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ABSTRACT 

Determination of optimal bucking and sawing policies is linked in a common model. The core of 
this model is a linear program (LP) that selects stem bucking and log sawing policies to maximize 
profits given an input distribution of raw material. Product output is controlled by price-volume 
relationships that simulate product demand curves. The model uses a three stage solution process 
performed iteratively until identical solution bases are obtained. A variation of the Dantzig-Wolfe 
decomposition principle is used, linking the three models through the use of the Lagrange multipliers 
from the LP. The procedure is demonstrated for a sample sawmill. The revenue gain from using the 
policies suggested by the integrated model over those found by the bucking and sawing programs 
working separately was found to be 26O/o-36%. 

Keywords: Sawmill planning, linear programming, decomposition, process control. 

INTRODUCTION 

The production of dimension lumber at a sawmill involves a complex sequence 
of decisions at the various manufacturing stations as a log is processed into 
component products. These manufacturing stations include log bucking, which 
reduces log stems into shorter logs; primary sawing at the headrig, which cuts the 
bucked logs into rough lumber; and secondary processing, which edges, resaws, 
and trims the rough lumber into its final green dimensions. In a modern sawmill, 
many of these decisions are automated by using computer controlled optimization 
algorithms working from a set of known or "guessed" final product values. The 
objective of the mill is to produce a mix of products that maximizes net revenue 
to the mill. 

Two problems are inherent in this approach. First, the set of product values 
used in the algorithms is not necessarily the correct set to maximize net revenue. 
Determining this set of product values is a complex and time-consuming problem 
in itself. Second, each manufacturing station typically operates in isolation from 
those preceding and following it. Optimizing a set of individual manufacturing 
stations is not the same problem as optimizing the production of the mill as a 
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whole. This paper develops a planning model to allow a random length softwood 
dimension lumber mill to target its production from week to week based on its 
restricted processing technology, current marketing data, and available raw ma- 
terial. The technique used in this study integrates the log bucking, sawing and 
allocation problems into a single model, building from the work of many previous 
researchers. 

Log allocation models that help balance mill inventory levels and assign logs 
to competing facilities have been available for some time. Linear programming 
(LP) applications were developed by Row et al. (1 965), Jackson and Smith (1 96 l), 
and Pearse and Sidneysmith (1966). Sampson and Fasick (1970) extended these 
models to allocate logs to competing conversion stations within a single mill 
facility. These models suffer from two principal problems. First, each possible 
sawing pattern at the headrig uses a separate column in the LP. The same is true 
of the bucking patterns. To enumerate all of the possible sawing and bucking 
patterns would create a matrix of technical coefficients so large as to make the 
resulting model computationally infeasible. However, the ability to select between 
alternative bucking and sawing patterns is one of the principal benefits of the log 
allocation model. Therefore, the full set of possible patterns must be included if 
the model is to perform correctly. In the models discussed above, a very small 
subset of the possible patterns could be included. The second problem deals with 
the formulation of the mill's marketing conditions. These models essentially max- 
imized the revenue associated with producing a fixed level of output. This for- 
mulation bypasses the determination of the output mix that will maximize the 
revenue to the mill, one of the most interesting and pressing concerns of the mill 
manager. 

An early stem bucking model was developed by Pnevmaticos and Mann (1972), 
using dynamic programming to maximize the net value of a series of logs cut 
from a single stem. The value of the individual log segments themselves must be 
known to use this model, an interesting and useful problem in itself. Briggs (1 980) 
and later Faaland and Briggs (1984) integrated a log sawing algorithm into the 
bucking model, which eliminated the need to value the individual log segments 
and allowed the sawing pattern to change, depending on the value of the actual 
boards sawn from the bucked logs. However, since this model operates on a single 
stem at a time, it is not capable of considering the problem of determining optimal 
output from the sawmill as a whole. 

The first full integration of the bucking, sawing, and allocation model was 
proposed by Gluck and Koch (1973). McPhalen (1978) developed a log allocation 
model for a mill complex that made a stem bucking problem based on dynamic 
programming (DP) auxiliary to the allocation LP, and used the Dantzig-Wolfe 
decomposition principle (Dantzig and Wolfe 1960) to link the models. A sub- 
routine to the stem bucking algorithm allowed the DP to choose between four 
different sawing patterns for determining the value of the resulting bucked logs. 
Mendoza (1980) created a similar model for a regionwide planning system, using 
regional yield tables as the basis for the matrix of log sawing technical coefficients. 
Eng et al. (1986) used the same principle to develop a planning model for optimal 
wood bucking practices. All three of these models assumed constant final product 
prices over a fixed level of output. 

The model developed in this paper follows the example of McPhalen in that 
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linear and dynamic programming are employed using the Dantzig-Wolfe decom- 
position principle, with two innovations. A log sawing algorithm is included as 
a sub-model to the LP to generate all possible sawing patterns in the solution 
space. A system of price-volume relationships is used to control output rather 
than fixed output and fixed prices. 

Three individual models are presented in this paper to address each aspect of 
the production planning model. Since these models are constructed for a particular 
manufacturing facility, their application is mill, rather than region specific. The 
individual models are: 

1. A cutting pattern optimizer that simulates the cant sawing of a log with a 
given diameter, taper and length, and determines the optimal sawing pattern 
given lumber values by dimension and length. 

2. A stem bucking model that solves the optimal bucking policy. 
3. A log allocation model that introduces production constraints and optimizes 

the output of a sawmill based on input from 1 and 2 above. 

The three models are linked and solved simultaneously, the first two programs 
as sub-problems to the LP. Suggested cant breakdown patterns and log bucking 
solutions are generated for the LP as a function of the current marginal value of 
both primary and secondary products. The LP then chooses between the set of 
"suggested" patterns rather than the full set of feasible patterns. The set of "sug- 
gested" patterns continues to grow until no new pattern increases the objective 
function of the LP. At this point the problem is solved. 

THE CUTTING PATTERN OPTIMIZER 

Limitations on the types of patterns possible for a given mill are imposed 
primarily by the headrig and to a lesser extent by downstream processing centers. 
The cutting pattern optimizer outlined below is designed for a chipper-canter 
QUAD bandmill. Figure 1 shows the placement of saws and chipper heads in the 
headrig, and Fig. 2 shows the resulting placement of boards in the sawn pattern. 
The chipper heads open the face of the log and provide a smooth edge for the 
outside side boards. The pattern is symmetric about a vertical axis running through 
the center of the log. The bandsaws remove up to 4 side flitches, which drop off 
the chain at the headrig and are camed to secondary processing centers, such as 
an optimizing edger, which determines the width of the board that is to be taken 
from each flitch. After processing at the headrig, the cant is rotated 90 degrees, 
and laid flat on a conveyor. One edge of the cant is set against a fixed fence and 
the cant is run through a gang saw. The top and bottom boards from the cant 
may then also travel to the edger. All boards are transported to a trimmer, which 
trims them to the best length. The four stations where optimization occurs in this 
mill are the headrig, the gang, the edger, and the trimmer. 

Mathematical structure 

The optimal pattern for a given cant width is built in four steps: 

1. Build the largest full length cant possible. 
2. Maximize the value added due to side boards. This step represents a sub- 

problem utilizing a recursive procedure. 
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FIG. 1. Placement of saws and chipper heads in the chipper-canter QUAD bandmill. 

3.  Maximize the value added due to top and bottom boards. This step is also 
a sub-problem similar to number 2. 

4. Remove one board from the cant and repeat step 3. If total value goes down, 
the pattern is complete; if value goes up repeat step 4. 

These steps are performed sequentially. All four steps are performed for each 
possible cant width. The highest valued cant width is then chosen as the optimal 
pattern. 

Step 1. -Using the Pythagorean theorem, the largest cant height (highest rect- 
angle of width CW) that can be fit into a circle representing the small end diameter 
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Small End Dia = 17.8 In Sweep= 0.0 In Length = 20 Feet 

I I 

Side View CF Percent Value 

Total Lumber (BF) 378.67 25.85 64.87% $106.47 
Chip Volume (BDT) 0.15 1 1.17 28.04% $ 5.28 
Sawdust (BDT) 0.04 2.82 7.09% $ 0.38 

FIG. 2. A sawing pattern for the QUAD bandmill developed by the cutting pattern optimizer. 

of the log is given by the relationship: 

CH = 2*{r2 - (0.5*CW)2}0.5 

where: 

CH = maximum cant height in inches 
r = radius of the log at the small end 

CW = green target width of cant. 

The maximum number of cant boards with nominal thickness i that can fit inside 
this cant is: 

NB = INT{(CH + SK)/(TS, + SK)} (2) 

where: 

NB = max number of boards of a given thickness that will fit in a log of small 
end diameter 2r 

TS, = target size of nominal thickness i 
SK = saw blade kerf. 

NB must be an integer. The actual cant height used is then determined by: 

CH = NB*TSi + (NB - l)*SK. (3) 
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A feasibility restriction is placed on the minimum allowable cant height as 
compared to the diameter of the log to ensure that it will ride correctly on a 
conveyor after sawing. If the maximum possible cant height falls below this level, 
the cant pattern is discarded without further optimization. 

Step 2. -This step determines the optimal side boards to be included in the 
pattern and is solved using a recursive relationship. For a log with small end 
diameter (sed) d, length K, and taper t, the problem is expressed mathematically 
as: 

Find the n, i, j, and k so as to: 

subject to: 

{(0.5*CW + n*SK + in-, + in)2 + (0.5*jn)2}0.5 < r d,t,k ( 5 )  
n = 1, 2 Board number (1 is inside board, 2 is outside) 

where: 

p(n, i, j, k) = price for board n in thickness class i, width j, and length k 
pXLV, n, i, j, k) = resulting value of fiber when board n is removed from log 

LV,,,, = cubic volume of a log of sed d, length k, and taper t 
in = green target thickness (in.) for board number n 
jn = green target width (in.) for board number n 
kn = length of board n 

CW = cant width (given by step 1) 
r,,,, = radius of log of sed d and taper t, at k ft from the large end 
SK = saw kerf. 

The problem is to maximize the sum of the value of the side boards plus the 
resulting fiber, subject to the constraint that the outside corner of the board is 
within the radius of the log at that length (i.e., no wane present). The algorithm 
is made more efficient than an exhaustive search by organizing all boards into 
thickness classes. This is because the only factor that has an effect on the feasability 
of outside boards to be added is the thickness of the inside side board. The width 
of the inside board only affects whether or not it itself is feasible. The problem 
is then to find the highest valued product in each thickness class that is feasible 
for the inside side board, and pair this with the highest valued feasible board for 
the outside side board. Also, the algorithm is more efficient if the length of the 
board (k) varies on the inner loop. As soon as a given length is found to be 
infeasible, it is not necessary to check longer lengths since they, too, will be 
infeasible. 

Step 3. -The third step in the program is solved in a manner similar to step 
2, except that the presence of the bottom board makes the structure of the al- 
gorithm slightly more complicated. The mathematical structure of the problem 
is to maximize (4) above subject to (5) with n = 1, 2, 3 (where n = 1 is the bottom 
board in the pattern), and: 

k = 8, 10, 12,. . . K i f n  > 1 
= K i f n  = 1 
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The restriction on k when n = 1 holds because the bottom board is not affected 
by log taper, i.e., they must be full length because the cant is sawn with a fixed 
fence. The algorithm used for step 3 is essentially the same as that for step 2, 
except that potential bottom boards are not organized into thickness classes since 
both the thickness and width of this board affect the remaining decisions to be 
made. When n > 1, the boards are classed in thickness groups to reduce the 
number of iterations in the algorithm as above. Also, since the removal of the 
side boards occurs first, a restriction is placed on the feasibility of top and bottom 
boards that the maximum width of these boards must be less than or equal to 
the cant width. Any potential product with width greater than the cant width is 
not examined in step 3. 

The stem bucking model 

The stem bucking model's function is to determine the optimal combination 
of bucked logs that should be cut from a long length stem at the mill. 

Mathematical structure. -The problem for a given stem is to find the xij that: 

Max 2 xijaiJ 

Subject to: 

xij 2 0, integer 

where: 

x ,  = number of logs of sed i and length j 
a ,  = value of log with sed i and length j 
L = stem length 

This problem is solved in a DP framework using the knapsack problem and 
fixed intervals of cummulative log length termed cutpoints, measured from the 
small end of the log. The optimal value function is: 

f(n) = maximum value of stem from cut point n back to cut point zero. 

The fundamental recurrence relationship is: 

f (n) = max{aij + f(n - j)} 
J 

with the boundary condition, 

Implementation. -To allow for log trim, cut points are set on 25-inch intervals. 
Thus, a resulting 16-ft log would have 8 inches of trim allowance. The values for 
the log segments (the a,'s) are obtained as the Lagrange multipliers from the 
master problem (which is developed below). 
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The log allocation model 

The log allocation model is the master linear programming model which uses 
the cutting pattern optimizer and the stem bucking model to generate columns. 
The purpose of the allocation model is to distribute materials to various manu- 
facturing stations, and to select the appropriate bucking and sawing strategies to 
maximize the objectives of management. The key variables in the maximization 
are the lumber produced (LUM-SALES,,,), the stem bucking solutions 
(STMBUCKsB), and the log sawing solutions (LOGS-SAWN,,). 

Mathematical structure. -The general structure of the log allocation model used 
is to maximize net returns subject to four types of constraints. Net returns would 
be defined as the proceeds received from the sale of products at the mill level less 
the cost of producing them. The objective function used is piecewise linear to 
model decreasing sales prices as production increases. 

The mathematical formulation of the model is: 

Maximize: 

+ {RNDWD-FIBER + GRN-CHIPS) *FIBERPR 

- { STEM-PRCH * STEMS-PR} - {HOURS,* COST-HR,} 
K 

- TOT-OPERCOST - TOT-FIN-COST 

Subject to: 

q 

2 2 {LOGS-SAWNLc} *HRS-PERCCFL - HOURS, = 0 (13) 
L C 

2 2 z {LUM-SALES,,} *HRS-PER_MBFiIq - HOURS, = 0 (14) 
i l q  

2 2 {STM-BUCKsB*RNDWD-RECOVsB} - RNDWDXBER = 0 (15) 
S B 

2 2 {LOGS-SAWNLc*FIBERRECOVLC} - GRN-CHIPS = 0 (16) 
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2 2 {LUM-SALESi,,}*FTN-COSTilq} - TOT-FIN-COST = 0 (18) 
i l q  

LUM-SALES,,, 5 SALES-LIMIT,, 
(19) 

HOURS, 5 AVAILHRS, 
(20) 

STEM-PRCH I AVAILSTEMS 
(21) 

Nonnegativity on all variables 

where: 

AVAIL-HRS, = Total available hours for machine center K. 
AVAIL-STEMS = Maximum cubic volume of raw material available 

over the planning period. 
COST-HR, = Cost of an hour of time for process K. 
FIBER-PR = Price received for wood fiber in $/ton. 

FIBER-RECOV,, = Recovery of chip fiber in percent when sawing a log 
in class L using sawing policy C. 

FIN-COST,,, = Cost in $/MBF for finishing, marketing and ship- 
ping lumber of dimension i, length 1 and demand 
group q- 

GRN-CHIPS = Total amount of chip fiber produced as a by-product 
of sawing logs into lumber. 

HOURS, = Total hours used in process K, where K = 1 for the 
sawmill, K = 2 for the planer mill. 

HRS-PER-CCF, = Hours used to saw one cunit of logs in log class L. 
HRS-PELMBF,, = Hours used to finish one MBF of lumber of dimen- 

sion i, length 1 and demand group q. 
LOG-RECOV,,, = Percent of volume in stem class S which will be 

allocated to log class L when using bucking poli- 
cy B. 

LOGS-PR, = Price received for logs in log class L if sold on open 
market. 

LOG-SALES, = Cubic volume of logs sold on market in log class L. 
LOGS-SAWN,, = Cubic volume of logs in class L which are sawn using 

sawing policy C. 
LUM-PR,,, = Price of lumber in $/MBF by dimension i, length 1, 

and demand group q. 
LUMRECOV,,,, = Recovery in MBF/CCF of lumber with dimension i 

and length 1 obtained when sawing a log in class L 
using sawing policy C. 

LUM-SALES,, = Amount of lumber sold of dimension i, and length 
1 in demand group q. 

OPELCOST,,, = Operating cost in dollars per MBF for overhead in 
producing lumber of dimension i, length 1 and de- 
mand group q. 

RNDWD-FIBER = Total amount of roundwood fiber produced by buck- 
ing logs to segments smaller than 8 ft. 

RNDWD-RECOV,, = Recovery of roundwood fiber in tons per CCF when 
bucking a stem in class S using policy B. 
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SALES-LIMIT,,, = The maximum amount of lumber of dimension i, 
length 1 that can be sold in demand group q. 

STEM-PRCH = Cubic volume of stems purchased (raw material) by 
the sawmill. 

STEMS-PR = Price per cunit of raw material purchased. 
STM-BUCK,, = Cubic volume of stems in stem class S which are 

bucked using policy B. Stem class S refers to a small 
end diameter and length. 

O/o-STEM-DIST, = Percent of raw material found to be in stem class S 
when purchasing a cunit of STEM-PRCH. 

TOT-FIN-COST = Total finishing cost in dollars. 
TOT-OPELCOST = Total sawmill labor and overhead cost in dollars. 

The objective function maximizes the value of all products produced minus 
production costs. Lumber products are divided into demand groups (q), each with 
a separate price. The volume of sales in each demand group is limited by the 
upper bound on sales SALES-LIMIT,,,. In this formulation the price received for 
a product in demand group q must be higher than that received for demand group 
q + 1. This provides the price driven controls on lumber production. Fiber logs 
are sold as outside sales through the variable LOG-SALES,. Production costs 
come in as a cost per hour for the sawmill and finishing mill. Other costs which 
are not included in this hourly charge can be charged at a rate per MBF through 
the operating cost and finishing cost. Raw material costs are handled with the 
variable STEM-PRCH. 

Constraints (10) ensure that no more stems are bucked than are input into the 
mill. Constraints (1 1) allocate each bucked log to one and only one process. For 
a complex mill, valid processes might be a Quad mill line, a Chip-N-Saw mill 
line and outside sales. These equations contain the matrix of technological 
coefficients that convert stems into logs (LOG-RECOV,,,), which are construct- 
ed by the stem bucking program. Constraints (12) contain the matrix of techno- 
logical coefficients that convert logs into lumber (LUMRECOV,lLc), the columns 
of which are constructed by the cutting pattern optimizer. These constraints may 
also be broken into subgroups, with each subgroup handling a separate manufac- 
turing line. Constraints (12) also perform the function of allocating the lumber 
produced into each demand group. Upper bounds (constraint (1 9)) are placed on 
each of the demand groups as necessary to mimic pseudo-demand curves. 

Constraints (13) and (14) are mill production and capacity constraints that 
ensure that no more than the maximum amount of sawing hours and finishing 
hours are used by the mill. Constraint (1 5) accumulates chip fiber recovered from 
the sawmill process, and (16) accumulates roundwood fiber recovered from the 
bucking station. Coefficients in these two constraints convert chip volume to 
weight. Constraints (17) and (18) accumulate operating and finishing costs for 
producing lumber. These can contain items such as drying costs, overhead, or 
any other costs not explicitly charged out on an hourly basis. Note also that these 
charges vary by dimension, length and demand level. Thus, if the mill exhibits 
increasing costs these may be input in a manner similar to the lumber price curves. 

The resulting matrix for the LP model is shown in Fig. 3. The constraints run 
down the page from (10) to (1 8) in the groups discussed. Constraint types (1 9) 
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FIG. 3. Matrix for the LP model. 

through (21) are handled as upper bounds on variables (row 2 in the diagram). 
The objective function is located in row 1. 

Integration of the three models 

Using the cutting pattern model as an example, note that the objective function 
is: 

Maximize: 

This model chooses a sawing policy for a given log class that maximizes the 
value of the lumber produced. The ril's are the Lagrangian multipliers for the 
associated constraint (1 2) in the LP model. When the sawing submodel is called, 
the LP passes the current marginal values for each lumber product. Therefore, 
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the cutting pattern optimizer is able to determine the sawing policy which will 
have the largest positive impact on the objective function of the LP. The current 
best policy is then added to the LP tableau as a new column. 

A flow chart of the integrated model is shown in Fig. 4. The procedure is as 
follows: First the cutting pattern generator reads the current marginal value of 
each lumber product by dimension and length, which is output from the LP. The 
program then develops one sawing pattern for each log class using these lumber 
values. The cutting pattern generator then builds a file containing the generated 
columns that will be passed to the LP and maintains a list of the columns that 
has been generated so far (to prevent duplicate columns). Next, the stem bucking 
model reads the shadow prices for log segments generated by the LP, and uses 
these to generate a bucking pattern for each stem class. Again a list of all columns 
added is kept to prevent duplicate columns. The log allocation model then reads 
in all available columns to this point and obtains an optimal solution. If this value 
has increased by less than a specified value, the problem is solved. Otherwise the 
program execution repeats. 

APPLICATION 

The methodology outlined above was used to build a model supporting the 
production planning function of a medium sized QUAD sawmill producing rough- 
ly 80 MMBF of dimension lumber annually. The model is used for production 
control and inventory management. The marginal values for lumber and logs 
developed by this model are used to control the process control logic of the 
automated log bucking (merchandising) station, headrig setworks, trimmer and 
edgers. 

Background information 

This sawmill produces Douglas-fir and HEM-FIR dimension lumber consisting 
of 2 x 4's, 2 x 6's, 2 x 8's, and 2 x 10's in random lengths varying from 8 to 
20 ft. The market for these products is variable so that consistent production of 
a set product mix from week to week results in a lopsided inventory with numerous 
shortages and surpluses. The raw material is in the form of trucked woods bucked 
stems ranging from 8 to 44 ft long, and 4 to 16 inches in diameter at the small 
end. The average stem has a small end diameter of roughly 7 inches and a 30-ft 
length. 

Stems travelling into the sawmill are optically scanned at a computer controlled 
bucking station where the dynamic programming model outlined above deter- 
mines the best bucking policy. The logs then travel to a QUAD headrig, where 
they are scanned again, and the optimum sawing strategy is executed. Outside 
flitches travel to an optimizing edger, which determines the best board dimension 
and length to take from the flitch. All boards then travel to an optimizing trimmer. 

The optimization stations require a table of values by dimension and length 
for the different lumber or log segment products produced at that station. However, 
as discussed earlier, the values used for these products must reflect a whole array 
of complex issues such as the strength of the market, the raw material available, 
inventory levels and sawmill technology. Typically, using fixed prices results in 
the overproduction of products with shallow markets, because the prices of such 
products will in fact fall as output expands. Fixed prices in general do not reflect 
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the market realities facing a sawmill. The solution used in this example is to use 
the shadow prices from the log allocation model as the input to the three opti- 
mization stations. 

The model is designed as a weekly planning model. Each week the raw material 
input is adjusted to reflect the following week's logs. Lumber prices in the model 
are adjusted to reflect current markets and inventory levels. For example, if too 
many 8-ft long 2 x 4's were produced the previous week, the price structure is 
altered to inhibit their production. The model is then employed and the resulting 
forecasted output distribution examined. If management detects a problem with 
the proposed production, the price structure is altered appropriately and the 
process repeated. Otherwise the new shadow prices are obtained and put into the 
decision logic ofthe optimization stations. The production forecasts for the coming 
week can then be used by marketing to develop a sales plan. 

Inputs 

The raw material input mix used by the model is obtained by segregating the 
actual raw material received by the mill into stem classes. The actual stem dis- 
tribution was determined from output by the merchandizing station. Stem classes 
are defined by three attributes of the stem: small end diameter, length, and taper 
class. For this example problem, all stems were assumed to have a constant taper 
of 1% (roughly 1 in. in 8 ft). 

The model was configured to accept up to four levels of demand for each lumber 
product sold, each stating a price and maximum sales level at that price. The 
fourth demand level was given a very high sales level to prevent infeasible so- 
lutions. It is important to note that the price volume relationships used in the 
model should not be considered as absolute "demand curves" for the various 
products. There are many markets and grades of products that this model does 
not consider, and there is no demand for generic, largely grouped products. Rather, 
these price volume relationships should be thought of as controls on production 
that offer more insight into the production problem than would strict upper bounds 
on output. 

Price-volume relationships are illustrated in Table 1 for 2 x 4 and 2 x 10 
dimensions. Similar tables are employed for 2 x 6 and 2 x 8 dimensions but are 
not shown here to conserve space. There is a limited market for lumber in the 
shorter lengths (8 and 10 ft), and practically no market for 2 x lo's in this range. 
In 12 and 14 ft lumber, the 2 x 10 market is very strong with high prices that 
hold up very well. However, this is not a good length for 2 x 4's. These prices 
start well but fall off sharply. Sixteen, 18 and 20 ft lumber exhibits very high 
prices, with 2 x 10 prices falling sharply at first but holding up well at higher 
sales levels. 

An exhaustive presentation of the actual input data used in the model is not 
given in this paper as it is quite lengthy. Interested readers should refer to Maness 
(1 989) for a complete description of the inputs used in the model. 

Solution eficiency 

The sample problem was run on a 386 based microcomputer, taking 7 iterations 
of the integrated model with a run time of approximately 1 hour to convergence. 
The stopping rule used for the model was to converge to identical objective 
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TABLE 1 .  Table of lumber price relationships used in the model for 2 x 4 and 2 x 10. 

Table of lumber prices 

Lumber length in feet 
Demand 

group Category 8 LO 12 14 16 18 20 

Price 
Max sales 
Price 
Max sales 
Price 
Max sales 
Price 
Max sales 

Price 
Max sales 
Price 
Max sales 
Price 
Max sales 
Price 
Max sales 

function values. This was achieved when the shadow prices for lumber stabilized 
and the cutting pattern and stem bucking subprograms no longer brought in new 
columns. 

Figure 5 summarizes the convergence of the objective function in terms of the 
number of iterations and LP problem size. Note that the objective function im- 
proves steeply during the first two iterations and then tapers off quite rapidly. 
Practically no improvement in the objective function can be seen after iteration 
4 of the integrated problem. The integrated problem starts out with roughly 800 
columns, adds columns rapidly until iteration number 5 ,  and then stabilizes at 
nearly 1600 columns. The number of iterations necessary to solve the LP within 
each iteration of the integrated problem is related to the number of new columns 
added at every step. 

Model results 

Model output consists of the optimal bucking and sawing patterns for each log 
and stem class, the final distribution of lumber output, and the ending shadow 
prices for stems, bucked logs, and sawn lumber. Each of these serves a distinct 
purpose in analyzing the performance of the model. 

Lumber distribution produced. -The lumber distribution produced in this sam- 
ple problem is given in Table 2. The production of 2 x 4's fills demand group 1 
at its upper limit for every length, demand group 2 is also filled for the 12-20-ft 
lengths, and demand group 3 for the 18- and 20-fl lengths. The 10-ft length has 
a very small volume in demand group 2. The production of 2 x 10 lumber 
stretched beyond the second demand group in the 12-18-ft lengths, and was 
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Problem Size and Objective Function Value 

Objective Function Value r 1 

1 2 3 4 5 6 7 

Integrated Pmblem Iteratlon Number 

FIG. 5. A comparison of the efficiency of solving the sample problem between using final shadow 
prices (dashed lines) and demand group 1 prices (solid lines) as first iteration inputs. 

particularly heavy in the 14-ft length, a product for which there is a very high 
demand. 

Using the output. -The question remains as to how a sawmill could use this 
information to advantage. The suggested bucking and sawing patterns form a basis 
for investigating whether or not the mill is functioning correctly to produce desired 
output. However, in actual practice it would be very difficult to implement these 
suggested patterns. Decisions made at each machine center typically rely on var- 
ious intermediate or final product values. The stem bucking model is a good 
example of this, as it relies on log segment values to make bucking decisions. 
Another problem is that the integrated model abstracts from reality by grouping 
stems into classes with similar small end diameters, lengths and tapers. In reality, 
stem taper varies all along its length so it is difficult to assign an actual stem to 
a particular class. 

What is needed is a way to translate the information obtained from running 
the model into a convenient form to be used by the systems making the production 
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TABLE 2 .  Lumber distribution produced from the sample problem for 2 x 4 and 2 x 10. 

MBF produced in each length and demand group 

Product and Lumber length 
demand 

group 8 1 0  12 14 1 6  1 8  20 

decisions in the mill. The final shadow prices from the integrated model are a 
means to perform this translation. To demonstrate this, the final shadow prices 
obtained from the sample problem were used as initial prices for the sample 
problem and the model started again. All other aspects of the run were identical 
to the initial run. Examining the first iteration of the integrated model when run 
under these conditions simulates what would happen in a mill if a single set of 
prices were used for the stem bucking model and cutting pattern generator. This 
is because the LP cannot choose between opposing patterns as it is presented with 
only one pattern for each log and stem class in the first iteration. The function of 
the LP in this case is simply to add up the products obtained from implementing 
the sawing and bucking decisions made by those programs. 

The results of this test are shown in Fig. 5 .  In the first iteration, the value of 
the objective function was $76,450 as opposed to $60,277 obtained in the first 
iteration of the sample problem using the initial lumber prices (demand group 1 
prices) and log values generated from the sum of lumber values in the log. This 
represents an increase of roughly 27% due to using the shadow prices as inputs. 
This is a particularly high increase when it is considered that a gain of only 36% 
was obtained in the sample problem when it was run to optimality at seven full 
iterations. Thus, the value obtained in one iteration when using shadow prices as 
inputs to the model is only 9% less than the theoretical maximum possible value. 

Note also that in this case the model converged in 5 iterations, using significantly 
fewer variables and iterations. The model was solved within 0.5% of the maximum 
possible value after only 2 iterations, as opposed to the 3 or 4 iterations required 
in the sample problem to reach this level. The total number of LP iterations to 
optimality was 628 when using the shadow prices versus 1,558 in the sample 
problem, a 60% decrease. 

CONCLUSIONS 

The solid wood forest products industry has undergone major changes in the 
past decade. The declining raw material base (both in size and amount) on the 
West Coast, shifting sources of demand, and rising costs have forced many ad- 
justments in the industry. In many cases the effect has been to move the sawmill 
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closer to its customers' needs, attempting to produce products that take advantage 
of specific economic opportunities. To capture these opportunities, sawmills must 
ensure that their bucking and sawing practices are flexible and responsive. Many 
mills have turned to operations research models and process control technology 
to manage this process in an effective manner. 

Economic uncertainties and years of poor profit levels have caused the solid 
wood industry to lag far behind other manufacturing industries in terms of tech- 
nology advancements. At present, however, the industry is quickly catching up 
in terms of the installed technology base of image scanners, automated sawing 
equipment, and similar improvements. The challenge of the future is to manage 
this vast array of technology effectively to produce the most profitable mix of 
products. Automated equipment that routinely makes poor decisions will lead 
the way to financial disaster. 

A procedure was demonstrated by means of a sample problem that modeled a 
QUAD sawmill with a set of hypothetical price-volume relationships. This model 
was solved in seven iterations of the integrated model, yielding an optimal set of 
bucking and sawing strategies to maximize mill profits. The revenue gain from 
using the policies suggested by the integrated model over those found by the 
bucking and sawing programs working separately was found to be roughly 36%. 

These findings indicate that in general no single set of lumber and log values 
determined in isolation can solve the sawing and bucking problem to global 
optimality in one iteration. Under the best conditions, it requires at least two 
iterations to closely approximate an optimal solution. Optimality cannot be ob- 
tained using separate dynamic programming models as the drivers for process 
control equipment (which require a single set of values). However, results here 
indicate that solutions within roughly 9% of the theoretical maximum can be 
obtained if the final shadow prices are correctly used in these dynamic program- 
ming models. 
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