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ABSTRACT 

We use a simple experimental procedure of pressurized water absorption to show the fractal nature 
of the pore space in wood. Cubic blocks of wood were immersed in water at a given pressure for 14 
days, and mass changes were measured. The plots of the mass changes versus block edge sizes are 
straight lines whose slopes correspond to the fractal dimensions of the void volume in wood. Results 
for different species and for distinct water pressures are shown, suggesting the fractal dimension as a 
new relevant parameter to characterize the porosity of wood. 
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INTRODUCTION 

Nature provides us with a large variety of 
shapes and forms, from the simple ones to the 
more complex ones. In recent years, it has 
been recognized that many natural structures 
possess a rather special kind of geometric 
complexity: the statistical self-similarity upon 
changes in resolution power. The degree of 
geometric irregularity of such objects can be 
measured by the fractal dimension dJ- (Man- 
delbrot 1977; Stanley and Ostrowsky; 1985; 
Vicsek 1992). The concept of fractal, usually 
an object with a noninteger dimension, has 
been applied to a vast range of different struc- 
tures such as coastlines (Mandelbrot 1977), 
molecular surfaces (Avnir et al. 1984), aero- 
gels (Fricke 1989), bacterial colonies (Vicsek 
et al. 1990), tumor cells (Vilela et al. 1995), 
axon terminals (Alves et al. 1996), and, in par- 
ticular, porous materials (rocks) (Hansen and 
Skjeltorp 1988; Ruffet et al. 1991; Tsallis et 
al. 1992). 

A typical property of fractals (central to this 
work) is related to their volume with respect 
to their linear size L: 

V(L) Ldf (1 

where df, its fractal dimension, is in general a 
noninteger number between 0 and d, the Eu- 
clidean dimension of the space in which the 
fractal is embedded. This relation is familiar 
to us when dealing with the usual smooth (Eu- 
clidean) objects such as lines, discs, or 
spheres. For a line with length L, the volume 
and also the characteristic linear size are its 
own length L, and so for this simple example 
V(L) = L1, and thus a line is an object with 
dimension 1. For a disc, the characteristic lin- 
ear size is its radius R, and the volume is its 
area given by V(L) = nL2; the disc is an object 
with dimension 2. Analogously, the character- 
istic length of a sphere is its radius R, and its 
volume is given by V(L) = 4aL3/3; thus the 
sphere is a three-dimensional object. Note 
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stage 
k=b k=l k=2 k=3 

FIG. 1. The first four stages of construction of a simple 
deterministic mathematical fractal. Stage 0 (zero) is a disc 
of unit area. Each new stage is composed by the replica- 
tion (five times) and aggregation of the figure of the an- 
terior stage. The fractal dimension of this object is df = 

In 51111 3. 

that, in general, the dimension of a smooth 
Euclidean (as opposed to fractal) object is the 
smallest dimension d of the space the object 
can be embedded in. Note also that in the vol- 
ume equation, all the information about the 
dimension of the object relies on the exponent 
of its characteristic linear size L, while the 
proportionality constant (IT for a disc, 1 for a 
square or 41~13 for a sphere) is a geometric 
form factor characteristic of each object. 

Fractal objects are in general 'thinner' than 
smooth objects, and their dimensions are 
smaller than the dimension of the space they 
are embedded in. To illustrate the emergence 
of noninteger dimensions, we use here one 
simple mathematical fractal. This fractal is 
embedded in two-dimensional space (d = 2), 
and its construction is based on the following 
replication and union of a simple motif (See 
Fig. 1). In stage 0 (zero) of construction, the 
object is one solid disc of area equal to 1. In 
stage 1, this disc is replaced by five other ones 
equal to that of stage 0 displaced in an aggre- 
gate or motif. In stage 2, the motif of stage 1 
is replicated five times and these are aggre- 
gated in the same manner as in the first stage. 
This rule (the replication and aggregation) is 
repeated ad infiniturn. As a result, at the end 
of the procedure, we obtain a deterministic 
mathematical fractal with fractal dimension d, 
= In 51ln 3 -- 1.46. To obtain this fractal di- 
mension, we can use the definition given in 
Eq. (1). Note that, at any stage k, the volume 
V (the area) of the object is simply equal to 
the number of discs aggregated in the struc- 
ture, V(k) = 5k.  A characteristic length L of 

the object at stage k is the number of discs 
along the vertical direction, which is simply 
L(k) = 3k. Thus, we have: 

which gives the above-cited result. This sim- 
ple example exhibits some common features 
of fractal objects such as: i) self-similarity 
(scale invariance), ii) a highly branching struc- 
ture, and iii) dimension smaller than the em- 
bedding dimension. In contrast to the mathe- 
matical deterministic fractals, the fractal ob- 
jects observed in nature are random fractals, 
their self-similarity is obeyed only in a statis- 
tical sense, and the anomalous scaling of the 
volume can be observed only in a restricted 
range of length. 

The coastlines, for example, have been 
found to be fractals with 1 I df I 2 (to a first 
approximation, df = 312). The higher the d, 
value, the more wiggly and space-filling the 
line is. As another example, the surface area 
of the human lung is as large as a tennis court 
and is made up of self-similar branches with 
many lengths. The fractal dimension of the 
lung surface has been found to be 2.24 (Non- 
nenmatcher et al. 1994). The efficiency of gas 
exchange in the lung is optimized by this frac- 
tal property of space-filling, achieved by a de- 
sign using branches with no characteristic 
length. 

Concerning porous structures, for which 
wood is an example, various studies suggest 
that the pore spaces of rocks are fractals with 
fractal dimensions of order 2.69 (Hansen and 
Skjeltorp 1988 and references therein). It is 
also suggested that this fractal interpretation of 
pore space, combined with some other basic 
rock or fluid properties, may turn out to give 
a fundamental description and understanding 
of relative permeability, electric conductivity, 
and other physical quantities of great interest 
to the studies of reservoir engineering, under- 
ground storage of nuclear wastes, etc. (Hansen 
and Skjeltorp 1988; Ruffet et al, 1991; Tsallis 
et al. 1992). 

A porous material is a solid with intercon- 
nected holes inside, which compose the void 
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or pore space. Examples of porous materials 
are numerous: soils, rocks, ceramics, filter pa- 
pers, and wood, to name just a few. The origin 
of the porosity in wood is in the lumens or 
voids and cell cavities present in its cellular 
structure composed of vessel members, paren- 
chyma cells, etc. The importance of porosity 
for wood science and technology relies on its 
relation to wood density, hygroscopicity, ther- 
mal, acoustical and mechanical properties, as 
well as its susceptibility to preservative treat- 
ments, wettability by an adhesive, etc. 
(Tsoumis 199 1). 

Here we present a study of the void volume 
of different species of wood, suggesting that 
the fractal approach can give a useful method 
to characterize their porosity. Our objective 
here is to exhibit the anomalous scaling of the 
internal volume of wood with its linear size, a 
fingerprint of the fractal geometry. 

MATERIALS 

Four wood species were studied; three of 
them are of brazilian origin: jatoba (Nymenaea 
stilbocarpa) (which is used in railroad ties, 
furniture, etc.); cedro (Cedrela sp.) (used in 
furniture, naval construction, etc.); ant1 cere- 
jeira (Amburana cearensis Fr. Allem.) (used in 
furniture, barrels, etc.). The fourth species was 
the eucalipto (Eucalyptus grandis) (used in 
lamp-posts, etc.). All the species are of com- 
mon use in Brazil and are obtained with no 
difficulty in small sawmills. 

EXPERIMENTAL PROCEDURE 

To measure the void volume in wood, we 
used a simple experiment of pressurized water 
absorption by cubic blocks of wood. As is 
known, when dry wood is immersed in water, 
there is active movement of water through cell 
cavities (free water) and cell walls. The free 
water fills the wood lumens and is limited by 
the fractional void space or wood porosity. 
Long immersion results in nearly complete 
saturation of the cavities, which allows us to 
use this mass of absorbed water to measure, 
or estimate, the internal void volume in wood. 

The equipment used consisted of a closed 
cylinder 0.2 m in diameter and 1.8 m long, 
which was filled with liquid water and pres- 
surized by the movement of a piston. The 
pressure P was indicated by a manometer and, 
in this work, we submitted the immersed wood 
to null manometric pressure (open cylinder), 
1,  2, and 4 X lo5 Pa. 

To study a given species at a fixed pressure, 
we used a set of 10 cubic blocks of wood with 
edges varying from 5 mm to 50 mm (the first 
cube had an edge of 5 mm, the second cube 
of 10 mm, the third of 15 mm, etc.). The cubes 
of a given species were cut from a single block 
of wood to avoid the variation in wood struc- 
ture between different trees and to minimize 
this variation within a tree. In all the experi- 
ments, three sample sets of each species were 
immersed in the pressurized liquid water at 
room temperature (2.5" C), and mass changes 
(AM) were measured for a period of 14 days 
of immersion. Since we did not use an oven 
to dry the wood before immersion, the mois- 
ture content of the wood was that dictated by 
the equilibrium of this wood with the humidity 
of the surrounding air (T = 25" C and relative 
humidity =60%). The moisture contents were 
13.3% for the Eucalyptus grandis, 12.4% for 
the Hymenuea stilbocarpa, 13.4% for the Ced- 
rela sp, and 10.4% for the Ambumna cear- 
ensis. Immediately before mass measurements, 
the cubes were touched with paper on their 
surfaces to remove attached water. 

As in Eq. 1,  the mass absorbed by a cube, 
which was immersed in water at pressure P, 
is a function of its edge size L and of the 
water pressure (AM = AM (L, P)) and scales 
with L as 

where d,(P) is the fractal dimension of the 
wood pore space filled by this mass of water. 
The constant of proportionality is not impor- 
tant for us; only the scaling of the mass (or 
the volume) with the linear size is important 
to the fractal approach. Here we assume that 
the fractal dimension is a function of the water 
pressure P since we expect that for higher 
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FIG. 2. Mass variations for blocks of some species, all FIG. 3. Log-log plot of the wood cubes mass varia- 
of them with edge L = 35 mm. as a functiorl of the im- tions as a function of the cube edge for different species 
mersion time at null manometric pressure. At the inset is at manometric pressure P = 2 X los Pa. 
shown the log-log plot of the same quantities for times at 
the beginning of the immersion. 

pressures, the water fills more space in the 
wood. It is clear that the fractal dimension 
must also be a function of the wood species. 
If the pore space were a smooth three-dimen- 
sional object, as the void of a bottle, we should 
have c/,(P) = 3 for any pressure and wood spe- 
cies. 

RESULTS AND DISCUSSION 

In Fig. 2 we show the absorption curve for 
\ome wood species at null manometric pres- 
wre (open cylinder). These mass variations 
were monitored two times per day for seven 
days to observe the saturation process. In the 
next \even days of immersion, our measures 
were less frequent, made only to certify the 
wood saturation. The mass variations used in 
our calculations were those after 14 days of 
immersion when all the species had ceased 
(under our experimental precision) to absorb 
water. The inset shows the log-log plot of the 
mass variations versus immersion time at the 
begining of the absorption process where the 
diffusion (due to the moisture content gradi- 
ent) is the main process and Fick's law is 
obeyed (the slopes are approximately equal to 
112). 

In Fig. 3 we show, for various species, the 
log-log plot of the mass variations as a func- 
tion of the block edges and fixed pressure P 
= 2 X lo5 Pa. These variations were measured 
after 14 days of immersion. The points rep- 
resent average values taken for three immersed 
samples of each species. The straight lines are 
fitted lines whose slopes, according to Eq. 3, 
correspond to fractal dimensions of the pore 
space in wood as measured by the water at P 
= 2 X 10' Pa. Similar curves are obtained for 
the other water pressures. 

In Fig. 4 we show the log-log plot of the 
mass variations as a function of the block edg- 
es for the Cedrela sp. at the various water 
pressures after 14 days of immersion. The 
points are averaged over three samples of this 
species immersed at each pressure. Again, the 
straight lines are fitted lines whose slopes cor- 
respond to the fractal dimensions of the void 
of this wood species as measured by the water 
at different pressures. A larger pressure results 
in a larger slope for the fitted line and thus a 
larger fractal dimension. Similar curves are 
obtained for the other wood species. 

All the results for the species studied at the 
chosen pressures are summarized in Table 1. 
p is the average mass density of the wood spe- 
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P=O(x105 P a )  

FIG. 4. Log-log plot of the wood cubes mass varia- 
tions as a function of the cube edge for the same species, 
Cedrelo sp. at different water pressures. 

TABLE 1. The ,frucrcrrrl dimension vu1ue.s ohrained ,for t l ~ r  
studied w10od s p e r i ~ s  ut difiermt water pressures. 

Euca1,pfris H~nlrnrren ArnI>or<r~~<i 
gmndi.5 \filbocurpu C'pdri.1~ \p. <'?<rrrn?r\ 

rndnornrtnc p = 0.94 p = 0  X X  p = 0.65 p - 0.63 
7resrure ( x l O ' K  ( x I O ' K  1 x l l l ' K  ( x I O ' K  

( ~ 1 0 '  Pa) &n3) p/rn') elm') 8/m1) 

has its own intrinsic fractal dimension, as can 
be seen in Table 1. 

It is important to note that we do not take 
into account here the initial moisture content 
of the wood species since we are interested 
only in the scaling of the mass variations with 
the linear size of the wood blocks. A different 

cies measured at the ambient conditions (T = moisture content corresponds to a different 

25°C and relative humidity = 60%). initial condition in the process of water ab- 

In Fig. 5 we show the plot of the obtained sorption, which does not affect an intrinsic 

fractal dimensions dXP) as functions of the charitcteristic of the wood structure, namely, 

water pressure P for different species. The in- the noninteger exponent in the scaling of the 

crease of the fractal dimension with the in- volume of the void space with the size. 

crease of the water pressure is a common be- W,: also did not take into account the effect 

havior of all the species studied. of shrinkage andlor swelling of the cube side5 

The values obtained here for the mass dif- since the observed changes in the dimensions 

ferences AM(L, P) are very sensitive to the of the cube edges were very small (the vari- 

nature of the absorbed fluid. This dependence, 
which is not investigated here, is clearly dem- 
onstrated by the distinct values for the wood 
specific volumes obtained by the displacement 
of water, helium, or benzene (Siau 1984). 
Therefore, the values of the fractal dimensions 
themselves must certainly depend on the na- 
ture of the fluid used in the experimental pro- 
cedure. This is the reason we used the term 
fractal dimension 'measured by the water' at 
a given pressure. By this we mean that the 
geometric set composed of pores, voids, and 
microvoids in wood is revealed by an invasive 
fluid at a given pressure in a particular way. 
Other fluid, or the same fluid at an other pres- 
sure, reveals other fractal set, more 'fat' (larg- 
er d,) or more 'thin' (smaller df); but for a 
fixed fluid and pressure, each species of wood 

Hymenaea stilbocarpa ,, 
Amburana cearensis / - 
Eucalyptus grandis 

cedrela sfl 
P ( x 1 0 5  Pa)  

FIG. 5 .  Plot of the fractal dimension dbP) as a function 
of the water pressure for different wood species. The lines 
are drawn by eye. 
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ation in In L was of order 10 ?) and did not 
affect our results. 

In wood science there are some quantities 
like the porosity or the specific gravity that 
give information about the void volume in 
wood. However, these quantities are densities, 
i.e., intensive quantities and so it is impossible 
to extract from them the information we are 
interested i n  here, namely, the scaling of the 
internal volume with the size of wood blocks. 
This information can be achieved by an ex- 
periment like the one we presented here where 
the internal volume is related to the linear size 
of wood blocks. An alternative approach 
might be a microscopic analysis of the wood 
structure. In fact, part of the motivation of this 
work came from some very interesting figures 
of the microscopic structure of wood present- 
ed in chapter 3 of Tsoumis 1991. 

CONCLUSIONS 

The fundamental purpose of this work was 
to investigate the hypothesis that the pore 
space in wood can be characterized by a frac- 
tal or a set of fractal dimensions. A very sim- 
ple and reliable experiment was designed in 
order to answer this question using water ab- 
sorption. Our results show, for the first time 
as far as we know, that each species of wood 
can be characterized by a set of fractal dimen- 
sions d,(P). 

For a given pressure, each species has its 
own characteristic fractal dimension, which 
must be related to its intrinsic pore space ge- 
ometry. Since the immersion time was suffi- 
cient for the saturation of the wood blocks, 
these results can not be attributed to an incom- 
plete filling of the void volume by water. The 
fractal behavior revealed here is an intrinsic 
property of the set composed by the intercon- 
nected voids and microvoids of the wood 
structure and could turn out to be a new phys- 
ical parameter in wood characterization. Apart 
from this, the fractal nature of wood can bring 
to wood science new research techniques de- 
veloped for the study of fractal structures. In 
recent years, these techniques have been ap- 

plied to a vast range of materials and biolog- 
ical systems, and it has become evident that 
fractal scaling represents an important char- 
acteristic of many growth structures. 

The dependence of the fractal dimension 
with pressure shown here must be related to 
the microscopic pore-size distribution of 
wood. A specific pressure allows the water to 
penetrate in a subset of pores selected by the 
capillary tension and other mechanisms as the 
evaporation-condensation into the cells. Our 
results show, for all the studied wood species, 
a fractal dimension of the pore space which is 
a strictly increasing function of the water pres- 
sure. Since the fractal geometry is an intrinsic 
property of the wood void volume, we do not 
expect that for much larger pressures this frac- 
tal dimension converges to df = 3 (the dimen- 
sion of the embedding space). If this was true, 
the set csomposed by the voids in wood would 
be, in fact, a smooth Euclidean object, which 
would be in contradiction to the fractal scaling 
shown here for the studied pressures. On the 
other hand, if the set of wood pores was a fat 
fractal (a fractal with dimension equal to that 
of the embedding space (Vicsek 1992)), in our 
belief, this fact would be revealed even for 
small water pressures. The dependence of the 
fractal dimensions with pressure would be best 
elucidated with the use of other invasive fluids 
such as nonpolar ones and gases, which could 
be subject of a future work. 
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