal transverse displacements at the inter-
face, although within the solution scheme
given by Lekhnitskii (1963) this is not
readily accomplished. Using this assump-
tion, in addition to specifying equal radial
displacements and radial stresses at the con-
tacting interlayer surfaces, would have pro-

"Very recently, Gillis and Mark (1973) pre-
sented a closed-form sclution for stresses in lami-
nated, concentric, orthotropic cylinders.  The
method is conceptually capable of predicting
stresses under general loading conditions, but the
method was used to study only effects of moisture-
content changes.
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vided a more rational set of boundary con-
ditions.

As a result of the particular boundary
conditions adopted by Tang, rather large
and diverse twisting angles are calculated
for the various cell-wall layers, despite the
fact that in a real fiber the various layers
will have to twist as a unit. Furthermore,
Tang then assumed that the angle of twist
is equal in all layers in order to calculate
the total twisting of a fiber. This, in turn,
would imply the introduction of additional
shear stresses which, however, are not con-
sidered in the stress analysis given by Tang.
Consequently his analysis scheme has some
serious flaws in concept.

The flaws become further evident if one
examines the numerical results obtained by
Tang. One would expect that integration
of the normalized axial layer stresses over
the total cell-wall area would yield unity,
since the stresses are normalized with re-
spect to the external stress. Using maximum
and minimum values for each layer from
Table 6 of Tang (1972) to calculate bounds
on the integral, its value is found to be be-
tween —1.52 and —1.54 for tangential walls
and between —1.18 and -1.26 for radial walls,
both in Case 3. Not only do the integrals
differ appreciably from unity, but also
they are negative, indicating axial layer
stresses opposite in sign from the ap-
plied external stresses. Similarly, tangential
stresses should integrate to zero over the
radius to maintain equilibrium, but for Case
3 integral relative stresses of ~1.06 and
—0.18 are obtained for tangential and radial
walls, respectively.

In view of these difficulties, it is not
surprising that substantial differences were
observed by Tang between the results of
his three-dimensional analysis and those of
the two-dimensional analysis of Mark and
Gillis (1970). The specific comparison is
not valid in any case for two reasons. First,
Mark and Gillis used complete shear re-
straint without stating this explicitly (i.e.
the in-plane shear strain specified as zero)
and, second, they gave stresses parellel and
perpendicular to the microfibril in each
layer, while Tang’s data refer to the co-
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Fre, 1.

Circular
boundary stress distribution independent of the ¢

cylinder  subjected  to  a

coordinate.  Axes of elastic symmetry for the
orthotropic cell-wall mate-ial are inclined at angle
a to axial direction,

ordinate system parallel and perpendicular
to the longitudinal cell axis. The presence
or absence of shear restraint (fiber aggre-
gates vs. single fibers) is an important fac-
tor in determining the stress distribution
obtained in a given model. Thus, it is not
correct that the absence of shear stresses in
the combined Middle lamella + Primary
wall (M +P) is a feature of two-dimen-
sional analysis, as suggested by Tang, but
depends rather on the presence of shear
restraint. Without coraplete shear restraint,
shear stresses are found in M+ P in
the two-dimensional analysis (Schniewind
1972). Tt is also mot correct that two-
dimensional approaches cannot vyield an
estimate of fiber twisting because such an
analysis has been made previously assum-
ing a fiber to be a thin-walled cylinder
(Schniewind and Barrett 1969).
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The purpose of this study is to calculate
the stress distribution in multilayered, con-
centric, anisotropic cylinders. Of particular
interest is the radial distribution of stress
induced by the application of an axial force.
A general formulation allowing investiga-
tion of cylinder models subjected to axial
forces, internal and external pressures with
free and restrained boundaries is achieved
conveniently using finite-element tech-
niques presented. Axial forces will be in-
troduced by specifying axial displacements
in individual elements.

FINITE-ELEMENT MODELS

The circular cylinder of Fig. 1 is assumed
to be subjected to distribution of stresses
that are independent of the 6 coordinate
and possesses orthotropic material prop-
erties with respect to the z'r't’ coordinate
system. The axes of elastic symmetry are
oriented at an angle o to the global (zrt)
coordinate system. The constitutive law
for the wall material, written with respect
to the global coordinate system, is:

{6} = [D] {e} (¢D)]
where: {‘U}T = {o O, 30, 30 50 40 }
rr’tt? ez’ zr’ rt’ zz
T A
fe}” = { rr’ett’ytz’yzr’yrt’&zz}
Ciy Ci2 Ciy O 0 C13
Cz1 €2 Coy O 0 Cas
Cy1 Cyp Cuy O 0 Cy3
and [D] = 2)
0 0 0 Css Csg O
C31 C32 C3u O 0 C3s

if l=rr,2=tt,3=zz,4=zt,5=zr,6=tr;

C are transformed elastic stiffnesses.

13
Since applied Joads are assumed axially
symmetric, the radial (u) and tangential
(v) displacements are independent of the
# coordinate. Allowing for an axial varia-
tion of transversc displacement, we assume:
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u(r,z)

[=
I}

3)

v = v(r,z)

Planes perpendicular to the z axis are as-
sumed to remain plane during deformation
and the w displacement is assumed to have
the following form:

w = w(z) = €2 )

Using displacement assumptions of equa-
tions 3 and 4, the corresponding strains are
computed in cylindrical coordinates ne-
glecting terms where dependence of a
strain component on the t coordinate is
introduced, since no t dependence in strain,
stress, or loading is allowed.

In eylindrical coordinates corresponding
strains are given by*:

r ) ( 4
3 u,
rr
u/x
tt /
Yez Vo,
> = 14 > (3)
Yer ’z
v, -v/r
Yrt ’r /
L&; 2 W,
2z ) J

Finite-element modelling can now be ac-
complished by dividing a longitudinal sec-
tion passing through the axis of the eylinder
into small elements. Each of the small ele-
ments in the section generates a ring-shaped
solid of revolution (Fig. 2). Material prop-
erties can be specified separately for each
element, which allows for modelling of the
layered structure. Because of the special
symmetry involved, the analysis is similar
to those for plane stress and strain. Details
are given by Zienkiewicz (1971) and only
a brief summary will be presented here.

A quadrilateral, linear, isoparametric ele-
ment of the “serendipity” type (Zienkiewicz
1971) is used to model radial and tangential
displacements. Each element has the same
axial strain e, =€, Displacement param-

“u,, signifies su/ér, cte.
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A*

Fic. 2. ring element used for

Cylindrical
finite-element  analysis showing normalized local
coordinates and displacement modes of element.

o
~

eters associated with the element (Fig.
are therefore:

T
|{5}el = {UlaV1:UZsVZrUB:V%U‘MVLHEo} - (6)

Strains are given in terms of the displace-
ment parameters according to:

e} = [B] (8¢ . o
The displacement fields are expressed in

terms of the shape functions N;, N2, N,
and N, such that

4
ws gk Ny
A (8)
VT ik Ny
where: N, = (1-g)(1-n)/4

N, = (L-n) (146) /4
Ny = (L4n) (146) /4

N, = (L+n) (1-8) /4

are the shape functions for the linear
quadrilateral element in local coordinates.
The strain matrix B is evaluated in terms
of the local coordinates &y of the normal-
ized rectangle of Fig. 2. This matrix is
presented in Fig. 3.
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Nl’r 0 N2’r 0 N3’r

O Yoo O e}

r r r

0 N, 0 N, 0

[8] -

Nl’z 0 N2’z 0 N3’z
N N

0 N, 1 0 Ny, —2 0
T T

L 0 0 0 0 0
Frc. 3.

The element stiffness matrix is given in
global coordinates by:

(k] = fl[B]T [p] [B] dvol (10)

where: dVol = rdrd®

To facilitate integration, the numerical
integration was performed with respect to
local coordinates 4,¢ of Fig. 2 and was ac-
complished using a four-point Gaussian
quadrature formula (Zienkiewicz 1971).

NUMERICAL STUDIES

Constrained  thick-walled orthotropic
cylinder

The finite-element analysis was evaluated
by comparing finite element results with a
closed form solution for the distribution of
stresses in an axially constrained (w =0 at
Z = Zy,, O equivalently e, =0), clamped
(v=10 at z = z,,,,) orthotropic cylinder sub-
jected to an internal and external pressure
(Lekhnitskii 1963). This closed form solu-
tion was chosen because deformation pat-
terns and stress distributions resemble
those expected in the cell models.

A suitable set of material parameters and
internal and external pressures were chosen
for purpose of comparison.

E'.. =100 G, =50 phy =02
E' =300 G’y == 40 w — 0.3
E’,, =200 G’y == 30 wa =045
a=10°
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0 N4’r 0 0
0 N—4 0 0
r
N3’z 0 Né’z 0
)
0 N, O 0
oo M
Ty Ty
0 0 0 1

Strain matrix B for axisymmetric quadrilateral finite element of Fig. 2.

piutvrnﬂl = 90()()
pt-xtol'lml = 15000
(units of E’, G’ and p are dynes cm™).

Results of the analysis presented in Fig. 4
were derived using the discretization

! o
§ -30.000F !
@ /
=
'; / Lo
— -20,000| z
7 /"/ o
bt =
c -10,000 Finite Element //r/}>/
; Solutions iClosed Farm Solution
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Fic. 4. a. Shear and normal stresses produced

in a pressurized orthotropic cylinder with axial
strains restrained and ends clamped; computed
axial forces were —32629 dynes and —32791 dynes
for the closed form and finite element methods re-
spectively. b. Discretization scheme employed for
finite-element analysis. Indicated specified forces
corresponid to applied internal and external pres-
sures of 9,000 and 15,000 dyne cm™ respectively.
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scheme of Fig. 4. It may be seen that the
plotted points from the finite-element re-
sults are in excellent agreement with the
solid lines derived from the closed-form
solution.
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Fic. 6. Tangential (v) displacements plotted
for value of z=0, 2, 13.5, and 14 cm for model

1-3.

Discretization scheme used for fiber model analyses.

Wood fiber models

The concentric orthotropic cylinder model
has been employed by Tang (1972) to
model the deformation of a wood fiber sub-
jected to an axial force. Improvements in
the analysis of these models can be
achieved using the finite-element model
previously described. Since the finite-ele-
ment analysis is a displacement formula-
tion, interlayer compatibility is automati-
cally insured. Application of the finite-
element analysis technique to wood fiber
model analyses requires only that a dis-
cretization scheme be employed that rec-
ognizes the material inhomogeneity across
a fiber wall.

The same six unrestrained models
analyzed by Tang (1972)% were modelled
using the discretization scheme of Fig. 5
so that effects of the analysis scheme on

*Models were either type I, representing radial
cell walls with larger fibril angles in S: and S., or
type II representing tangential walls. Each type
was analyzed for three different sets of elastic
constants for cellulose. The models are denoted

1-1, 1-2, I-3, 1I-1, 11-2 and II-3.
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Fic. 7. Axial variation of ¢.. and o, for model

1-3 plotted for r=0.905 cm. Shear stress o
must be zero on the end surface since no shear
stress or v displacement is specified. Normal stress
... will generally be non-zero on end surface since
w displacements are specified everywhere. Exact
value of 6., at z = 14 is, however, not determined
although fi ¢../6 dA = 1 on the end surface.

computed results can be evaluated in com-
parison to the results presented by Tang
(1972). Detailed results are presented only
for model 1-3. Figure 6 shows v displace-
ments for model 1-3 as a function of radius
for constant values of z. From symmetry
it can be shown that radial lines in these
models should remain straight during de-
formation, and except for the end effects,
this conclusion is verified by the finite-
element results. The end effect results
from the fact that ¢, shear stresses may
exist. Since o, shear stresses are not speci-
fied along the upper boundary, the net
twisting moment on any plane perpendicu-
lar to the z axis of the cylinder must be
identically zero, but locally o, shear stress
goes to zero everywhere along the bound-
ary z = 14. The v displacements along the
line z=14 are therefore not linear with
respect to the radial coordinate. The varia-
iton of o, and o, with respect to z for
model 1-3 is plotted in Fig. 7 for r = 0.905
em. Displacements and stresses predicted
for the models studied are produced by a
e, and ¢, = 1. The

specified axial strain e, =

axial force P produced by this strain is

given by
T
max
P =27 f o_ rdr .
2z

a1
r .
min
A global axial stress is defined
§ = (12)
m{rf -rZ. )
max min
and accordingly,
1 o
= 22 da = 1 (13)
A X

but, for the Tang models, the cross-section
area of cell-wall material is unity, there-

fore:
OVZZ
——dA = 1. (14)
A

The v displacement of the outer bound-
ary of the unrestrained fiber model 1-3 is
shown in Fig. 8 as a function of z with a
straight line fitted through zero and the
lower linear portion of the plotted data.
Predicted variation of v displacement with
7 is linear except near the upper boundary

v DISPLACEMENT (cm)
-
T

/
2/
0 | ! I 1 1 L I,
2 4 6 8 10 12 14
z(cm)
Fic. 8. Variation of tangental displacement

with z for model I-3 at r= 1.
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-1 Unrestrained M+P F1c. 10. Stress distributions obtained for model
1-3 according to Tang (1972).
-2 e~

Restrained

-1 - = "

Fic. 9. Stress distribution for model 1-3 with
no boundary shear restraint (a )and with boundary
shear restraint (b) calculated using finite-element
model.

of the model where end effects exist. The
rate of twisting ¢ per unit length of fiber
for unit elongation is predicted for the
models studied based on the v displacement
atz = 2;

2.0
v = 2r ° (13)
max
Therefore:
v
2.0
b= (16)

The radial distribution of stress obtained
for model I-3 using finite-element methods
is plotted in Fig. 9. Corresponding model

results obtained by Tang (1972) are given
in Fig. 10. Plotted stresses were computed
at the center of the first row of elements.
The distribution of stresses in models with
boundary shear restraint was also studied
using finite-element methods, and Fig. 9b
shows the stress distribution for model 1-3
when v displacements on the boundary
r=1 are specified equal to zero (ie.
boundary shear restraint). The v displace-
ment at z =2 and relative angles of twist
are given in Table 1 with corresponding re-
sults of Tang (1972) for all six models.

An estimate of the angle of twist of a
cylinder cell can be obtained on the basis
of the composite stiffness of the wall ma-
terial (Schniewind and Barrett 1969). For
two-dimensional analyses, the composite
wall compliances are given by

: -1
[s] = [r,(©),] an

where P; == volume proportion of the jh
layer. Application of a normal axial stress
will produce, in general, shear and normal
strains according to

et S1,
€2z = 8229 o, (18)
th S32

The angle of twist for a corresponding thin-
walled cylinder of unit length and radius
would be

(19)

&' = -3 o .
¢ th S32 z
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TapLe 1.
Model v2+0 6 = :—0 2.0 Tang (1972) ot 1T /4
(cm) (degrees cm_l)“-H (degrees cm_l) (degrees cm_l)
I-1 1.6108 46,14 110.90 39.71 1.162
I-2 2.3906 68.48 103.02 56.62 1.209
I-3 2.2861 65.49 334.78 57.56 1.138
I1-1 3.8545 110.42 193.17 97.60 1.131
I1-2 4,7661 136.53 41.79 113.80 1.200
II-3 4.0448 115.87 89.14 104.68 1.108

transverse displacement at z = 2 cm and r

Tt

1 cm for unit axial strain

angle of twist predicted using two-dimensional analysis

T

degrees of twist per unit length of cell of unit external radius under unit

axial strain

The angle of twist predicted using two-
dimensional analyses is also given in
Table 1.

The axial force required to produce unit
clongation for restrained and unrestrained
models can be estimated from the 2-D
analysis. For a unit area the axial force is
given by P =1/S..-1 for unrestrained cells
and for restrained cells

2
5
P - l/<522 -
33

(20)

Predicted axial forces are shown in Table
2 in comparison to results obtained from
the finite-element analysis.

DISCUSSION OF RESULTS

The results of the finite-element stress
analysis shown in Figs. 9a and 9b are in-
ternally consistent in that the relative
tangential stresses integrate to 0.00 = 0.02
over the radius of the cell and the rela-
tive axial stresses integrate to 1.00 %= 0.02
for all models studied. The results (Fig.
9a) differ substantially from the results ob-
tained by Tang. Since Tang’s approach is
questionable and his results were obviously

inconsistent as already discussed, little
would be gained by detailed comparisons.

Tt would be of interest, however, to make
a comparison between results obtained
by two-dimensional and three-dimensional
analyses. Results for single model fibers
with identical structural details and ma-
terial parameters are not available from
the literature, since as previously stated the
results of Mark and Gillis (1970) cannot
be used for this purpose. Such a compari-
son can be made on the basis of the calcu-
lated values of relative angle of twist
shown in Table 1 and axial forces shown in
Table 2. As may be expected on the basis
of the divergence in results for stress dis-
tribution, there is little numerical resem-
blance between the data of Tang and those
obtained by the finite-element method.
There is, however, fairly good agreement
between finite-element results and those of
the two-dimensional analysis, as may be
seen from Tables 1 and 2. Twisting angles
predicted by finite-clement methods are
from 11 to 20% larger than estimated by
two-dimensional methods, but maximum
axial forces differ by less than 3%. Similar
strain fields imply similar stress fields, and
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TasLe 2.
Model Unrestrained Restrained
Finite Element 2-D Finite Element 2-D

I-1 0.4965 x lOlldynes 0.5028 x lOlldynes 0.7631 x lOlldynes 0.7754 x lOlldynes
I-2 1.0640 1.0826 3.3756 3.4571

I-3 0.7507 0.7531 1.7395 1.7607

I1-1 0.6486 0.6495 1.6892 1.7013

1I-2 1.6280 1.6316 8.6656 8.7886

I1-3 1.4683 1.4366 3.9580 3.9758

hence our results do not indicate major dif-
ferences in the nature of the stress distribu-
tions predicted by two- and three-dimen-
sional analyses. A significant exception is
that the two-dimensional analysis is in-
capable of predicting radial stresses. Since
radial stresses are always less than 10% of
the axial mean stress (Figs. 9a and b}, this
may not be a serious detriment for 2-D
analysis thin-walled models of wood fibers.
Comparing parts a and b of Fig. 9 shows
that introduction of shear restraint tends
to reduce the radial variation of stress and
the maximum values of the normal stresses,
particularly in the S2 layer. This indicates
that an improved mechanical efficiency
may be obtained when the fiber is re-
strained. Obviously, this is not totally un-
expected since the fiber actually does have
boundary restraint in its natural environ-
ment. Shear stresses predicted for the S1
and M+ P layers in the unrestrained
models vanish on the application of bound-
ary shear restraint, verifying the assertion
presented earlier.

No attempt was made to allow for varia-
tions in microfibril angles in the radial as
compared to the tangential walls of a given
cell. Some type of law of mixtures ap-
proach might be used to calculate angle of
twist, but of course this would not lead to
a suitable assessment of stresses in such a
double-composite model. The data used by
Tang indicate that three-fourths of the wall

area is radial wall and one-fourth tangential
wall—in other words a highly flattened cell
cross section. A cylindrical model may not
be very appropriate for such a cell shape.
A real cell of more nearly circular cross
section, on the other hand, would probably
not have a very large difference in micro-
fibril angles in the two wall areas. For a
highly flattened cell cross section, a dif-
ferent finite-element formulation that al-
lows for a more realistic geometric model-
ling would be preferable.

The close agreement between finite-
element results and the two-dimensional
predictions for the models studied has
shown the value of the two-dimensional
analysis techniques for the analysis of thin-
walled cells that can be considered to have
a circular cross section. The finite-element
method presented, however, represents a
powerful approach of great general validity,
which will also allow accurate assessment
of stresses in thick-walled, circular, cylinder
models.

REFERENCES

Gicurs, P. P axp R E. Mark. 1973, Analysis
of shrinkage, swelling, and twisting of pulp
fibers. Cellul. Chem. Technol. 7:209-234.

Lexu~rrski, S. G, 1963.  Theory of elasticity of
an anisotropic elastic body. Holden-Day Inc.,
San Francisco, Calif.

Mark, R. E., ano P. P. GiLLis.
models in cell-wall mechanics.
2(2):79-95.

1970. New
Wood Fiber



CYLINDRICAL WOOD FIBER MODELS

ScaxiEwiNn, A, P, 1972,
wood fiber. In: B.

Elastic behavior of the
A. Jayne, ed. Theory

and  design of wood and fiber composite
materials.  Syracuse Univ. Press, Syracuse,
NLY.

ScuxiewiNn, A. P, oaxp J. D. Barrurr, 1969.
Cell-wall model with complete shear restraint.
Wood Fiber 1(3):205-214.

225

Tmmosuenko, S., axp J. N. Goomir. 1951.
Theory of elasticity. McGraw-Hill, New York.

Taxc, R. C. 1972. Three-dimensional analysis
of elastic behavior of wood fiber. Wood
Fiber 3(4):210-219.

Zienkiewicz, O. C. 1971, The finite element
method in engineering science. McGraw-Hill,
London.





