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ABSTRACT

We present a method for optimally estimating local elasticity properties along a beam where each
estimate is specific to an increment in a subdivision of the beam’s length. Previous research indicates that
knowledge of localized elasticity values can improve the estimation of strength. Immediate application is
expected in the machine stress-rated (MSR) lumber production process. A sequence of bending measure-
ments on overlapping bending spans, as commonly obtained in the MSR process, serves as input to the
estimation method.

The sequence of bending measurements is modeled as an autoregressive moving average (ARMA)
random process. Autoregression coefficients are estimated from a priori information and refined as
additional data are obtained. Moving average weight coefficients come from span functions computed by
methods in Part I. A Kalman filter, defined from coefficients of the ARMA process, is applied to the
measurements, and local estimates are obtained.

Estimated local elasticity results are presented for both a simulated and a real wood beam. One set of
experiments shows that as a modeled correlation coefficient is decreased from an artificially high value,
the result evolves from local elasticity estimates that appear much the same as measured elasticity, but
without an obvious noise component, to local estimates having more detail. This leads naturally to a
suggestion for a practical, non-disruptive introduction of the estimation method to a MSR production line.
Grade yield improvement is likely an immediate benefit along with a capability for further research into
the estimation method and grading algorithms.

Keywords: Local E, compliance, bending, Kalman, estimation, optimum, ARMA, state-space.

INTRODUCTION

Our method of estimating local elastic prop-
erties in a beam requires use of span functions as
defined and computed in Part I. As part of that
development, measured compliance at a mea-
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surement point w along a beam was written as a
convolution integral involving local compliance
and a span function. Here, where sampled data
are used instead of continuous data, use is made
of the discrete form of the convolution:

Cm� j� = �
i

C� j − i� hj�i� (1)

where the definitions of local C and measured
Cm compliances are the same as in Part I but in
discrete form. In this discrete convolution, the
beam length has been considered subdivided
into N equal length increments and the bending
span into p equal length increments each iden-
tified by a discrete index. For example, Cm(j)
identifies measured compliance for a measure-
ment point at the jth increment of the beam, and
C(u) represents the compliance of the uth incre-
ment of the beam, both of these integer indices
being beam coordinates increasing to the left
from the beam’s leading end. The weight coef-
ficient hj(i) is given by the integral of the jth span
function over the ith incremental length of its
domain, where integer i is a span coordinate in-
creasing to the right from a span reference.

hj�i� = �
ith increment

chj�v� dv (2)

The leading subscript c in the integrand function
chj indicates that this span function has a con-
tinuous argument as in Part I. Otherwise, here in
Part II, discrete values such as hj(i) are the result
of an integration as in Eq. (2). The subscript
index j is introduced into the span function to
designate that the span function corresponding
to the jth measurement point is used. The appli-
cable span function depends on the bending span
support configuration, and that can depend on
the measurement point. In cases of interest, the
extent of the span function domain changes, and
it is convenient to define it over the largest do-
main used, letting the increment weights com-
puted from Eq. (2) be zero where appropriate.
When the span reference is aligned with the jth

increment along the beam, the ith weight hj(i) is
applied to the local compliance C(j − i). As is

true in a convolution integral with the dummy
variable of integration, the dummy index of
summation for one component of the convolu-
tion sum in Eq. (1) runs in the opposite direction
from the other.

Others (Foschi 1987, Lam et al. 1993, and
Pope and Matthews 1995), applied a Fourier
transform method previously identified (Bech-
tel 1985) to obtain solutions for local elasticity
values using the convolution relationship of Eq.
(1). Frequency truncation was used to reduce
unwanted high frequency noise amplified by this
method. Pope and Matthews (1995) concluded
that the computed local values were only mar-
ginally better than measured values for estimat-
ing bending strength. But, while frequency trun-
cation is useful in reducing noise, it is subopti-
mal. An optimal constrained deconvolution
method (Rosenfeld and Kak 1982) using Dis-
crete Fourier transforms and a Wiener filter has
also been contemplated (Bechtel et al. 2000).
However, any of these Fourier transform meth-
ods introduces other issues, one of which is
Gibb’s phenomenon (Guillemin 1949), a dis-
crepancy that occurs near discontinuities such as
at the ends of data having finite extent, as in the
present case of finite beam length.

KALMAN FILTER METHOD

One of last century’s classic papers (Kalman
1960) described an estimation method that has
been applied in many different fields. Kalman’s
derivation may be found in his original paper,
and some details elsewhere (Eubank 2006,
Bechtel 2005, and Kailath et al. 2000). The
problem of estimating local compliance can be
put into a framework for which Kalman’s work
is applicable.

The approach consists of representing local
compliance values along a beam as samples of
an autoregressive (AR) random process. This in-
troduces structure that statistically relates local
compliance values along a beam to one another.
Sequential measurements of beam compliance
taken as a measured beam moves relative to a
bending span are represented as weighted mov-
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ing averages (MA) of the local values. The MA
weights are obtained from Eq. (2) using appli-
cable span functions as defined in Part I. The
measurement sequence is therefore an autore-
gressive moving average (ARMA) random pro-
cess plus measurement noise, and it can be mod-
eled as the output of a linear dynamic system
represented in state-space format (Schwarz and
Friedland 1965, Ogata 1987). Components of a
state vector correspond with local compliance
values. In state-space format, the model is ready
for application of a Kalman filter. The Kalman
filter recursively uses a previous state vector es-
timate and a new compliance measurement to
compute an updated state vector estimate along
with its covariance matrix. Because local com-
pliance values are in correspondence with state
vector components, local compliance estimates
and their variances are obtained.

LOCAL COMPLIANCE VALUES AS SAMPLES OF AN

AUTOREGRESSIVE RANDOM PROCESS

Referring to Fig. 1, an uncorrelated random
noise source u(k) is the input to the upper block
diagram. The blocks labeled z−1 are delay ele-
ments so that after one unit of delay, the signal
at the left of each of these blocks appears at its
right. A beam marked 2 in Fig. 1 is shown with
oppositely hatched increments in a subdivision
of its length. It moves to the right by an amount
equal to an increment length in a time equal to
one unit of delay. Thus, compliance c(j + 2) for
a length increment in correspondence with sig-
nal s2(k) at measurement stage k is in correspon-
dence with signal s1(k + 1) at measurement stage
k + 1, one unit of delay later. A part of the signal
after each delay is added (with negative sign) to
the input. This autoregressive system is shown at
the kth stage where noise input u(k) at sampling
time k is just entering the system. At that mo-
ment, the signal at point 11 in Fig. 1 is given by
sp(k + 1) � u(k) − a1sp(k) − a2sp−1(k) − · · · −
aps1(k). Thus, the system evolves according to
the matrix equation:

s�k + 1� = ��k�s�k� + U�k� (3)

where:

s�k� =�
s1�k�

s2�k�
···

sp−1�k�

sp�k�
� ,

� =�
0 1 0 · · · 0
0 0 1 ··· ···
···

···
··· ··· 0

0 0 · · · 0 1
−ap −ap−1 · · · −a2 −a1

� ,

U�k� =�
0
0
···
0

u�k�
� (4)

At the kth stage, s(k) is a state vector, with com-
ponents called state variables, and U(k) is an
input vector with only the last component being
nonzero. Here, the state matrix � in Eqs. (4) is
not a function of measurement stage k, but it
could be, as indicated in Eq. (3). Figure 1 shows
that the compliance in each increment of the
beam subdivision within the bending span is in
correspondence with a component of the state
vector. As the beam moves to the right by one
increment, each of these local compliances shifts
its correspondence to the next lower indexed
component of the state vector according to the
state matrix � and Eq. (3) and illustrated in Fig.
1. The state vector s(k) may be considered a
sample function of an autoregressive random
process at the kth measurement time. By adjust-
ing the regression coefficients ai, the statistical
properties of this autoregressive random process
can be made to agree with statistics describing
the local compliance structure for a population
of beams.

COMPLIANCE MEASUREMENT AS A

MOVING AVERAGE

In the lower part of Fig. 1, the extent 14 of the
bending span between first and last supports is
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shown. The lower block diagram of Fig. 1 shows
state variables (local compliances) weighted and
summed to give a moving average that is
summed with measurement noise v(k) to yield
the measurement sequence y(k). In state-space
jargon, this is the output equation:

y�k� = Hks�k� + v�k� (5)

The output matrix Hk is a single row matrix
consisting of weight coefficients obtained from
the span function by Eq. (2). The Hks(k) term
should be interpreted as equivalent to Eq. (1)
recognizing the correspondence between state
variables and local compliances as illustrated in
Fig. 1. The components of Hk are in inverse
order from the order identified by the index i of
Eq. (2), and the indexing is shifted so that indi-
ces are positive starting with one (a bookkeeping
detail). For example, in Hk � [hk(p), · · · ,
hk(1)], the first component hk(1) computed from
the span function chk is last in the list. As the
beam moves to the right (corresponding to a
different measurement point), a different over-
lapping set of local compliance values is identi-
fied with the state variables, and if a different

span function is applicable, a different output
matrix is used; hence, the k in Hk. The two block
diagrams of Fig. 1 can be combined to give the
block diagram of Fig. 2, which illustrates the
output as an ARMA random process. Equations
(3) and (5) define the state-space system used in
setting up the Kalman filter for optimally esti-
mating local compliance.

KALMAN FILTER

The Kalman filter output, at any measurement
stage, is the optimal estimate of the state vector
in a linear dynamic system model. Kalman
(1960) discusses the sense in which the estimate
is optimal. The Kalman filter estimator is the
minimum-variance, unbiased, linear estimator
given the data. The variance of the residual error
for every component of the state vector is mini-
mized. The Kalman filter begins its recursive
process with a present best estimate of a state
vector based on available data, predicts based on
the state-space model defining the system dy-
namics what the state vector will be at the next
stage, and then uses new data to correct that
prediction.

FIG. 1. Upper block diagram illustrates model of local compliance as an autoregressive random process. Lower block
diagram illustrates measured output as a moving average of local compliance values plus measurement noise. Subdivided
beam in center illustrates correspondence between state variables and local compliances identified with oppositely hatched
increments of the beam subdivision.
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The output Eq. (5) models each compliance
measurement as a noisy linear combination of
the state variables. The measurement is used to
update the estimated state vector at each mea-
surement stage. So long as a local compliance is
identified with one of the state variables, it con-
tinues to contribute to the output and hence to
the estimate at that stage. When the beam pro-
gresses far enough to the right so that a particu-
lar compliance will no longer contribute (e.g. in
Fig. 1, a local increment is ready to exit the
bending span at the right), then the correspond-
ing component of the estimated state vector is
taken as the local compliance estimate for that
increment of the beam. Usually, this will be the
first component of the state vector. However,
when the trailing end of the beam is ready to
clear the leftmost support for which a compli-
ance measurement can be made, then the re-
maining local compliances are estimated
through their correspondence with remaining
components of the state vector.

The Kalman filter is derived for zero mean
random processes, but compliance values for
real beams are not zero mean. Consequently, a
preliminary step removes the mean from the data
before invoking the Kalman filter. It was found
that the best mean estimate for a particular beam
is its first measured value. Hence, each mea-
sured compliance datum entering the Kalman

filter first has the initial datum subtracted from
it. After the Kalman estimates are obtained, the
initial datum is added back in to give the local
compliance estimates. In the notation a small c
denotes local compliance minus the initial datum
and capital C denotes local compliance includ-
ing the initial datum. Estimated local values are
denoted with a superscript asterisk; for example
C* is the estimate of compliance value C.

Kalman requires an initial estimate for the co-
variance of the state vector. State vector compo-
nents are in correspondence with local compli-
ances; hence, estimates of the state vector co-
variance will be based on known or measured
compliance data. Because the mean of the state
vector is zero, the covariance denoted P(k) at
measurement stage k, using Eq. (3), is given by:

P�k� = E�s�k�sT�k��

= E���s�k − 1� + U�k − 1��

��s�k − 1� + U�k − 1��T�

= �E�s�k − 1�sT�k − 1���T

+ E�U�k − 1�UT�k − 1��

= �P�k − 1��T + Q�k − 1� (6)

In Eq. (6), E is the expectation operator, and use
is made of the fact that the input noise u(k) is
white noise. Therefore at stage k, u(k) is uncor-
related with the state vector s(k) because from

FIG. 2. The block diagrams of Fig. 1 combined to show the output as an autoregressive moving average random process.
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Eq. (3), s(k) is a combination of previous values
u(k − 1), u(k − 2), and so on. Hence, cross terms
in Eq. (6) are zero. Q(k) is the covariance matrix
of the input noise vector U(k) and is written:

Q�k� = E�U�k�UT�k�� = �
0 · · · 0 0
···

··· ···
···

0 · · · 0 0

0 · · · 0 var�u�k��
�
(7)

Assuming stationary processes for the present
initialization purposes, Eq. (6) may be written:

P = �P�T + Q (8)

which has been called a discrete Lyapunov equa-
tion (Kailath et al. 2000). The definitions of �,
P, and Q are called consistent if they satisfy Eq.
(8). For example, it may be verified that Eq. (8)
is satisfied in a simple model where all of the ai

in � are set to zero except for a1 � −�, and P is
given by:

P = �2T where �2 =
var�u�

1 − �2 , and

T =�
1 � · · · �p−1

� 1 ··· ···
···

··· ··· �

�p−1 · · · � 1
� (9)

In more complicated models, the discrete Lya-
punov equation can be solved by use of pro-
grams supplied by The Mathworks, Inc. in
Natick, MA, to give consistent definitions of �,
P, and Q. It is noted that � is the correlation
coefficient of compliances in adjacent incre-
ments.

Initialization steps include determining vari-
ance var(v(k)) of the measurement noise, vari-
ance �2 for the state variables and the coeffi-
cients ai for the autoregression model. In the
simple model above, the variance of the input
noise source u(k) may be found from the second
of Eqs. (9) in terms of other quantities. The esti-
mation of coefficient � � −a1 may be guided by
previous work involving correlation between ad-

jacent beam segments (Kline et al. 1986; Rich-
burg and Bender 1992; Taylor and Bender 1989
and 1991; Hernandez et al. 1992; Taylor et al.
1992). Alternatively, there is a method of find-
ing the autoregression coefficients from mea-
sured compliance data. First, the autoregression
function of measured compliance is obtained
from tests on beams from a similar population,
and then a system of equations similar to the
Yule-Walker equations (Papoulis 1991) is used
to solve for the ai coefficients. Details are de-
scribed in a United States patent (Bechtel et al.
2006). Variance of local compliances �2 may be
estimated as the variance of measured compli-
ance in a beam population. A guess based on the
coefficient of variation of measured modulus of
elasticity may be a reasonable starting point. The
variance of measurement noise is based on ex-
perience with the equipment involved.

Recursive steps in the Kalman filter

The Kalman filter is recursive with initializa-
tion and then iterative computations.

Initialization.—Define the initial measure-
ment stage index ki (a bookkeeping detail). Set
initial state vector estimate to zero: s*(ki) � 0.
Compute Q and the initial P(ki) to satisfy Eq.
(8). Take first measurement Cm(ki). Set k � ki.

Iterative computations.—Set k � k + 1. Com-
pute covariance matrix P*(k) � �P(k − 1)�T +
Q . C o m p u t e K a l m a n G a i n K ( k ) �
P*(k)Hk

T[HkP*(k)Hk
T + var(v)]−1. Compute ma-

trix factor F(k) � Ip − K(k)Hk, where Ip is a
p-dimensional identity matrix. Take measure-
ment Cm(k), and compute y(k) � cm(k) �
Cm(k) − Cm(ki). Compute state estimate.
s*(k) � F(k)�s*(k − 1) + K(k)y(k). Compute
covariance matrix P(k) � F(k)P*(k). If k � kf,
where Cm(kf) is the last valid measurement,
stop; else, repeat the above iterative steps.

Kalman filter details

There is a subtle distinction between the co-
variance matrices P(k) and P*(k) used in the
Kalman recursion. P(k) is the covariance of the
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residual error between the state vector s(k) and
the optimal estimator s*(k) for it at the kth stage.
The optimal estimator uses all the data up
through the measurement y(k). The notation
s*(k|k) would be more consistent with Kalman’s
paper, (Kalman 1960). P*(k) is the covariance of
the residual error between the state vector s(k)
and another optimal estimator s*(k|k − 1) for it
at the kth stage, but this second estimator uses
measurements only up through y(k − 1) not in-
cluding y(k). The estimate is predicted by the
dynamic system but not improved by informa-
tion in the measurement y(k). Details are ex-
plained more fully elsewhere (Bechtel 2005).
Both P(k) and P*(k) are used in the recursion.
The diagonal elements of P(k) are the variances
of the corresponding components of the state

vector at the kth measurement stage. They are
used to obtain the residual error variances of the
estimators used for local compliances.

Optimal local compliance estimates are ob-
tained through their correspondence with state
variables as illustrated in Fig. 1. Table 1 illus-
trates practical bookkeeping details for one ex-
ample.

The local compliance estimate C*(j) for the jth

increment of the beam subdivision may be used
to provide a local estimate for the modulus of
elasticity E*(j) of that increment according to:

E* � j� ≅ �1 + COVC
2� j�� �C*� j� (10)

where COVC(j) � (var(C(j)))1/2/C*(j) is the co-
efficient of variation of the estimator for C(j).

TABLE 1. Bookkeeping example.

k
Output
matrix

Compliance
measurement Kalman filter input

Local compliance
estimate

Residual
error

variance

12 H1 Cm(12) cm(12) � 0
13 H1 Cm(13) cm(13) � Cm(13) − Cm(12)
14 H1 Cm(14) cm(14) � Cm(14) − Cm(12)
15 H1 Cm(15) cm(15) � Cm(15) − Cm(12)
16 H2 Cm(16) cm(16) � Cm(16) − Cm(12)
17 H2 Cm(17) cm(17) � Cm(17) − Cm(12)
18 H2 Cm(18) cm(18) � Cm(18) − Cm(12)
19 H3 Cm(19) cm(19) � Cm(19) − Cm(12) C*(1) � s1*(19) + Cm(12) P1,1(19)
20 H3 Cm(20) cm(20) � Cm(20) − Cm(12) C*(2) � s1*(20) + Cm(12) P1,1(20)
� � � � � �

k H3 Cm(k) cm(k) � Cm(k) − Cm(12) C*(k − 18) � s1*(k) + Cm(12) P1,1(k)
� � � � � �

kf − 7 H3 Cm(kf − 7) cm(kf − 7) � Cm(kf − 7) − Cm(12) C*(kf − 25) � s1*(kf − 7) + Cm(12) P1,1(kf − 7)
kf − 6 H4 Cm(kf − 6) cm(kf − 6) � Cm(kf − 6) − Cm(12) C*(kf − 24) � s1*(kf − 6) + Cm(12) P1,1(kf − 6)
kf − 5 H4 Cm(kf − 5) cm(kf − 5) � Cm(kf − 5) − Cm(12) C*(kf − 23) � s1*(kf − 5) + Cm(12) P1,1(kf − 5)
kf − 4 H4 Cm(kf − 4) cm(kf − 4) � Cm(kf − 4) − Cm(12) C*(kf − 22) � s1*(kf − 4) + Cm(12) P1,1(kf − 4)
kf − 3 H5 Cm(kf − 3) cm(kf − 3) � Cm(kf − 3) − Cm(12) C*(kf − 21) � s1*(kf − 3) + Cm(12) P1,1(kf − 3)
kf − 2 H5 Cm(kf − 2) cm(kf − 2) � Cm(kf − 2) − Cm(12) C*(kf − 20) � s1*(kf − 2) + Cm(12) P1,1(kf − 2)
kf − 1 H5 Cm(kf − 1) cm(kf − 1) � Cm(kf − 1) − Cm(12) C*(kf − 19) � s1*(kf − 1) + Cm(12) P1,1(kf − 1)

kf H5 Cm(kf) cm(kf) � Cm(kf) − Cm(12) C*(kf − 18) � s1*(kf) + Cm(12) P1,1(kf)
C*(kf − 17) � s2*(kf) + Cm(12) P2,2(kf)

� �

C*(kf + 11) � s30*(kf) + Cm(12) P30,30(kf)
The initial measurement index is k � ki � 12. The first measurement point on the beam is w � d(k − 1) + d/2 � 639 mm (25.1 inch) from its leading end

if d � 55.54 mm (2.19 inch), see Fig. 3 of Part I. The output matrix changes from H1 through H5 as the span function changes. The Kalman filter input shows
subtraction of the initial compliance measurement from each measurement. Local compliance estimate and estimator variance come from the first state variable
estimate s1* and first diagonal component of the covariance matrix P until the end of the beam where compliances and variances are associated with the other
state variables. Other bookkeeping arrangements are possible; e.g. here, the first local compliance estimate is taken when the beam’s leading end first contacts
the last support at x7 which doesn’t occur until measurement index k � 19. From Fig. 4 of Part I, the span functions are trivially small for the first local
compliance after the leading end passes support x5, and the first estimate could have been taken as s1*(12) + Cm(12) at index k � 12 instead of waiting for 19.
In that case the number of state variables would be correspondingly reduced and processing would occur more rapidly.

WOOD AND FIBER SCIENCE, APRIL 2007, V. 39(2)266



Similarly, the coefficient of variation for E*(j) is
obtained from:

COVE� j� ≅ COVC� j� � �1 + COVC
2� j�� (11)

The correction factor [1 + COVC
2(j)] appears in

Eqs. (10) and (11) because the mean of a recip-
rocal distribution is not equal to the reciprocal
of the mean (Papoulis 1991).

Estimates including error variances are avail-
able for leading end increments of a beam while
it is being sequentially processed. It is not nec-
essary to wait until all measurements of a beam
are completed. As soon as an increment no
longer contributes to a measurement, an optimal
estimate for its compliance can be obtained.

The sampling interval for the machine yield-
ing the following test results was (13.9 mm)
0.547 inch. To reduce the processing time re-
quired, a decimation preprocessing step was per-
formed to effectively increase the sampling in-
terval by a factor of 4 to 55.5 mm (2.19 inch). A
study of power spectral density data from this
machine (Bechtel et al. 2000) showed a data
bandwidth small enough that the Nyquist Sam-
pling Theorem (Oppenheim and Schafer 1989)
is well satisfied by this reduced sampling rate.
Using a relatively slow microcomputer (400
MHz) and without code optimization effort, pro-
cessing speeds were shown sufficient to easily
keep up with 6 m/sec (20 ft/sec) line speeds.
With a faster computer and some code optimi-
zation, much higher line speeds will be possible.
There are identified code optimization steps that
can be taken. For example, the measured data
are used to estimate the state vector, but they are
not used to update the Kalman gain K(k), matrix
factor F(k), output matrix Hk or covariance ma-
trices P(k) and P*(k). Computations involving
these quantities at each iteration could be pre-
processed, stored and results read from memory
as required.

TEST RESULTS

Tests were performed with simulated and real
data. A reduced model was used where the re-
gression coefficient a1 � −�, and all others were

set to zero. The simulated data were used to test
the robustness of the process by generating the
data with a specified correlation coefficient �
and using another for the Kalman filter process-
ing. The experimentation showed that the pro-
cess performs well if analysis uses a value of �
different from that used to generate the data.

In Part I, compliance was defined as recipro-
cal of the EI product, and it was recognized there
that this was to generalize the work. Here, with
test data and results, moment of inertia I is as-
sumed constant and absorbed into other con-
stants, and compliance becomes the reciprocal
of modulus of elasticity alone. Thus, local C �
1/E and measured Cm � 1/Em.

Figure 3 illustrates, in its upper part, a simu-

FIG. 3. Kalman filter applied to a simulated beam.
Simulated local E is curve 71, simulated measured E is
curve 72, and Kalman estimated E is curve 73. Coefficient
of variation of the estimator is curve 74. Note that the es-
timated local E 73 follows the dips in the simulated local E
71 better than measured E 72. Model of Fig. 2 was used, but
with all AR coefficients set to zero except a1.
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lated local E function labeled 71 generated as the
reciprocal of an autoregressive local compliance
function outcome. Coefficients used to generate
the local compliance function were mean �
(13.8 GPa)−1 � (2.00 Mpsi)−1 and variance
�2 � (34.5 GPa)−2 � (5.00 Mpsi)−2, the vari-
ance obtained assuming a compliance coeffi-
cient of variation of 0.4. Variance of the zero
mean white noise random process u � u(k) in
Fig. 2 is given by var(u) � �2(1 − �2) where
� � −a1 � 0.97 in Fig. 2 with all other autore-
gression coefficients set to zero. Thus var(u) �
(142 GPa)−2 � (20.6 Mpsi)−2. The zero mean
white noise variates u(k) were generated from a
lognormal pseudo-random number generator ad-
justed to have zero mean and variance as speci-
fied. The lognormal distribution was used be-
cause it provides a lower limit of generated vari-
ates. Then, when the mean is added to provide
simulated local compliance values C, the recip-
rocal E � 1/C values are neither extraordinarily
large nor negative. In an effort to better simulate
knots, compliance pulses were added at defined
points on the beam. Three compliance pulses
having amplitude equal to twice the mean com-
pliance value were added to the generated local
compliance function sample values at 53.6,
108.2 and 119.2 inch from the leading end of the
simulated beam. Also, a compliance pulse with
twice the mean compliance amplitude was added
to adjacent generated samples of the local com-
pliance function at 162.9 and 165.1 inch, giving
a pulse two samples wide.

The resulting local E �1/C function is shown
labeled 71 in Fig. 3. Relative minima associated
with the single sample pulses are labeled 68 and
the double sample wide pulse 69. The lower part
of Fig. 3 is an expanded version of the same plot.
To simulate bending measurement by the bend-
ing span of the configuration in Part I, the simu-
lated local compliance function was convolved
with weights corresponding to the appropriate
succession of span functions, Part I, Fig. 4.
Simulated “measured” compliance Cm was ob-
tained by adding pseudo-random white Gaussian
noise having zero mean and variance given by
var(v) � (2180 GPa)−2 � (316 Mpsi)−2 to
simulate measurement noise from this system.

The reciprocal Em � 1/Cm is plotted in Fig. 3
and labeled 72. The curve 72 is observed to be a
smoothed version of 71 and misses much of the
detail of 71 as expected with a bending measure-
ment.

A Kalman filter was applied, but instead of
using coefficient � � 0.97, which was applied to
generate the local compliance function, a value �
� 0.90 was used to define the required matrices
for the Kalman filter. It is not expected that one
would know precisely the coefficients describ-
ing the statistics of the local compliance func-
tions. If the 0.97 value had been known, there
would be justification in this case for reducing it
in the filter because of the added pulses of com-
pliance. Experimentation with different values
of � in the Kalman filter showed that smaller
values give results with more variation thereby
allowing better tracking of large variations.
Thus, the Kalman filter, with � � 0.90 and
�2 � (34.5 GPa)−2 � (5.00 Mpsi)−2, used
var(u) � �2(1 − �2) � (79.1 Gpa)−2 � (11.5
Mpsi)−2. The estimated local E obtained from
the Kalman filter is illustrated in Fig. 3 as the
curve labeled 73. It follows the local E function

FIG. 4. Kalman filter applied to measured E of curve 76,
for a wood beam. Estimated local E is curve 77 and coef-
ficient of variation is curve
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71 more closely than the measured result 72.
The coefficient of variation of the estimator at
each point along the beam is illustrated by the
center part of Fig. 3. It is clear that estimation
quality suffers near the ends of the beam as a
result of both reduced span function weighting
and a reduced number of measurements having
contributions from them. The estimated local E
function and coefficient of variation were ob-
tained from local compliance quantities by using
Eqs. (10) and (11).

Figure 4 shows results of testing a wood beam
with bending apparatus as in Fig. 3 of Part I. The
beam was a 2 × 6 from a spruce-pine-fir popu-
lation. Its cross-section and length were 38 ×
140 mm (1.5 × 5.5 inch) and 6.1 m (20 ft). The
actual local E analogous to simulated curve 71
of Fig. 3 is, of course, unknown. The measured
Em is given by curve 76 in Fig. 4, and the esti-
mated local E result from the Kalman filter is
given by curve 77. Coefficient of variation of the
estimator is given by curve 78. In the Kalman
filter, coefficients were set the same as for the
filter resulting in the estimated local E of Fig. 3.

IMPLEMENTATION AND ADDITIONAL RESEARCH

It is interesting that if the correlation is set
artificially high, e.g. � � 0.999, the estimated
local E closely tracks the measured Em, but with-
out the vibration induced noise that often ap-
pears on the measured signal. This leads natu-
rally to a suggested practical implementation of
the estimation method into a machine stress-
rated (MSR) lumber mill operating with modern
equipment under North American rules. The pri-
mary modification to existing equipment would
be new software for data processing. The imple-
mentation would use a correlation coefficient of
0.999 with little if any change in the grading
process, except that the consequent reduced
noise should result in some increase of high
grade yields. Then, the correlation coefficient
would be reduced in small steps along with al-
lowable small reductions in machine grade
thresholds. Grade yields and lumber quality
would be monitored carefully using the existing
off-line quality control procedures and equip-

ment to determine if the local E estimates in-
crease high grade yields and profits as expected.
Simultaneously, data may be gathered for help
in determining coefficients best suited for use in
the autoregression model. Whether one or more
regression coefficients should be used in the
model would be part of this effort.

RAMIFICATIONS

The output equation of the state-space repre-
sentation of the foregoing linear dynamic system
produces a scalar (measured Cm) as its output.
However, the Kalman filter has no such restric-
tion. In fact, the output may be a vector output in
which case the number of rows in the output
matrix is equal to the number of components of
the vector output. Thus the linear dynamic sys-
tem model can have another linear combination
of the state vector components, i.e. compliances,
to give a different measured output. That output
can be used along with other such outputs for
processing by a Kalman filter.

CONCLUSIONS

A Kalman filter is practical, and likely useful
and profitable, in the production-line to deter-
mine local elasticity values along the length of a
beam. Input typically consists of a sequence of
measured elasticity values from a sequence of
overlapping bending spans along the beam.
These are processed by the Kalman filter to give
optimal local estimates for each increment in a
subdivision of the beam length. The Kalman fil-
ter uses an autoregression model of the local
compliance function appropriate for the tested
population of beams. The autoregression coeffi-
cients may be estimated from prior research or
learned from autocorrelation of measured com-
pliances obtained from tests on beams from a
similar population. Also required is a matrix of
coefficients defining each measurement as a
weighted moving average of local compliance
values. These coefficients are obtained from
span functions computed by the general method
of Part I. Tests with simulated and actual data
indicate beneficial possibilities of the method
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particularly for use with machine grading of
lumber. A suggested implementation would
seamlessly introduce the method by first using it
with an assumed artificially large correlation co-
efficient between adjacent local compliances.
This has the observed effect of reducing noise on
the measured signal without affecting it other-
wise. For this reason alone, it is likely that
implementation will cause small improvement in
grade yields and profits. The next step would
reduce the correlation coefficient used in the
Kalman filter, as well as grade thresholds in
small increments according to existing rules.
Off-line quality control procedures would ensure
that grade standards are met. At the same time,
measurement data can be gathered for determin-
ing autocorrelations and better determination of
the autoregression model used in the Kalman
filter. With this implementation, required re-
search can be performed to economically deter-
mine profitability of the local estimation
method.
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