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ABSTRACT 

In this paper, a new method for deriving grading rules is given. This method is based on the multiple 
regression and discrimination techniques by binary prediction t m s ,  which are of high interest for 
classification purposes. A modification to the existingpractice that tends to predict the bending modulus 
of rupture (MOR) is presented. This method consists in creating a nominal variable, the "optimal 
strength class value," which contains the information necessaly to enter into a strength class system, 
i.e., the density, the bending modulus of elasticity (MOE), and the MOR. A comparison between a 
regression technique aimed at predicting the MOR and a discrimination technique aimed at predicting 
the optimal strength class assignment illustrates the innovative aspect of this method. 

Keywords: Timber, machine grading, statistics, classification. 

INTRODUCTION 

Most of the research camed out in the field 
of timber grading is based on the parametric 
regression method. The regressions may be 
simple, as for classical bending type grading 
machines, or multiple, as for new multiple de- 
vices grading machines. Some of the models 
are linear; others may be nonlinear. These 
parametric regressions are limited because the 
models apply to the whole population and only 
explain an average trend. Another constraint 
is that we need to derive grade limits that are 
calculated from this average trend but must 
insure the required safey level of a grade, given 
by lower fractiles (see Fewell undated). The 
statistical segmentation technique is innova- 
tive because it is nonparametric, i.e., there is 
no analytical model to predict an average trend, 
but a set of limits that divide the population 
into "segments" of distinct quality levels. The 
method was introduced originally by Morgan 
and Sonquist (1963), who developed the AID 
(Automatic Interaction Detection) technique. 
It aims at reducing the variance of the parent 
sample by dividing it into binary segments that 
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are determined by a limited value (upper bound 
on the let? segment and lower bound on the 
right segment) on a predictive variable. The 
method was improved by Breiman et al. (1 984), 
who found an algorithm to "prune" the initial 
trees and give an optimal tree. 

The CART (Classification and Regression 
Tree) method can be applied for predicting a 
continuous variable. In this case, it is named 
a regression method. For grading purposes, the 
variable to be predicted is the MOR, given for 
each specimen. But the CART method may 
also be applied for predicting a nominal vari- 
able, i.e., a variable that can take only a limited 
set of values. In that case, it is named a dis- 
crimination method. For grading purposes, a 
nominal variable is the strength class to which 
a given specimen "should" be assigned. It can 
be derived by an optimal ranking technique. 

OPTIMAL RANKING METHOD 

If we want to grade timber according to EN 
338 strength classes system (AFNOR 1995), 
three requirements for each strength class have 
to be fulfilled: 
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-characteristic density, corresponding to 5th N 

percentile lower fractile, 2 xi 

-characteristic MOR, corresponding to 5th p ( ~  = ( 5 )  
percentile lower fractile, 

-mean MOE. where j is the number of pieces taken out from 

Before describing how to rank a population 
of timber in an "optimal way," let us explain 
how to achieve a characteristic value (so-called 
target value) from a parent population. If a 
given sample of size N, ranked according to 
ascending values of x, is such that the target 
value x, has a cumulative frequency f, higher 
than 5%, x, will have a cumulative frequency 
of 5% in the new sample by taking out a num- 
ber of pieces n from the lower part of the dis- 
tribution. To determine the cutting level n, let 
us assume that 

where i is the rank of x, in the original sample 
of size N (which means Prob(x s x 3  = i/N). 
We want to have 

which gives 

or, by using Eq. (1) 

Now consider a population of size N, in 
which we know for each specimen the MOE, 
the MOR, and the density. If we want to ex- 
tract from this population the specimens that 
should enter into a given strength class, we 
have to apply the algorithm given in Fig. 1. 
Note that for the MOE, Eq. (4) does not apply 
and we have to use a step by step procedure 
(see Fig. 2) to determine the cutting level n,. 
In this algorithm, the mean value of a variable 
X, ranked according to ascending values (XI 
5 X2 5 . . . 5 X, 5 5 . . . 5 XN), is 
given by 

the lower part of the sample. 
Ifwe now want to perform an optimal rank- 

ing according to the whole EN338 system (AF- 
NOR 1995), we repeat the procedure by de- 
scending strength classes order. This method 
gives spectacular results, compared for ex- 
ample to a visual grading method (see Rouger 
et al. 1993). In Table 1, a comparison of yields 
between visual grading and optimal ranking is 
given for three species. In this table, three 
strength classes (C30, C22, C18) have been 
selected. To illustrate the computation corre- 
sponding to the algorithm given in Fig. 1, in- . . - . 

termediate values of (n,, n,, n,) for the optimal 
ranking of spruce and fir are reported in Table 
2. It is obvious that any grading method could 
not reach the yields of the optimal grading 
method, but it gives an upper limit that we 
should try to work toward. 

This optimal strength class is given for each 
specimen, and therefore can constitute a nom- 
inal variable that we wish to explain. This op- 
tion is more powerful than a simple explana- 
tion of the MOR, because the strength class 
assignment depends on the density, the MOR, 
and the MOE. The following sections refer to 
a comparison of both methods. 

BASIC PRINCIPLES OF THE 

SEGMENTATION TECHNIQUE 

Let us assume that we want to explain a 
variable Y by a set of predicting variables XI, 
X,, . . . , X,. The purpose of classification is 
to reduce the initial variance ofthe parent sam- 
ple by giving limiting values on the predictive 
variables. When dividing a segment into two 
subsegments, the best division has to mini- 
mize the weighted mean of the variances of Y 
in the subsegments (so-called "intravari- 
ance"). The algorithm that is used to divide a 
segment into two "subsegments" is illustrated 
in Fig. 3. 

The "largest tree" is a tree in which each 



Sort N density values into ascending numerical 
order; Determine the cutting level nl 

Sort N MOR values into ascending numerical 
order; Determine the cutting level n2 

Sort N MOE values into ascending numerical 
order; Determine the cutting level n3 

n = Max (nl, n2, n3) 

.. . .. 

Keep the (N-nl) higher density values 

Keep the (N-n2) higher MOR values 

Keep the (N-n3) higher MOE values 

RG. I. Algorithm for optimal ranking (for one strength class). 
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calculate (x) k- - - ----- - I 
according to equation 

( 5 )  

FIG. 2. Algorithm for MOE cutting level. 

"terminal segment" contains only one speci- 
men. The intravariance of this tree equals zero. 
Two mathematical functions are used to mea- 

TAB]-E 2. Optimal ranking of spruce andfir; Nlustration 
of dlgorithm given in Fig. I .  

there is very little chance that this tree is ap- 
plicable to another sample (the ETP is high). 
For the smallest tree, both the EAP and the 
ETP are high (this tree does not predict any- 
thing). These functions (EAP and ETP) are also 
expressed in relative terms (relative errors of 
prediction). The algorithm of "pruning" aims 
to optimize the combination of the EAP and 
the ETP. 

To calculate the EAP, let us consider a given 
tree (A). For each terminal segment (t), the 
weighted variance is calculated 

sure the performance of a given tree: R(t) = p(t)s2(t) (6) 

-the apparent error ofprediction (EAP), which where R(t) is the weighted variance of segment 
is used to measure the capacity of prediction I, p(t) is the yield of segment t, s2(t) is the 
of the tree on the learning sample, variance of segment t. p(t) and s2(t) are cal- 

-the theoretical error of prediction (ETP), culated according to 
which is used to measure the capacity of 
prediction of the tree on the test sample. N(t) 

2 i ~ i  - p(y(t))I2 
iet p(t) = 7 s2(t) = 

For the largest tree, the EAP equals zero, but 
(7) 

TABLE I. Comparison of yields between visual grading and optimal ranking 

C30 10% 79% 9% 78% 0% 61% 
C22 49% 3.5% I I% 13.5% 0% 13% 
C18 12% 4.5% 2 2 8  5% 54% 7.5% 
Reject 29% 13% 58% 3.5% 46% 18.5% 
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For i=l to v 
Try different 
values of ai 

Divide the segment into two x 
sub-segments according to the 

following rule : I I 

ui that minimizes 

the intra-variance 

Retain the value of i 
that gives the best 

FIG. 3. Algorithm for constructing the trees. 

where N(t) is the number of specimens in seg- 
ment (t), N is the total number of specimens, 
y, is the individual value of Y for a specimen 
i in segment t, p(y(t)) is the mean of Y in seg- 
ment t. The EAP of the tree (A) is given by 

EAP(A) = z R(t). 
IEA 

(8) 

mal," in the sense that it is not applicable to 
another sample. The algorithm of pruning is 
necessary to extend the prediction capability 
of the tree. It can be summarized according to 
the following rules: 

(a) Separate randomly the parent sample into 
two subsamples: the "LEARNING SAM- 
PLE," which will be further used for cre- 
ating the trees, and the "TEST SAMPLE," 
which will be used to select among these 
trees the optimal one. Work is currently 
being done to check the effect of the ran- 
dom selection on the results. A further 
publication will focus on this topic. 

(b) With the LEARNING SAMPLE construct 
a largest tree A- with a minimum num- 
ber of specimens in each terminal segment 
(e.g., n,,. = 5). 

(e) Construct a series S* of smaller and smaller 
trees (up to a tree of one segment only, 
which is the LEARNING SAMPLE), by 
suppressing pairs of segments. 

(d) Each tree Ai of S* has a given number of 
terminal segments (i). Among the possi- 
bilities of trees with the same number of 
terminal segments, choose the one that 
minimizes the EAP. 

(e) Among the trees A, of S* which satisfy rule 
(d), select the optimal tree by using the 
TEST SAMPLE. The optimal tree A* is 
the smallest one that gives the smallest 
ETP. The ETP of a tree (A) is given by 

with 

and 

w='(t) ~"(t)  = - 
pees' 

ALGORITHM OF "PRUNING" where NIeSf(t) is the number of specimens 
The tree constructed by the method de- in segment (t), A""' is the total number of 

scribed earlier is symmetrical and not "opti- specimens of the TEST SAMPLE, p'' is 
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the individual value of Y for a specimen i 
in segment t, p ( p l ( t ) )  is the mean of Y in 
segment t. 

(f) Apply the "One standard-deviation rule": 
If A* is the optimal tree, i.e., 

where k is the number of terminal seg- 
ments of the tree A,, then choose the tree 
with k, segments, where k, is the maxi- 
mum value of k which verifies 

where std-dev(ETP(A*)) is the standard de- 
viation of the theoretical errors of predic- 
tion (see Eq. (9)) corresponding to the trees 
having the same number of terminal seg- 
ments as the tree A*. 

For each tree A, of S*, the relative errors of 
prediction are given by 

where $(test) is the initial variance of the TEST 
SAMPLE. 

where sZ(basic) is the initial variance of the 
LEARNING SAMPLE. 

DISCRIMINATION METHOD 

A similar technique is called the "Discrim- ' 

ination Technique by binary trees."In this case, 
the variable Y to be predicted is a nominal 
variable, i.e., it can take only discrete values. 
The errors of prediction are subsequently cal- 
culated by evaluating the percentage of "badly 
classified specimens." 

On the whole sample, an initial assignment 
to ONE value of Y (Yo) is given, which cor- 
responds to the most frequent value of Y in 
the whole sample. An initial ratio of badly 
classified specimens is calculated according to 

2 6, 
TEI = 5 with 6 ,  = 1 if Yi + Yo 

N 0 if Yi = Yo 

where TEZis the initial ratio of badly classified 
specimens, N is the number of specimens in 
the whole sample, Y, is the value of Y for spec- 
imen i, Yo is the initial assignment ofthe sam- 
ple. 

For a given tree, each terminal segment (t)  
is assigned to a value of Y (Y,), which corre- 
sponds to the most frequent value of Y in the 
segment t. For each terminal segment, a ratio 
of badly classified specimens is calculated ac- 
cording to 

- ~-, 

2 ail 

RBC(~) = with 6, = 1 if Yi # Y, 
N(f) 0 if Y, = Y, 

where RBC(t) is the ratio of badly classified 
specimens of segment 1, N(t) is the number of 
specimens of segment t, Yi is the value of Y 
for specimen i, Y, is the assignment of seg- 
ment I. 

For each tree, the ratio of badly classified 
specimens is calculated by a weighted mean of 
the ratios ofbadly classified specimens for each 
terminal segment. This calculation is per- 
formed for both the LEARNING SAMPLE 
(TEA) and the TEST SAMPLE (TET). 

TEA = 2 p(l).RBC(t) 
,FA 

TET = 2 p'es'(t).RBC'eI'(t) (18) 
IEA 

where p(t) and pte"(t) are given by Eqs. (7) and 
( 1  1). These ratios are divided by the initial 
ratio (TEI) to give the relative errors (REA, 
RET). Therefore, the ratios of badly classified 
specimens are given by 

TEA = REA. TEI 
TET = RET. TEI (19) 

Therefore, the ratios of "well classified speci- 
mens" are given by 
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~ 

X 

Central third *- . 
~- ~ ~ z 

114 compressive r~ ~ ~ ~ - .l t 

.. - 

Full length 

112 medium 

1H tensile 

FIG. 4. Pseudo-KAR calculations. 

WCSA = 1 - TEA 
WCST= 1 - TET (20) 

. . .  . 

APPLICATION OF BOTH METHODS TO 

STRENGTH GRADING 

-. 4 

The regression technique may be applied to 
strength grading, by predicting the MOR val- 
ues from nondestructive variables. The dis- 
crimination technique may also be applied by 
predicting the optimal strength class. The op- 
timal trees are then treated to get the correct 
strength classes: 

X 

(a) Apply the tree on the whole sample (learn- 
ing + test). 

(b) For each segment, calculate the 5% MOR, 
mean MOE, 5% density. 

(c) Classify the terminal segments according 
to the 5% MOR. 

(d) Select a set of strength classes. 
(e) Aggregate the terminal segments (and the 

corresponding criteria) if necessary to meet 
the requirements of the strength classes, 
i.e., 5% MOR, mean MOE, 5% density. 

The following example illustrates the effi- 
ciency of the method: A sample of 166 spec- 

imens of Scots pine (50 x 150 x 3000 mm) 
have been tested by using different nondestruc- 
tive devices, as well as tested in destructive 
bending to get the MOE and MOR values. For 
each specimen, 32 nondestructive variables 
have been measured by using 4 devices: 

-slope of grain 
-gamma-radiation device 
-Cook-Bolinder flatwise bending machine 
-SCANWOOD vision system. 

The list of nondestructive variables is re- 
ported below. The gamma-radiation device is 
used to get the density, but also to calculate 
pseudo-KAR values (knots area ratios), as il- 
lustrated in Fig. 4. Whereas the usual knots 
area ratios are calculated on the (y, z) plane, 
the pseudo-KAR values are calculated in the 
(x, z) plane. In the bending machine, two runs 
are analyzed, due to a different influence of a 
knot at the beginning of the board and at the 
end of the board. A combination of both runs 
is subsequently derived. 

*) SLOPE OF GRAIN 
Average face slope of grain SOGl 
Minimum face slope of grain SOG2 
Maximum face slope of grain SOG3 
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Average edge slope of grain SOG4 
Minimum edge slope of grain SOG5 
Maximum edge slope of grain SOG6 

*) GAMMA-RADIATION DEVICE 
Average density 
Pseudo-KAR-tensile zone- 

full length 
Pseudo-KAR-medium zone- 

full length 
Pseudo-KAR-compressive 

zone-full length 
Pseudo-KAR-full width- 

full length 
Pseudo-KAR-tensile zone- 

central third 
Pseudo-KAR-medium zone- 

central third 
Pseudo-KAR-compressive 

zone-central third 
Pseudo-KAR-full width- 

central third 

GAM 1 

GAM3 

GAM5 

GAM7 

GAM9 

GAM 12 

GAM 14 

GAM 16 

GAM 18 

*) COOK-BOLINDER FLATWISE 
BENDING MACHINE 
Mean En,-first run STR 1 
Standard-deviation En.,- 

first run STR2 
Minimum En,,-first run STR3 
Maximum En,,-first run STR4 
Mean En.,-second run STR5 
Standard-deviation En.,- 

second run STR6 
Minimum En.,-second run STR7 
Maximum En.,-second run STR8 
Mean En,-combination STR9 
Standard-deviation En,,- 

combination STRlO 
Minimum En.,-combination STRl 1 
Maximum En,,-combination STRl2 

*) SCANWOOD SYSTEM (VIDEO 
SCANNING OF KNOTS) 
Face knots NOD1 
Edge knots NOD2 
Tensile KAR NOD3 
Comprehensive KAR NOD4 
Total KAR NOD5 

TABU 3. Visual grading of the sample. 

Visvll pading rtpuimmcnla 

S e n d  class ~ a c c  bars ~ d ~ e  b o t s  yield 

C24 5113 2 1 3  39% 
C18 s 112 a213 23% 
Reject 38% 

Ungraded material 

The ungraded material has the following 
characteristics, which justify an assignment to 
C18. 

MOR 5% = 20.8 MPa 
mean MOE = 10.1 GPa 
density 5% = 463 kg/m3 

Visual grading 

The visual grading method, as proposed in 
a draft version of NFB52001-4 (French Visual 
Grading Rule) (AFNOR 1996) gives the yields 
shown in Table 3. 

Optimal ranking 

When applying the algorithm given in pre- 
vious sections, one gets the optimal yields giv- 
en in Table 4. The strength classes require- 
ments are given in Table 5. It can be clearly 
noticed that the MOE is the limiting variable 
that determines the optimal strength class. 
Therefore, one can suspect that the discrimi- 
nation should give a better grading than a re- 
gression aiming at predicting only the MOR. 

Regression method 

The initial variance of the whole sample is 
equal to 274.3. According to the algorithm de- 
scribed earlier, a list oftrees is given in Table 6. 

TABLE 4. Optimal ranking of the initial sample. 

Stmngh Number of Mcan MOE MOR 5% IXnrity 5% 
elas swc. (yield) (in GPs) (in MPa) (in kgim3) 

C40 23 (14%) 14.0 53.5 550 
c 2 4  5 s  (33%) 1 1 . 0  27.8 473 
C18 66 (40%) 9.0 19.4 460 
Reject 22 (13%) 7.0 16.1 453 
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TABLE 5. Strength classes requirements according 10 

EN338. 

Smoh Mean MOE MOR5% Dmsity 5% 
class (in IGPa) (in MPa) (in Wmll 

The tree A1 has the maximum number of 
segments. It predicts very well the LEARN- 
ING SAMPLE (REA = 0.01 15) but does not 
fit to the TEST SAMPLE (RET = 0.66). The 
tree A40 corresponds to the initial sample. It 
does not predict anything (REA = RET = 1). 
The tree A38 has been selected as the optimal 
one (REA = 0.36, RET = 0.51), because it 
gives the best compromise between the 
LEARNING and the TEST SAMPLE for a 

TABLE 6. List oftrees (S*) given by the regression method. 

RSWVC em= of 
pndinion (REP) 

Number of TEST LEARNING 
terminal SAMPLE SAMPLE 

T m  n. sc~mcnu IRET) lRF-4) 

minimum number of segments (N = 3). This 
tree is illustrated in Fig. 5. 

Only two variables are used to construct the 
tree: 

-GAM3: Pseudo-KAR-tensile zone-full 
length 

-NOD3: Tensile KAR 

For each division level of the tree, the means 
of each segment are separated and the vari- 
ances are reduced as much as possible. This is 
illustrated in Fig. 6. When applying the grading 

Mean = 41 N = 105 
s2(Y/1) = 260.4 

Mean = 61.7 N = 25 
s2(Y/2) = 128.9 

Mean = 34.5 N = 80 
s2(Y/3) = 125.9 

Mean = 40.4 N = 44 Mean = 27.3 N = 36 
s2(Y/6) = 122.4 s2(Y/7) = 35.8 

RG. 5. Optimal t m  given by regression method. 
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Level 0 

" 
0 50 IW 

MOR (MPa) 

- Segment l 
MOR (MPa) 

- Segment 2 
- Segment 3 

MOR (MPa) 

- Segment 2 
- - Segment 6 
- Segment 7 

Fro. 6. Reduction of the initial sample according to the tree level. 

rules to the whole sample, one can derive 
strength classes, as illustrated in Table 7. 

Discrimination method 

The discrimination technique gives a series 
of trees, illustrated in Table 8. The tree A1 has 
the maximum number of segments. It predicts 
very well the LEARNING SAMPLE (REA = 

0.09) hut does not fit to the TEST SAMPLE 
(RET = 0.5 1). The tree A8 corresponds to the 
initial sample. It does not predict anything 
(REA = RET = 1). 

The tree A5 has been selected as the optimal 
one (REA = 0.27, RET = 0.51), because it 
gives the best compromise between the 
LEARNING and the TEST SAMPLE for a 
minimum number of segments (N = 4). This 
tree is illustrated in Fig. 7. The percentage val- 
ues correspond to the ratios of well-classified 
specimens. 

Only three variables are used to construct 
the tree: 

-STRl 1: Minimum Em-combination oftwo 
Nlls 

-STRl: Mean En,,-first run 
-STR5: Mean E,,,-second run 

One can also see that, as the division level 
increases, the minimum ratio ofwell-classified 
specimens increases. This is illustrated in Fig. 
8. When applying the grading rules to the whole 
sample, one can derive strength classes, as il- 
lustrated in Table 9. 

Comparisons ofthe results 

It is difficult to compare different grading 
results, since the strength classes are different 
and the yields are different. One can suggest a 
performance factor that is influenced by higher 
yields in higher strength classes: 

TABLE 8. List of trees (SY given by the discrimination 
technigue. 

- 
Relati - 

N u m b  of TEST TNG TBLE 7. Strengih class assignment. temuoal SAMPLE LE  
Tne n. m g r n ~ n t ~  (RETI L) 

M a n  MOR Density - - 
Segment N v m k o f  MOE 5% 5% A1 I5 0.51 

n. spec. (yield) (in wa) (in MPsl (in kg/rnj) ''Z?' 0.09 
... ... ... ... 

2 31(19%) 12.5 42.4 473 C30 A5 4 0.51 0.27 
... ... ... 6 76 (46%) 10.0 23.6 468 C22 . . , 

7 59 (35%) 8.9 17.5 451 Reject A8 1 1.0 I .O 
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FIG. 7. Optimal tree given by the discrimination method. 

N = 111 
1 : C18 (39.6%) 

Min. %age of well classified specimens 

loo 0 

strll <= 7.95 

0 1 2 

Division Level 

FIG. 8. Illustration of the effect of segmentation. 

str11 > 7.95 

N = 5 6  
2 : C18 (68%) 

N = 55 
3 : C24 (62%) 

strl <= 7.22 strl > 7.22 str5 <= 8.9 str5 > 8.9 

N = l l  
4 : Reject (100%) 

N = 45 
5 : C18 (84.5%) 

- 

N = 3 9  
6 : C24 (79.5%) 

N = 1 6  
7 : C40 (81%) 
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TABLE 9. Strength class assignmenl. TABLE 10. Pe$ormance factor& direrent grading sys- 
tems. 

Mean Density 
%mcnt Number af  MOE MOR 5% 5% Sfnngth 

n. spec. (yidd) (in GPa) (m MPa) (in kg/ml) class Pcrfomsnec R e - m l d  &ding sysem factor value 

7 22 (13%) 14.0 42.6 539 C40 
- 
Visually graded 17.3 0.0 

6 62 (37%) 10.8 24.8 476 C22 Ungraded 18.0 0.12 
5 64 (39%) 9.0 19.2 460 C18 Regression 19.7 0.40 
4 18 (1 1%) 7.0 12.4 408 Reject Discrimination 22.8 0.92 

Optimal ranking 23.3 1.0 

Performance factor = the existing grading machines. Beside the 
- - 2 method presented in this paper, one could 

srrensh C I ~ ~ X  (5'M0R)2'yie'd (21) mention neural networks or object-oriented 
classification systems, which seem very prom- 

The performance factors for the different anal- ising, 
ysis described earlier are given in Table 10. 
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