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ABSTRACT

This paper evaluates the performance of equilibrium moisture content (EMC) predictions using the least
squares regression equation given in The Dry Kiln Operator’s Manual (Simpson 1991). The fit of the
regression equation in The Manual was found to be adequate only when the dry bulb temperature is below
110°F. At temperatures above 110°F, it generally overestimates EMC. A new polynomial regression
equation is presented in this paper to predict EMC at dry bulb temperatures above 110°F. Comparisons
between the old and new regression equations show an improvement in the root mean squared error of the
predictions of about 44% when using the new equation. The proposed equation facilitates better control
of the drying process in computer-controlled kiln applications using prediction equations for EMC
estimates.
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INTRODUCTION

The most important and most widely used
method of kiln control in drying hardwoods is to
keep the dry bulb temperature (Tdb) and relative
humidity (RH) as close as possible to the speci-
fied value in hardwood kiln schedules. At any
particular constant setting of Tdb and RH, wood
eventually reaches a stable state where the mois-
ture content (MC) is constant and the wood nei-
ther loses nor gains moisture. This is the equi-
librium moisture content (EMC). Equilibrium
moisture content (EMC) is one of the critically
important factors associated with kiln-drying. It
has been demonstrated that effective control of
EMC can lead to significant reduction in kiln-
drying time and moisture content variability
over the drying period (Gattani et al. 2005), po-
tentially creating tremendous value to the drying
operation through increased kiln throughput. In
kiln-drying, the surface moisture content of
green wood quickly approaches the EMC con-
ditions in the kiln atmosphere, setting up a mois-
ture gradient between the exterior and the inte-
rior of the wet wood. As the EMC conditions
inside the kiln are changed, with each Tdb and
RH change in the kiln schedule, the surface MC
is also changed, promoting moisture movement
and reducing the average MC of the wood. EMC
conditions inside the kiln are essential to estab-
lish the moisture gradient in wood. If the wet
wood is allowed to remain in these EMC con-
ditions for a long period of time, the average MC
of the wood will continue to approach the EMC
value for the kiln atmosphere. The empirical
tables of the relationship between EMC, relative
humidity, and dry bulb temperature are given in
the dry kiln operator’s manual; this publication
also provides a least-squares regression equation
that can be used to derive EMC for a given RH
and dry bulb temperature (Simpson 1991).

With the advent of computer-controlled dry-
ing, statistical equations are becoming more
critical in providing the opportunity to calculate
and interpolate the EMC values for various RH
and Tdb values not in the table (Simpson 1991).
Various automatic and semi-automatic control
systems are available commercially that control

the various physical parameters of the kiln in
order to keep kiln conditions as close as possible
to targeted set points.

Multiple regression is a very well-known sta-
tistical method to represent the relationship
mathematically between a set of k independent
variables, also called predictor variables, and a
dependent variable or criterion variable (for ex-
ample, see Draper and Smith 1998, Montgomery
2001, and Neter at al. 1985).

A simple multiple linear regression equation
is of the form:

y = � + �1x1 + �2x2 + . . . . �k xk + � (1)

where y is the dependent variable or response,
the xi are the independent variables or regres-
sors, and � denotes a random error used to model
other sources of variability in the response not
explained by changes in the regressors. The er-
rors are usually assumed to be Normal (0, �2)
i.i.d. random variables.

A least squares estimation technique is usu-
ally employed to estimate the coefficients or the
parameters of the model. It is achieved by mini-
mizing the sum of squared errors (SSE) of the
observed values for the dependent variable from
those predicted by the model.

The least squares estimators of the parameters
�i are obtained by minimizing SSE with respect
to all �i:

SSE = ��yi − ŷi�
2 (2)

where ŷi � predicted value of y from the fitted
model.

If the response is suspected to be curvilinear
in nature, polynomial regression and its varia-
tions can be used to represent the function. Any
polynomial regression model with interactions
can also be modeled using least squares estima-
tion technique. A polynomial regression model
can be represented as:

y = � + �1x1 + �2x2 + �3x1
2 + �4x2

2 + �5x1x2

(3)

which is still linear in the parameters.
The polynomial model can be easily fitted by

transforming the variables x1
2 � x3, x2

2 � x4,
x1x2 � x5, etc., using the techniques to fit a
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multiple linear regression model. One of the po-
tential drawbacks of polynomial regression can
be the extrapolation, especially with higher or-
der terms in the model.

Matrix algebra for multiple regression

Suppose we have collected n observations of
the response at different conditions of indepen-
dent variables. Let

y =�
y1

y2

y3

..

..
yn

� , X =�
1 x11 x12 .. x1k

1 x21 x22 .. x2k

1 .. .. .. ..
1 .. .. .. ..
1 .. .. .. ..
1 xn1 .. .. xnk

� ,

� =�
�1

�2

�3

..

..
�k

� and � =�
�1

�2

�3

..

..
�n

� (4)

Thus, in matrix notation, the regression model
can be represented as

y = X� + � (5)

To obtain the least squares estimators �̂, we
need to minimize the sum of squared errors
(SSE), which in vector notation, is given by the
equation:

SSE = �
i=1

n

�i
2 = ��� = �y − X����y − X�� (6)

The function is convex; thus after minimizing
the above function by differentiating it with re-
spect to parameters �, we get the following or-
dinary least squares (OLS) parameter estimates
of the model:

�̂ = �X�X�−1 X�y (7)

Residual diagnostics

Several statistics and plots are utilized to test
the adequacy of the regression model fitted. The
explanation given here is not meant to be ex-
haustive, yet it will provide the reader a brief
overview of residual diagnostics.

While building a regression model, various
assumptions are made. Residual diagnostics is a
procedure to test the validity of those assump-
tions. Minor violations may have little effect on
the efficacy of the model, but major departures
can seriously hamper the model’s performance.

Some of the important statistics used in sta-
tistical literature are explained below:

1) R2 Statistic: R2 is also referred to as coeffi-
cient of determination. It is the ratio of vari-
ability explained by the model and the total
variability of the observations. Its value can
be between 0 and 1. A high value of R2 sta-
tistic is desirable. Mathematically, it can be
defined as:

R2 = 1 −
SSERROR

SSTOTAL
(8)

2) Adjusted R2 Statistic: One problem with the
R2 statistic is that it can be misleading when
comparing models with different number of
parameters. Adding a new parameter to a
model always increases R2 without consider-
ation for statistical significance.. To obviate
this problem, the adjusted R2 statistic is used.
Adjusted R2 does not increase if an insignifi-
cant variable is added; on the contrary, it of-
ten decreases. Algebraically,

Adj R2 = 1 −
SSERROR�dfERROR

SSTOTAL�dfTOTAL
(9)

3) PRESS (Prediction Sum of Squares): PRESS
is defined as the sum of squares of residuals
for each observation resulting from dropping
out that observation and predicting it on the
basis of all other observations.

Predicted Residual = PRESIDi =
RESIDi

1 − hi

PRESS = �
i=1

n

PRESIDi
2 (10)
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where

hi = xi�X� X�−1 x�i

Assumptions of regression modeling

1. Normality assumption: If the model fit is ad-
equate, then the residuals should be normally
distributed across the mean 0.

2. Non-constant variance: Observations or data
points should have the same underlying av-
erage squared error, or variance, for the re-
gression model to be valid. If the residuals or
errors have unequal variance for different
values of X’s, the assumption of constant
variance is violated.

3. Independence: If the errors are independent,
there should not exhibit pattern or structure.
If the residuals depart from 0 in systematic
fashion, assumption of independence is vio-
lated.
Various procedures and methods are available

in the statistical literature to eliminate the viola-
tions. One such method is transformation of the
dependent variables. The various assumptions of
regression can be assessed with different plots
and numerical methods.

Multicollinearity

Multicollinearity is also one of the profound
problems found in polynomial regression. Mul-
ticollinearity arises due to a lack of independent
variation in the predictor variables (X’s). For re-
gression models, the addition of more explana-
tory variables does not necessarily increase the
goodness-of-fit of the regression. In fact, linear
combinations of the existing variables may ap-
proximately predict the added variable and
hence the added variable provides little new in-
formation. Multicollinearity has to be consid-
ered when the modeler is interested in relative
importance of effects of predictor variables on
dependent variable and the magnitude of effect
of predictor variable.

There are various ways in which the effects of
multicollinearity can be reduced. Centering is
one of the procedures used in conjunction with
polynomial regression to reduce its effects.
When predictor variables are centered, it implies

that X is represented by deviations across its
mean X. This is done by obtaining a new set of
predictor variables by subtracting the mean
(Xorg) from all the Xorg. When multicollinearity
exists in a data set, an estimation method other
than OLS is suggested, such as ridge regression.
For more details about ridge regression and
other methods, please refer to Hoerl and Ken-
nard (1970).

STATEMENT OF THE PROBLEM

There are a total of 826 values of RH, EMC,
and Tdb in Table 1–6 given in the Dry Kiln
Operators Manual (Simpson 1991). The obser-
vations were tabulated for dry bulb temperatures
of 60°F, 65°F and so on. The problem presented
to the research team was the degree of error
associated with the published approximation of
these 826 observations. The equation given in
Simpson (1991), page 40, is an ordinary least
squares regression fit of the data in the table, and
yields:

EMC =
1800

W � kh

1 − kh
+

k1kh + 2k1k2k2h2

1 + k1kh + k1k2k2h2�
(11)

where EMC is equilibrium moisture content
(percent), h relative vapor pressure, and

W = 330 + 0.452Tdb + 0.00415Tdb
2

k = 0.791 + 0.000463Tdb − 0.000000844Tdb
2

k1 = 6.34 + 0.000775Tdb − 0.0000935Tdb
2

k2 = 1.09 + 0.0284Tdb − 0.0000904Tdb
2

This model has 12 parameters. If the fit of this
equation is good, then the calculated error or
residual between the actual and predicted value
of EMC should be small, with a mean of zero
and a constant and small variance. An additional
regression assumption used when the model is
used in statistical inference (e.g., in building
confidence intervals for the predictions), is nor-
mality of the distribution of the errors.

For each of the 826 values of the regressors,
the error between actual EMC (as determined
from Table 1–6 of Simpson 1991) and predicted
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values (as calculated from Eq. 11) was calcu-
lated. Figure 1 shows a plot of the error vs. the
dry bulb temperature. These errors represent the
same error as illustrated in the example given in
Simpson (1991), page 40, last paragraph.

Figure 1 clearly suggests that Eq. (11) violates
the assumption of independence and zero mean
of the errors. There is a systematic pattern in the
errors and they are not normally distributed.
From Fig. 1, the fit of the equation as seen from
the graph is adequate only while dry bulb tem-
perature values are below 110°F. Above 110°F,
the regression equation predicts a higher esti-
mate of EMC than the empirical values. The
differences in actual and predicted value of
EMC are as large as 1.5 under (positive error)
and 1.0 over (negative error) actual EMC.

OBJECTIVE

The objective of this study is to specify a
more accurate, precise, and therefore more use-

ful general model for prediction of EMC, and
demonstrate its performance versus the Simpson
1991 model over the entire range of normal
hardwood drying practice.

METHODOLOGY

Since the published Eq. (11) is shown to be
ineffective for accurate predictions of EMC
above 110°F, the objective of developing a new
equation that would demonstrate significantly
better fit above 110°F was undertaken. The SAS
statistical software package was used to perform
the analysis. The following steps summarize our
methodology:

1. A polynomial model was developed to ad-
equately describe and capture the complex
relationship between EMC, RH, and Tdb.
Only the 432 entries for which dry bulb tem-
perature is greater than 110°F were used.

2. After fitting the specified polynomial model

FIG. 1. Error distribution vs. dry bulb temperature of predictions of regression Eq. (11).
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using SAS, various goodness-of-fit statistics
were observed to check the accuracy of the
model. If the model fit was found to be in-
adequate, then step 1 was repeated with a
newly specified polynomial model.

3. Residual diagnostics were analyzed to con-
firm that none of the underlying assumptions
of regression analysis stated above were vi-
olated.

After several iterations and the trial of various
methods to remove problems of multicollinear-
ity and non-constant variance, the following ad-
ditional measures were taken.

1. To reduce the problem of multicollinearity, a
new model was built after centering the pre-
dictor variables.

2. The non-constant variance was removed by
using the square-root transformation on EMC
values. So, the model was fitted on √EMC
instead of EMC values.

RESULTS AND DISCUSSION

The resulting regression model for predicting
the values of EMC above 110°F dry bulb tem-
perature is:

�EMC = 7.30548 + 11.64339h − 0.00792Tdb

− 0.37436w1 − 0.39562w3

+ 0.06902w2
2 + 0.00518w3

2

+ 0.00129w1w4 − 0.00048153w2w4

+ 0.61135x1 (12)

where

EMC = Equilbrium moisture content

h = Centered relative vapor pressure
= horiginal − .58537037

Tdb = Centered dry bulb temperature
= Tdboriginal

− 157.5

w1 = 0.0001 + 0.0025Tdb + 0.0007Tdb
2

w2 = 0.2 + 0.06Tdb − 0.00004Tdb
2

w3 = 14 + 35.5h + 20.7h2

w4 = 1 + .01hTdb + 0.1h2Tdb
2

x1 =
�1 + w2 + w3�

�w1
2 + w3

2�

The ANOVA statistics for this model are pre-
sented in Table 1.

From the ANOVA Table 1, we see a high
adjusted R2 (.9990), low root mean square error,

TABLE 1. ANOVA table of model Eq. (12).
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and highly significant parameter estimates. Fig-
ure 2 demonstrates that the fit of model (12) is
adequate, showing an excellent approximation
of normality of residuals and adequate disper-
sion of residuals versus predicted values.

Comparison of performance of old and new
regression equations

Figure 3 shows the error distribution (actual-
predicted) of the old and new regression equa-
tions above 110°F. For comparison purposes,
the scale on the plots was kept consistent. As
clearly seen by comparing the two graphs in Fig.
3, the new model is a superior predictor of EMC.
While the old model shows an obvious system-
atic bias (i.e., the errors differ from zero on av-
erage), the new model exhibits zero mean errors
(no bias), normality in dispersion of EMC pre-
dictions within a tighter range of values. Table 2
shows some of the comparison statistics.

There is a 44% reduction in root mean square
error for model (12) as compared to model (11).

This implies that the new model is predicting
significantly more precisely. The distribution of
errors is normal in Eq. (12), showing no system-
atic bias, indicating that contrary to model (11),
the new model (12) is accurate. We point out
that the new model has 10 parameters, as op-
posed to 12 parameters in model (11), and hence
is less complex.

CONCLUSIONS

The equation published in Simpson (1991)
has significant statistical deficiencies for predic-
tion of EMC above 110°F. Equation (12) of this
paper demonstrates better prediction of EMC
above 110°F. The new model for EMC has
fewer parameters (12 vs. 10) than the existing
model, and shows considerable improvements in
the quality of the predictions when the dry bulb
temperature exceeds 110°F.

An application of this work is the use of the
new model developed here for process control
purposes. The new fitted model provides better

FIG. 2. Residuals vs. predicted EMC values for Eq. (12).
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predictions which can allow a kiln operator to
find better set points of the drying process. In
such cases, the smaller prediction error variance
of the new model can result in smaller control
error variance, with the resulting savings in the
operation of the kiln.
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FIG. 3. Top: Error distribution above 110°F for predictions of regression Eq. (11); Bottom: Error distribution above
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TABLE 2. Comparison statistics of Simpson (1991) model
(11) and new model (12).

Equation (11) New Model (12)

Sum of Squared Errors 48.78485 9.83799
Maximum positive error 1.49 0.88
Maximum negative error −1.008 −0.525
Mean Absolute Error 0.112928 0.0228
Number of parameters 12 10
√MSE � �̂2 0.3408 0.1526
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