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ABSTRACT

A finite element method for calculating the transient heating of frozen log and lumber subject to
different initial and boundary conditions is described. The governing equation used in the study accounts
for thawing by incorporating the latent heat of fusion into the heat capacity term. The heat capacity and
thermal conductivity values for wood in the radial direction for temperatures below and above 0°C were
obtained from Steinhagen and Lee (1988). For two- and three-dimensional modeling, it was assumed that
the thermal conductivity in the tangential direction is equal to, while that in the longitudinal direction is
2.5 times, the thermal conductivity in the radial direction. The finite element model was validated
successfully using the experimental results of Steinhagen (1977) for frozen logs. The model was applied
to one-, two-, and three-dimensional heating of lumber and to cases where surface resistance to heat
transfer was significant. The thawing of frozen free water in the cell lumina involves the consumption of
heat and therefore must be considered in the heating of frozen wood; otherwise the heating time so
calculated will be underestimated. A table showing the times needed to heat the center of lumber with
different cross-sectional dimensions, green specific gravities, and moisture contents to a temperature of

56.1°C is presented.
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INTRODUCTION

The heating of wood is required in many
wood manufacturing operations such as veneer
manufacture, preservative treatment, lumber
drying, and wood sterilization. Since heating is
an energy-intensive and time-consuming opera-
tion, estimation of the heating time to a desired
temperature is important to save energy and to
expedite the manufacturing process. Several re-
search papers have been published for the heat-
ing of round and rectangular cross-sections of
wood from ambient condition (Simpson 2001);
but except for those dealing with logs (Feihl
1972; Steinhagen 1991), few papers have ad-
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dressed the heating of frozen wood. This paper
describes a finite element method to calculate
the one-, two-, and three-dimensional transient
heating of frozen wood subject to different ini-
tial and boundary conditions.

METHODOLOGY

Unsteady-state thermal conduction problems
are, in general, described mathematically by the
heat equation, which is given by:

aT
pC—+V - (-kVT) =g (1)

where p is density, C is heat capacity, T is tem-
perature, t is time, k is thermal conductivity, and
g is the rate of energy generation per unit vol-
ume. For problems involving phase change such
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as the heating of frozen wood with moisture con-
tent above the fiber saturation point, the latent
heat associated with the phase change must be
considered by modifying the heat equation as
follows (COMSOL 2004b):

T
pC+DN)—-+V - (-kVI)=g ()

which accounts for thawing by incorporating the
latent heat of fusion (\) into the heat capacity
term. In the above equation, the quantity D rep-
resents a normalized pulse around the melting
point. In the implementation of the finite ele-
ment solution, a Gauss pulse given by the fol-
lowing expression was used:

—(T-T,)°

dr?
D=e——— (3)

\/ wdT?

where T,, is the melting point, and dT is the
width of the pulse.

In solving Eq. (2), it was assumed in this pa-
per that the wood initially had a uniform tem-
perature distribution. Boundary condition of the
first (constant surface temperature), second
(constant surface heat flux), or third (convective
surface condition) kind may be imposed. The
wood density (p) was assumed to be constant
during the heating process and was calculated
using the following equation:

1 Me 4

where G, is the wood specific gravity based on
oven-dry mass and green volume, p,, is the den-
sity of water, and MC is the wood moisture con-
tent. The thermal conductivity (k) in the radial
direction and the heat capacity (C) at tempera-
tures below and above 0°C were calculated from
equations given by Steinhagen and Lee (1988).
Those equations are applicable for temperature
between —40°C and 100°C, green specific grav-
ity between 0.3 to 0.7, and moisture content be-
tween 30% and 130%. For two- and three-
dimensional modeling, it was assumed that the

WOOD AND FIBER SCIENCE, APRIL 2006, V. 38(2)

thermal conductivity in the tangential direction
is equal to, while that in the longitudinal direc-
tion is 2.5 times, the thermal conductivity in the
radial direction. The latent heat of fusion for
water (\), on a per unit mass of wood basis, was
calculated using the following equation:

A, (MC — 30)
=100+ MC

where A, =334,000 J/kg is the latent heat of
fusion for water on a per unit mass of water
basis. The rate of energy generation per unit vol-
ume (q) was assumed to be zero during the heat-
ing of wood.

The values of the parameters in Eq. (2), to-
gether with the boundary and initial conditions,
were entered in FEMLAB 3.0, a finite element
modeling software package (COMSOL 2004a).
Since the thermal conductivity and heat capacity
are discontinuous at the phase transition, the
steps in k and C were represented using a
FEMLAB built-in function called flclhs, a
smoothed Heaviside function with continuous
first derivative. Therefore k and C are repre-
sented in the model by the following equations:

k =Koy + (Kyigh — Kjow) (f1c1hs(T — T, scale))
(6)

+ (Chigh — Ciow) (f1c1hs(T — T, scale))
(N

where k., and C,_, are the thermal conductivity
and heat capacity below the melting point of
water, while ky;, and Cy,, are those above the
melting point of water. The scale term in the
flclhs function defines the interval over which
the function is to be smoothed.

®)

low

Cc=C

low

RESULTS AND DISCUSSION

The finite element model was validated using
the experimental results of Steinhagen (1977)
for frozen logs. Figure 1 shows the temperature
plotted against heating time for three different
points located 22.9 cm, 10.2 cm, and 2.5 cm
from the surface of an eastern white pine log
designated as log #10 in Steinhagen’s study. The
log had a moisture content of 97%, green spe-
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Fic. 1. Graph of temperature against heating time for
three different points located 22.9 cm (location 1), 10.2 cm
(location 2), and 2.5 cm (location 3) from the surface of an
eastern white pine log. The solid and dashed lines represent
values calculated using the finite element model, while the
markers represent experimental values.

cific gravity of 0.32, diameter of 45.7 cm, and
was heated from an initial temperature of —23°C
under a constant surface temperature of 54°C.
The calculations closely agree with the experi-
mental data, the calculated values not deviating
by more than 5°C from the actual numbers. In
Steinhagen’s experiments, the heated water was
agitated vigorously such that the surface of the
log came into immediate thermal equilibrium
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with the heating medium. In cases where surface
heat transfer resistance is not negligible, a con-
vective boundary condition must be used. Stein-
hagen noticed for instance that when the water
agitator was shut off momentarily in the course
of his experiments, the temperature difference
between the heated water and the log surface
was 5 to 10 times larger than with agitation. A
convective boundary condition can be easily
implemented in the finite element model by en-
tering the heating medium’s temperature and the
convective heat transfer coefficient. If a convec-
tive heat transfer coefficient of 15 W/m>K and a
fluid temperature of 54°C are used, the tempera-
ture profiles in the eastern white pine log con-
sidered above will be those shown by the mark-
ers in Fig. 2. These temperature profiles differ
from those when constant surface temperature is
assumed (represented by the solid and dashed
lines in Fig. 2) in that the time required for a
certain point in the log to reach a given tempera-
ture is longer. It is therefore critical that surface
heat transfer resistance be considered in pro-
cesses involving the heating of logs so as not to
underestimate the heating time.

The finite element program may also be used
to model the heating of frozen lumber. Using the
same thermal properties as those used to model
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Fic. 2. Radial temperature profiles at different times during the heating of an eastern white pine log. The solid and
dashed lines represent the temperature profiles when surface resistance to heat transfer is negligible, while the markers
represent the temperature profiles when surface resistance to heat transfer is significant.
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the heating of frozen logs, the one-, two-, and
three-dimensional heating of lumber can be cal-
culated. Figure 3 shows the temperature distri-
bution across the thickness of a 5.08-cm-thick,
flatsawn lumber with a green specific gravity of
0.35 and moisture content of 70%. The lumber
was subjected to one-dimensional heating from a
uniform initial temperature of —10°C by main-
taining a constant temperature of 98.9°C on the
two faces of the board. Also included in the
figure is the temperature distribution for the case
where the latent heat was not included in the
governing equation. The figure shows that the
heating of lumber is delayed in the case where
the latent heat of fusion is taken into consider-
ation. Its temperature distribution has a flat pro-
file near the center of the lumber compared to
the parabolic distribution when the latent heat is
ignored. If the temperature is plotted against the
heating time for a given location in the case
where the latent heat is included in the govern-
ing equation, the curve has an inflection point at
temperatures near the melting point, similar to
that displayed in Fig. 1 for round cross-section.
Such inflection point is not evident when the
latent heat is ignored. These show that a large
amount of energy is required to melt the ice in
the wood, and therefore sensible heating of the

100
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material can not proceed while it is being sub-
jected to latent heating.

The same phenomena observed in one-
dimensional heating of frozen lumber are also
evident in two-dimensional heating. The times
required in heating the center of lumber with
different cross-sectional dimensions, green spe-
cific gravities, and moisture contents to a tem-
perature of 56.1°C are shown in Table 1. In all
cases, the lumber was at an initial uniform tem-
perature of —10°C and subjected to a constant
surface temperature of 98.9°C. The table ex-
tends Simpson’s results (Simpson 2001) to fro-
zen lumber. The heating time increases with
lumber size, specific gravity, and moisture con-
tent and is higher when the latent heat of fusion
is taken into consideration. The heating dynam-
ics also change when surface resistance to heat
transfer is significant. For instance, a sur-
face convective heat transfer coefficient of
15 W/m’K results in the heating times shown in
column 5 of Table 1. These values are consid-
erably higher than the heating times for the case
when the surface immediately comes into equi-
librium with the temperature of the surrounding
medium (column 4 of Table 1).

Most published work on the heating of log
and lumber assumes that the material is “long,”
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FiG. 3.

Temperature profiles in the thickness direction at different times during the heating of a 5.08-cm-thick, flatsawn

lumber. The solid and dashed lines represent the temperature distributions when the latent heat was included in the
governing equation, while the markers represent the temperature distributions when the latent heat was not included in the

governing equation.
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TaBLE 1. Heating times for frozen lumber of different moisture contents (MC), green specific gravities (G,), and dimen-
sions. The lumber was initially at a uniform temperature of —10°C and then was subjected to a fluid temperature of 98.9°C

until the center reached a temperature of 56.1°C.

Heating time

MC Cross-sectional Constant surface temperature, Convective boundary condition Constant surface temperature,
(%) G, dimensions (cm X cm) with latent heat (minutes) with latent heat (minutes) w/o latent heat (minutes)
70 0.35 2.5x10.2 10 37 8
70 0.35 2.5%x 152 10 38 8
70 0.35 5.1x10.2 37 82 29
70 0.35 5.1x20.3 40 97 31
70 0.35 10.2 x 10.2 95 158 75
70 0.35 10.2 x 20.3 148 243 116
70 0.35 10.2 x 30.5 158 271 123
70 0.45 2.5x10.2 10 45 8
70 0.45 2.5%x 152 10 47 8
70 0.45 5.1x10.2 38 95 30
70 0.45 5.1x20.3 41 114 32
70 0.45 10.2 x10.2 97 178 78
70 0.45 10.2 x 20.3 152 272 120
70 0.45 10.2 x 30.5 163 305 126
70 0.55 2.5x%x10.2 10 52 8
70 0.55 2.5%x 152 10 55 8
70 0.55 5.1x10.2 39 107 31
70 0.55 5.1x20.3 42 130 32
70 0.55 10.2 x 10.2 99 197 79
70 0.55 10.2 x 20.3 155 300 122
70 0.55 10.2 x 30.5 166 338 129
100 0.35 2.5x%x10.2 11 49 8
100 0.35 2.5%x 152 11 51 8
100 0.35 51.x10.2 42 103 30
100 0.35 5.1x20.3 45 124 32
100 0.35 10.2 x 10.2 106 193 78
100 0.35 10.2 x 20.3 166 296 121
100 0.35 10.2 x 30.5 178 332 127
100 0.45 2.5x%x10.2 12 59 8
100 0.45 2.5%x 152 12 62 8
100 0.45 51.x10.2 43 120 31
100 0.45 5.1x20.3 46 146 33
100 0.45 10.2 x 10.2 109 220 80
100 0.45 10.2 x 20.3 171 335 124
100 0.45 10.2 x 30.5 183 379 131
100 0.55 2.5x%x10.2 12 69 8
100 0.55 2.5%x 152 12 73 8
100 0.55 5.1x10.2 44 136 32
100 0.55 5.1x20.3 47 168 34
100 0.55 10.2 x 10.2 111 245 82
100 0.55 10.2 x 20.3 175 371 127
100 0.55 10.2 x 30.5 187 423 134

! Convective heat transfer coefficient equal to 15 W/m? K.

that is, the log is considered as an infinite cyl-
inder and the lumber is considered either a plane
wall or an infinite rectangular bar. Those studies
therefore considered only one- or two-
dimensional heating. Since the thermal conduc-

tivity of wood in the longitudinal direction is
about 2.5 times those in the radial and tangential
directions, the heating of wood must be analyzed
as a three-dimensional problem if short pieces
are involved. Figure 4 shows the temperature
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Fic. 4. Temperature profiles after heating a 0.102-m x 0.102-m x 1.00-m frozen lumber for 100 minutes from an initial
temperature of —10°C under a constant surface temperature of 98.9°C. Only Y4 of the lumber is shown, with the top, left,
and far-end faces being maintained at the constant temperature.

profiles after heating a 0.102-m x 0.102-m x
1.00-m frozen lumber with a green specific
gravity of 0.35 and moisture content of 70% for
100 min from —10°C under a constant surface
temperature of 98.9°C. Due to symmetry, the
figure shows only one-fourth of the lumber, with
the top, left, and far-end faces being maintained
at the constant temperature. Longitudinal heat
transfer becomes significant when the ratio of
the longitudinal dimension to transverse dimen-
sion is less than 4. The finite element model
calculates that it will take 95 min to heat up the
center of the lumber to 56.1°C if the lumber
length is 1.00 m but it will take only 82 minutes
to heat up a 0.20-m long lumber.

CONCLUSIONS

The finite element modeling approach can be
used to analyze the heating of frozen wood by
solving the heat equation that incorporates the
latent heat of fusion in the heat capacity term. It

can describe one-, two-, and three dimensional
heating of logs and lumber subject to different
boundary and initial conditions.
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